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Approximation operators in qualitative data analysis
�

Ivo Düntsch and Günther Gediga
���

Department of Computer Science, Brock University, St. Catharines, Ontario, L2S 3A1,
Canada, {duentsch,gediga}@cosc.brocku.ca

Summary. A large part of qualitative data analysis is concerned with approximations of sets
on the basis of relational information. In this paper, we present various forms of set approxima-
tions via the unifying concept of modal–style operators. Two examples indicate the usefulness
of the approach.

1 Introduction

In many instances it is not possible to describe a set precisely, owing to insufficient
information or other sources of uncertainty. One way of handling this situation is
to assign degrees of belief – probabilities, fuzzy membership assignments etc – to a
statement such as “Object x is a member of set X”. More cautious approaches con-
sider intervals in which the relevant numerical functions lie, such as upper and lower
probabilities or possibility theory. Such (approximations of) “point estimates” are
problematic in many cases because the underlying model assumptions are often hard
to fulfill. We have argued elsewhere [5] that qualitative tools often give compara-
tive results under much less stringent assumptions. A frequently studied technique
of qualitative set description is to determine a lower and an upper approximation of a
set using non-numerical techniques. We will call a pair

�
f � g � of functions 2U � 2U

an approximation pair (on U) if

f � X �
	 X 	 g � X � (1)

for all X 	 U . A weak approximation pair satisfies

f � X �
	 g � X ��� (2)


Co-operation for this paper was supported by EU COST Action 274 “Theory
and Applications of Relational Structures as Knowledge Instruments” (TARSKI),
www.tarski.org�
Equal authorship is implied
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This seems to be the weakest condition for a sensible concept of set approximation
which is internal with respect to U . Stronger structural conditions require that f is
an interior operator and g a closure operator, or that they are dual to each other (to
be explained below).

A common mathematical basis of this type of set approximation are constructions
associated with binary relations on the universe U . A frequently recurring theme is
the fact that each binary relation R on U gives rise to a “neighborhood” mapping
fR : U � 2U via the assignment

x ���� y � U : xRy � � (3)

Indeed, according to [14], it was already known to Tarski [30] in 1927 that there is a
one-one correspondence between binary relations on U and mappings f : 2U � 2U

which satisfy

f � /0 ��� /0 �

f

�	�
i 
 I

Xi � � �
i 
 I

f � Xi � �

This observation later formed the basis for the correspondence theory between
Kripke frames and modal logics.

Examples are the approximation operators of rough set theory [24], various general-
izations [27, 28, 34, 38], the derivation operator of formal concept analysis [33], or
the span-content operators of [6].

2 Operators and relations

Much of the mathematical background of qualitative data analysis is concerned with
set operators, relational structures, and the interplay among them: Closure and inte-
rior operators, (semi–) lattices, polarities, Galois correspondences, duality theory for
Kripke frames, and Boolean algebras with operators. Most of the machinery has been
developed in the first half of the 20th century, see for example Birkhoff [1], Jónsson
and Tarski [14], McKinsey and Tarski [17, 18], Ore [19]. Many of the early results
have been rediscovered by modal logicians [see 13, for a brief discussion], and re-
rediscovered by the rough set community [see e.g. 36]. A good overview of the rele-
vant correspondence results is given in [32], and, for rough set theory, in [37, 39].

For unexplained concepts we invite the reader to consult [3] or [9] for order and
lattice theory, and [15] for Boolean algebras.

If
�
A �� ��� ��� � 0 � 1 � and

�
B ��� ��� ��� � 0 � 1 � are Boolean algebras, and f : A � B is a map-

ping, then the dual of f is the function f ∂ : A � B defined by

f ∂ � a ����� f ��� a � � (1)
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Clearly, if f preserves � , resp. � , then its dual preserves � , resp. � .
If

�
X ��� � and

�
Y ��� � are partially ordered sets, a pair

�
ψ � ϕ � is called a Galois con-

nection between X and Y , if ψ : X � Y and ϕ : Y � X are antitone (i.e. dually order
preserving) mappings, and x � xψϕ, y � yϕψ for all x � X , y � Y . x � X is called
Galois closed with respect to

�
ψ � ϕ � if x � xψϕ.

A mapping c : 2U � 2U is called a weak closure operator if it satisfies

Cl1. c � /0 ��� /0,

Cl2. X 	 c � X � ,
Cl3. X 	 Y � c � X � 	 c � Y � .

It is called a closure operator if it additionally satisfies

Cl4. c � c � X � � � c � X � .

Sets for which c � X ��� X are called closed. It is well known that the collection of all
closed sets of a closure operator can be made into a complete lattice � c by setting� � Xi : i � I � � c � � � Xi : i � I ��� � (2)� � Xi : i � I � �
	 � Xi : i � I � � (3)

Furthermore, each complete lattice is order isomorphic to the complete lattice of
closed sets of some closure operator [19]. A closure operator is called additive, if it
satisfies

Cl5. c � X � Y � � c � X ��� c � Y � .

and completely additive if it distributes over arbitrary unions.

Note that Cl5 implies Cl3, but not vice versa: Suppose that U has at least three
elements and define

c � X � �� X � if �X ��� 1 �
U � otherwise �

Then, c satisfies Cl1 – Cl4, but not Cl5. Additive closure operators are called “closure
operators” in [17], where their corresponding lattices have been extensively studied.
Each such � c is the lattice of closed sets of a topology; conversely, the topological
closure operator satisfies Cl1 – Cl5.

We call c a weak interior operator if it satisfies

Int1. i � U � � U ,
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Int2. i � X � 	 X ,

Int3. X 	 Y � i � X � 	 i � Y � .
and an interior operator if, additionally,

Int4. i � i � X � ��� i � X � .
An interior operator is called multiplicative if it satisfies

Int5. i � X � Y ��� i � X ��� i � Y � ,
and completely multiplicative if it distributes over arbitrary intersections. Clearly,
the dual of a (weak, additive, completely additive) closure operator is a (weak, mul-
tiplicative, completely multiplicative) interior operator and vice versa.

If R is a relation between the elements of U and V , and x � U , we let the converse
of R be the relation R˘ � � � y � x � : xRy � . The domain of R is the set dom � R � � � x �
U : ��� y � V � xRy � , and R � x � is the set � y � V : xRy � ; sometimes, R � x � is called a
neighborhood of x [16, 23].

As mentioned above, the assignment x �� R � x � defines a function R : U � 2V .
Conversely, given a function f : U � 2V , we can define a relation S f 	 U � V by
xS f y � � y � f � x � . Clearly, R f � f , and SR � R.

R can be used to define several operators 2U � 2V :
�
R ��� X � � � b � V : ��� a � X � aRb � � (Possibility operator) (4)�
R ��� X � � � b � V : �	� a � U � � aRb � a � X � � � (Necessity operator) (5)�
�

R ����� X � � � b � V : �	� a � U � � � a � X � aRb � � � (Sufficiency operator) (6)� �
R � ��� X ��� � b � V : ��� a � U � � a �� X and not aRb � � � (Dual sufficiency operator)

(7)

The operators (4) – (7) are generalizations of well known operators used in modal
and algebraic logic, see e.g. [7, 21] and also [6, 8, 23].

Clearly,
�
R � and

�
R � , as well as

���
R ��� and

� �
R � � are dual to each other, and for each 	 2U ,

�
R �

� �
X 
�� X � � �

X 
�� � R � � X � � (8)

�
R �
� 	

X 
�� X � � 	
X 
�� �

R � � X ��� (9)

�
�
R ���

� �
X 
�� X � � 	

X 
�� �
�
R ����� X ��� (10)

� �
R � �

� 	
X 
�� X � � �

X 
�� � � R � ��� X � � (11)
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Furthermore,
�
R � and

���
R �
� are, respectively, the existential and universal extension

of the assignment x �� R � x � to subsets of U , since
�
R � � X ��� �

x 
 X

R � x � � �
�
R ����� X � � 	

x 
 X

R � x ���

It is also easily seen that
�
�
R ����� X � � � � � R � ��� U �

X � � � � R � � � X ��� � � � R � ��� U �
X ��� (12)

Here, � R � � � x � y � � U � V :
�
x � y � �� R � is the relational complement of R. The suf-

ficiency operators
���
R ��� and

�
�
R �̆�� are intimately connected with Galois connections:

Proposition 1. [19] The pair
� ���

R �
��� ��� R �̆
� � is Galois connection between
�
2U � 	 � and�

2V � 	 � , and each Galois connection between these sets has this form for some R 	
U � V.

The combined operators
�
R �̆ � R � and

�
R �̆ � R � will play a major role in our subsequent

discussions. For these, we have

Proposition 2. 1.
�
R �̆ � R � is a closure operator on U.

2.
�
R �̆ � R � and

�
R �̆ � R � are dual to each other.

3.
�
R �̆ � R � is an interior operator on U.

Proof. 1. Clearly,
�
R �̆ � R � � /0 � � /0. For Cl2, let x � X 	 U . Then, R � x � 	 �

R ��� X � by
definition of

�
R � , and hence, x � �

R �̆ � R � � X � by (5).

Since both
�
R �̆ and

�
R � preserve 	 by (8) and (9), so does

�
R �̆ � R � , and thus, it satisfies

Cl3.

Let Y 	 V . Then,

q � �
R �̆ � R � � R �̆ � Y � � � � s � V � � qRs � s � �

R � � R �̆ � Y � �� �	� s � V � � qRs � � � p � U � � pRs � � � t � V � � pRt � t � Y �
������ �	� s � V � � qRs � s � Y ���� q � �
R �̆�� Y ���

which implies Cl4.

2. First, note that � � R �̆ � R � � ∂ � X ��� U
� �

R �̆ � R � � U �
X � . Now,

x � U
� �

R �̆ � R � � � X � � � R � x � �	 �
R ��� U �

X ���
� � � � z � � xRz and z �� �

R � � U �
X � ���

� � � � z � � xRz and �	� y � � y �� X � y � � R � z � ���
� � � � z � � xRz and �	� y � � yRz � y � X � � �
� � � � z � � xRz and R˘ � z �
	 X � �
� � � � z � � xRz and z � �

R ��� X � � �
� � x � �

R �̆ � R ��� X ���
3. follows from 1. and 2. by duality. �
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Observe that Proposition 2 is true for arbitrary R. The following result has been
known in a different context for some time [33]:

Corollary 1
�
�
R �̆�� ��� R �
� is a closure operator.

Proof. First,

�
�
R �̆�� ��� R �
� � X � � � � R �̆ � V � ���

R ��� � X � ��� by (12)� � � R �̆�� V � � � � R � � U �
X � � � by (12)� � � R �̆ � � R ��� X ��� by duality �

The claim follows now from Proposition 2. �

This result is also a direct consequence of Proposition 1; we have taken the route
above to emphasize the connection with

�
R �̆ � R � .

To conclude this Section, let us consider the case where U � V . Correspondence
theory [32] tells us that

X 	 �
R ��� X � � � R is reflexive � � (13)�

R � � R ��� X �
	 �
R ��� X � � � R is transitive � (14)

X 	 �
R � � R ��� X � � � R is symmetric, (15)

Note that
�
R � is a weak closure operator just in case R is reflexive, and that

�
R � is a

completely additive closure operator, if, in addition, R is transitive. In this case, we
denote the topology generated by the closed sets by τR, i.e.

τR � � U � �
R ��� Y � : Y 	 U � � � � R ��� X � : X 	 U � � (16)

Since these topologies (and related structures) have been considered in the present
context [e.g. 16, 23, 39], we recall some facts about their properties. In the sequel,
let R be reflexive and transitive.

Proposition 3. In τR, each x � U has a smallest open neighborhood.

Proof. This result has appeared in a different form and context already in [29]. Let
x � U , and


be the collection of all open neighborhoods of x. By (9) , � 

is open,
and clearly, it is the smallest open set containing x. �

A topology with the property of Proposition 3 is called principal.

Proposition 4. 1. [29] The collection of all principal topologies on a set U can be
made into a lattice which is anti–isomorphic to the lattice of all reflexive and
transitive relations on U.
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2. [10] The following are equivalent:

a) R is an equivalence relation.

b) � � X 	 U � � X � τR � � U
�

X � τR � .
c) τR is regular.

In this case, a basis for τR are the classes of the partition induced by R, and R � x �
is the smallest neighborhood of x.

3 Approximation based on homogenous relations

In our first scenario, we consider a finite set U and various relations and operators
on U . The basic idea is that objects are usually not considered in isolation, but are
in some way related; these relationships are then used to obtain operators 2U � 2U

which can approximate subsets of U .

3.1 Equivalence relations and approximation spaces

As a first example, consider the case of a spatial database. A frequently used key
is the minimum bounding box which is the smallest aligned rectangle enclosing a
spatial object. More generally, given a grid of rectangles (cells) in the plane, one can
approximate a spatial object O from above by the smallest set of cells which cover
O, and from below by the largest set of cells totally contained in O (Figure 1). This
situation is easily captured in a relational setting: Suppose that U is an area in the
plane which is covered by a grid of disjoint rectangles; some care must be taken that
the boundary of adjacent cells belong to exactly one cell. We now define R 	 U � U
by

xRy � � x and y are in the same cell �
Clearly, R is an equivalence relation, and each cell corresponds to exactly one equiv-
alence class of R. If X is a region in U , then the upper approximation X of X is the
union of all classes of R which intersect X , and the lower approximation is the union
of all classes of R totally contained in X . In other words,

X � � x : R � x � � X �� /0 � � � � R � x � : x � X � � �
R � � X � � (1)

X � � x : R � x �
	 X � � � x : R˘ � x �
	 X � � �
R � � X � � (2)

More generally, an approximation space is a structure
�
U � R � , where R is an equiva-

lence relation on the set U [24]. An approximation space tells us the granularity of
our knowledge about the world - we can distinguish objects only up to the equiva-
lences classes of R, but not within the classes.

A rough set is a pair
�
A � B � such that
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Fig. 1. An approximated region

1. A and B are empty or a union of equivalence classes of R,

2. A 	 B,

3. If C is a singleton class contained in B, then C 	 A.

Rough sets are approximations of subsets of U in the following sense: Let X 	 U .
Since we cannot distinguish within equivalence classes of R we can say with cer-
tainty that some x � U is a member of X just in case the whole class R � x � is a subset
of X . Similarly, we can be sure that x �� X only if the class R � x � of x is disjoint to
X . The rough set approximations are given by (1) and (2). The concepts agree well
with the interpretation of these operators in modal logic: x � X if x is certainly a
member of X , and x � X , if x is possibly a member of X , according to the knowledge
delivered by the granularity induced by R. The connection of the rough set approx-
imation operators to modal S5 logic have first been observed by Orlowska [20] and
subsequently by many authors; overviews can be found in [4, 40].

Since R is reflexive, the upper approximation is a weak closure operator, and since R
is also transitive, it is in fact a completely additive closure operator. Consequently, the
lower approximation is a completely multiplicative interior operator. Furthermore,
the properties of an equivalence relation imply that

�
R ��� �

R � � R � � �
R � � R � � �

R � � �
R � � R � � �

R � � R ��� (3)

3.2 More general relations

It was argued by Słowiński and Vanderpooten [27] that for many applications the
properties of an equivalence relation are too strong, and that relations with weaker
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properties should be considered when one wants to express some form of similar-
ity. A first generalization is to require only that R is reflexive and symmetric, and
relations with these properties have indeed be called similarity relations. This ter-
minology may be somewhat misleading: While a a relation of similarity may be
symmetric, calling a reflexive and symmetric relation a “similarity” may cause con-
textual problems: Suppose that we have agreed on what constitutes similarity and
have expressed this by a reflexive and symmetric relation R. Let S be the relation� R � 1 � . Since the complement of a symmetric relation is again symmetric, S is a
similarity. Thus, if x is not similar to y according to R, we would say that x is similar
to y, according to S.

To suppose that a relation of similarity is symmetric is also not always appropriate.
Much of the similarity data used in Computer Science are expert judgments and it
is quite reasonable to assume that experts judgments shows some bias. Indeed, the
investigations of Tversky [31] show that similarities based on human judgment are
often quite asymmetric, and we invite the reader to consult [12] for an example.

It has also been argued that non–reflexive relations can be interpreted as similarity
[11], and the following example was given:

“We may discern persons by comparing photographs taken of them. But it
may happen that we are unable to recognize that a same person appears in
two different photographs”.

A similar example is the famous experiment by Rothkopf [25]:

“The S[ubject]s of this experiment were exposed to pairs of aural Morse
signals sent at a high tone speed. The signals of each pair were separated by
a short temporal interval. The S[ubject]s were asked to indicate whether they
thought the signals were the same (or different) by making the appropriate
remark on an IBM True–False Answer sheet. Each S[ubject] was asked to
respond in this fashion to 351 different pairs of Morse signals.”

We interpret this as

xRy � � x and y are recognized as the same (person, signal) �
In both cases, the similarity of x and y is very much in the eye – or the ear – of the
beholder, and not necessarily a property of x and y.

An equivalence relation R on U has the special property that� � R � x � : x � X � � � x : R � x ��� X �� /0 � � � � R � x � : R � x ��� X �� /0 � � (4)

and each is equal to X . If R 	 U � U is arbitrary, then (4) need not be true. Thus, one
needs to decide what constitutes a lower or upper approximation of X . In the litera-
ture, one finds many suggestions for such pairs; in (5) and (6) below, R is assumed
to be reflexive:
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R � � X ����� x � U : R˘
�
x �	� X 
�� R

� �
X ������ R˘

�
x � : x � X 
�� [28] (5)

R ��� � X ��� � � R˘
�
x � : R˘

�
x �	� X 
 R

��� �
X �� � � R˘

�
x � : R˘

�
x ��� X �� /0 
 [28] (6)

R � � X ��� � � R � x � : R
�
x �	� X 
 R

� �
X �� � � R � x � : R

�
x ��� X �� /0 
 [39] (7)

R � � X ����� x � U : R
�
x �	� X 
�� R � � X ���� x � U : R

�
x ��� X �� /0 
 [11, 35, 36] (8)

R � � X ��� � � R˘
�
x � : R˘

�
x �	� X 
 R

� �
X ���� x � U : R

�
x ����� R � � X ��
 [6] (9)

All of these can be located within the modal operator framework:

R � � X � � �
R � � X � R

� � X � � �
R �̆�� X � �

R ��� � X � � �
R �̆ � R � � X � R

��� � X � � �
R �̆ � R � � X �

R  � X � � �
R � � R �̆ � X � R

 � X � � �
R � � R �̆ � X �

R � � X � � �
R �̆�� X � R � � X � � �

R �̆�� X �
R ! � X � � �

R �̆ � R � � X � R ! � X � � �
R �̆ � R ��� X �

We note without proof some inclusion properties among these relations:

Proposition 5.

� � X � � X 	 �
R ��� X � ��� � � � X � ��� R � � X � 	 X � � � R is reflexive � (10)

� � X � �
� R � � X � 	 �
R ��� X � ��� � � � X � � X 	 �

R � � R �̆ � X � � � � dom � R �̆ � U � (11)

� � X � � � R � � R �̆ � X � 	 �
R � � R �̆ � X � ��� (12)

It can be seen that that the only approximation pair for arbitrary R is
�
R ! � R ! � ; these

functions are also dual to each other in the sense of (1) of Section 2 and a closure,
respectively, an interior operator. All other pairs need extra conditions such as reflex-
ivity or totality to satisfy the approximation conditions (1) or (2) on page 1. If R is
reflexive, then

�
R ! � R ! � gives the tightest bounds for the approximation pairs

�
f � g �

above in the sense that

f � X �
	 R ! � X �
	 X 	 R
! 	 g � X ���

4 Approximation based on heterogeneous relations

Another type of approximation arises when we have information about the proper-
ties of the elements of the domain. Such information may be given by an information
system in the sense of [24], or, more generally, by a binary relation R 	 U � V con-
necting objects with properties. For this situation we have special names for some of
the modal operators: If X 	 U and Y 	 V , we say that

" �
R � � X � is the span of X ,
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" �
R �̆ � Y � is the content of Y ,

" �
�
R ����� X � is the intent of X ,

" �
�
R �̆���� Y � is the extent of Y .

The span of X is the set of all properties which are related to some element of X , and
the content of Y is the set of those objects which can be completely described by the
properties in Y . The intent of X are those properties common to all elements of X ,
and the extent of Y is the set of all objects which possess all properties in Y . Extent
and intent are the basic operators of formal concept analysis (FCA) [33]. Since we
know from Corollary 1 that

�
�
R �̆�� ��� R �
� � � � R �̆ � � R �

the FCA operators are the content–span operator applied to � R, and it depends on
the context which one is appropriate to use. We just mention a result from [8] which
indicates in another way how the two closures differ:

Proposition 6. For all x � U � X 	 U,

x � �
R �̆ � R ��� X � � � 	 � R � y � : y � X � 	 R � x � �

x � ���
R �̆
� �
� R ����� X � � � R � x �
	

� � R � y � : y � X � �
For an extensive algebraic and topological view of the connections between FCA
and approximation spaces we refer the reader to [22].

In this Section we will investigate more closely the operators
�
R �̆ � R � and its dual�

R �̆ � R � . We know already that
�
R �̆ � R � is a closure operator, and

�
R �̆ � R � is an interior

operator, so that they can serve as sensible approximations of X 	 U .

We first show that the approximation pair
� �

R �̆ � R ��� � R �̆ � R � � are the original rough set
approximation operators (1), (2) defined on page 7, derived from the standard data
representation of rough set analysis: An information system is a structure

i � �
U � Ω � � Vq : q � Ω � � f ��� (1)

where

" U is a finite set of objects.
" Ω is a finite set of attributes.
" For each q � Ω,

– Vq is a set of attribute values of attribute q. In the sequel, we let V ��� q 
 Ω Vq.
" f : U � Ω � V is a function such that f � x � q � � Vq for all x � U � q � Ω, called the

We interpret f � x � q ��� a as “Object x has the value a at attribute q”.



12 Ivo Düntsch and Günther Gediga

Furthermore, if Q � � q1 � � � � � qn � 	 Ω we lift f by setting

fQ � x � � �
f � x � q1 � � � � � f � x � qn � � � (2)

Let R 	 U � VΩ be the relational version of fΩ, i.e.

xRt � � fΩ � t �

Furthermore, let θ be the kernel of fΩ, i.e.

xθy � � fΩ � x ��� fΩ � y � �

The approximation space which we consider is
�
U � θ � .

Proposition 7. Let X 	 U. Then,

1.
�
R �̆ � R ��� X � � X.

2.
�
R �̆ � R ��� X � � X.

Proof. We only show 1. since 2. follows immediately by duality.

z � �
R �̆ � R ��� X � � � R � z � 	 �

R ��� X ���
� � fΩ � z � � �

R ��� X ���
� � � � x � X � xR fΩ � z ���
� � � � x � X � fΩ � x ��� fΩ � z ���
� � � � x � X � xθz �
� � θz � X �� /0 �
� � z � X �

which completes the proof. �

4.1 Example: Student assessment

Suppose S is a set of skills and Q is a set of problems, with which the skills in S
should be tested. Let R 	 Q � S be a relation such that qRs is interpreted as

Skill s is necessary to solve q. (3)

The skill set R � q � is minimally sufficient to solve q. (4)

This is an assignment given by an expert. The modal operators can be interpreted as
follows: Let P 	 Q � M 	 S. Then,
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s � �
R � � P � � � s is necessary to solve some problem in P�

s � �
R � � P � � � s is necessary only for problems in P�

s � ���
R ��� � P � � � s is necessary for all problems in P�

q � �
R �̆�� M � � � Some s � M is necessary to solve q �

q � �
R �̆ � M � � � q can be solved with the skills in M �

q � �
�
R �̆
� � M � � � All skills in M are necessary to solve q �

Suppose that P is a set of problems which student s has been able to solve; we are
interested in the true state of knowledge of s. Let us suppose that the student has
made no lucky guesses, i.e. we assume that s really possess all the skills required to
solve the problems in P and possibly more; in this case,

�
R ��� P � is a lower bound for

the skills s has, and P is a lower bound for the set of problems s is able to solve. Now,

q � �
R �̆ � R � � P � � � R � q � 	 �

R � � P �
� � �

R � � P � contains the skills sufficient to solve q � by (4).

Thus, q should have been solved, since s has the skills to solve q; if q �� P, it was due
to a careless error. Therefore, q can be included in the true knowledge state of s.

For a more detailed description and a test theory based on skill functions we invite
the reader to consult [8].

4.2 Example: Morse data

Another example we shall look at is the famous Morse data collected by Rothkopf
[25], a flagship of multidimensional scaling (MDS); the experiment has already been
described on page 9. Shepard [26] describes the data using the dimensions

1. Length of the signal,

2. Distribution of dots and dashes in the signal, going from only dots to only dashes.

see Figure 4.2 on the following page. The distances between the points in a plane
spanned by these dimensions reflect (partially) the ordinal relation among the given
proximities.

In the sequel we will present the re–analysis of the data given in [6] which uses
the modal operators. Table 1 on the next page shows in each cell the percentage of
subjects who regarded the two stimuli as the same.We use upper case letters for first
stimuli and lower case letters for second stimuli; the numeric characters are prefixed
by a � , if they occur as second stimuli. The matrix diagonal corresponds to pairs
which are truly the same, the off-diagonal entries correspond to pairs which are truly
different.

As the length of the signal is one of the dimension identified in [26] (and also in [2]),
we are interested in the behavior of the modal–style operators on the sets



14 Ivo Düntsch and Günther Gediga

Fig. 2. MDS interpretation of the Morse data [26]

Table 1. Morse data
a b c d e f g h i j k l m n o p q r s t u v w x y z *1 *2 *3 *4 *5 *6 *7 *8 *9 *0

A 92 4 6 13 3 14 10 13 46 5 22 3 25 34 6 6 9 35 23 6 37 13 17 12 7 3 2 7 5 5 8 6 5 6 2 3
B 5 84 37 31 5 28 17 21 5 19 34 40 6 10 12 22 25 16 18 2 18 34 8 84 30 42 12 17 14 40 32 74 43 17 4 4
C 4 38 87 17 4 29 13 7 11 19 24 35 14 3 9 51 34 24 14 6 6 11 14 32 82 38 13 15 31 14 10 30 28 24 18 12
D 8 62 17 88 7 23 40 36 9 13 81 56 8 7 9 27 9 45 29 6 17 20 27 40 15 33 3 9 6 11 9 19 8 10 5 6
E 6 13 14 6 97 2 4 4 17 1 5 6 4 4 5 1 5 10 7 67 3 3 2 5 6 5 4 3 5 3 5 2 4 2 3 3
F 4 51 33 19 2 90 10 29 5 33 16 50 7 6 10 42 12 35 14 2 21 27 25 19 27 13 8 16 47 25 26 24 21 5 5 5
G 9 18 27 38 1 14 90 6 5 22 33 16 14 13 62 52 23 21 5 3 15 14 32 21 23 39 15 14 5 10 4 10 17 23 20 11
H 3 45 23 25 9 32 8 87 10 10 9 29 5 8 8 14 8 17 37 4 36 59 9 33 14 11 3 9 15 43 70 35 17 4 3 3
I 64 7 7 13 10 8 6 12 93 3 5 16 13 30 7 3 5 19 35 16 10 5 8 2 5 7 2 5 8 9 6 8 5 2 4 5
J 7 9 38 9 2 24 18 5 4 85 22 31 8 3 21 63 47 11 2 7 9 9 9 22 32 28 67 66 33 15 7 11 28 29 26 23
K 5 24 38 73 1 17 25 11 5 27 91 33 10 12 31 14 31 22 2 2 23 17 33 63 16 18 5 9 17 8 8 18 14 13 5 6
L 2 69 43 45 10 24 12 26 9 30 27 86 6 2 9 37 36 28 12 5 16 19 20 31 25 59 12 13 17 15 26 29 36 16 7 3
M 24 12 5 14 7 17 29 8 8 11 23 8 96 62 11 10 15 20 7 9 13 4 21 9 18 8 5 7 6 6 5 7 11 7 10 4
N 31 4 13 30 8 12 10 16 13 3 16 8 59 93 5 9 5 28 12 10 16 4 12 4 6 11 5 2 3 4 4 6 2 2 10 2
O 7 7 20 6 5 9 76 7 2 39 26 10 4 8 86 37 35 10 3 4 11 14 25 35 27 27 19 17 7 7 6 18 14 11 20 12
P 5 22 33 12 5 36 22 12 3 78 14 46 5 6 21 83 43 23 9 4 12 19 19 19 41 30 34 44 24 11 15 17 24 23 25 13
Q 8 20 38 11 4 15 10 5 2 27 23 26 7 6 22 51 91 11 2 3 6 14 12 37 50 63 34 32 17 12 9 27 40 58 37 24
R 13 14 16 23 5 34 26 15 7 12 21 33 14 12 12 29 8 87 16 2 23 23 62 14 12 13 7 10 13 4 7 12 7 9 1 2
S 17 24 5 30 11 26 5 59 16 3 13 10 5 17 6 6 3 18 96 9 56 24 12 10 6 7 8 2 2 15 28 9 5 5 5 2
T 13 10 1 5 46 3 6 6 14 6 14 7 6 5 6 11 4 4 7 96 8 5 4 2 2 6 5 5 3 3 3 8 7 6 14 6
U 14 29 12 32 4 32 11 34 21 7 44 32 11 13 6 20 12 40 51 6 93 57 34 17 9 11 6 6 16 34 10 9 9 7 4 3
V 5 17 24 16 9 29 6 39 5 11 26 43 4 1 9 17 10 17 11 6 32 92 17 57 35 10 10 14 28 79 44 36 25 10 1 5
W 9 21 30 22 9 36 25 15 4 25 29 18 15 6 26 20 25 61 12 4 19 20 86 22 25 22 10 22 19 16 5 9 11 6 3 7
X 7 64 45 19 3 28 11 6 1 35 50 42 10 8 24 32 61 10 12 3 12 17 21 91 48 26 12 20 24 27 16 57 29 16 17 6
Y 9 23 62 15 4 26 22 9 1 30 12 14 5 6 14 30 52 5 7 4 6 13 21 44 86 23 26 44 40 15 11 26 22 33 23 16
Z 3 46 45 18 2 22 17 10 7 23 21 51 11 2 15 59 72 14 4 3 9 11 12 36 42 87 16 21 27 9 10 25 66 47 15 15
1 2 5 10 3 3 5 13 4 2 29 5 14 9 7 14 30 28 9 4 2 3 12 14 17 19 22 84 63 13 8 10 8 19 32 57 55
2 7 14 22 5 4 20 13 3 25 26 9 14 2 3 17 37 28 6 5 3 6 10 11 17 30 13 62 89 54 20 5 14 20 21 16 11
3 3 8 21 5 4 32 6 12 2 23 6 13 5 2 5 37 19 9 7 6 4 16 6 22 25 12 18 64 86 31 23 41 16 17 8 10
4 6 19 19 12 8 25 14 16 7 21 13 19 3 3 2 17 29 11 9 3 17 55 8 37 24 3 5 26 44 89 42 44 32 10 3 3
5 8 45 15 14 2 45 4 67 7 14 4 41 2 0 4 13 7 9 27 2 14 45 7 45 10 10 14 10 30 69 90 42 24 10 6 5
6 7 80 30 17 4 23 4 14 2 11 11 27 6 2 7 16 30 11 14 3 12 30 9 58 38 39 15 14 26 24 17 88 69 14 5 14
7 6 33 22 14 5 25 6 4 6 24 13 32 7 6 7 36 39 12 6 2 3 13 9 30 30 50 22 29 18 15 12 61 85 70 20 13
8 3 23 40 6 3 15 15 6 2 33 10 14 3 6 14 12 45 2 6 4 6 7 5 24 35 50 42 29 16 16 9 30 60 89 61 26
9 3 14 23 3 1 6 14 5 2 30 6 7 16 11 10 31 32 5 6 7 6 3 8 11 21 24 57 39 9 12 4 11 42 56 91 78
0 9 3 11 2 5 7 14 4 5 30 8 3 2 3 25 21 29 2 3 4 5 3 2 12 15 20 50 26 9 11 5 22 17 52 81 94

Xn � � p : The length of the Morse code for first stimulus p is n � �
Yn � � q : The length of the Morse code for second stimulus q is n � �

which are given in Table 2.
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Table 2. Distinguished sets

Stimulus (first position) Stimulus (second position)
X1 = � E � T 
 Y1 = � e � t 

X2 = � A � I � M � N 
 Y2 = � a � i � m � n 

X3 = � D � G � K � O � R � S � U � W 
 Y3 = � d � g � k � o � r� s � u � w 

X4 = � B � C � F � H � J � L � P� Q � V � X � Y � Z 
 Y4 = � b � c � f � h � j � l � p � q � v � x � y � z 

X5 = � 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 
 Y5 = ��� 0 ��� 1 ��� 2 ��� 3 ��� 4 ��� 5 ��� 6 ��� 7 ��� 8 ��� 9 


We are aiming at a description of similarity dependencies among these four sets of
stimuli and their elements.

Let U be the set of first stimuli, V be the set of second stimuli, and pRq if a (fixed)
subject regards them as the same. The operators can be interpreted as follows:

q � �
R ��� Xn � � � q was gauged to be the same as some first stimulus of length

n.
q � �

R ��� Xn � � � q was gauged to be the same only as first stimuli of length
n.

q � ���
R ��� � Xn � � � q was gauged to be the same to all first stimuli of length n,

and possibly others.
p � �

R �̆ � R � � Xn � � � Every signal, which cannot be distinguished from p cannot
be distinguished from some stimulus of length n.

p � �
R �̆ � R � � Xn � � � Some signals, which cannot be distinguished from p were

gauged to be the same only to stimuli of length n.
p � �
�

R �̆
� ��� R ��� � Xn � � � Whenever q cannot be distinguished from all stimuli of
length n, then q cannot be distinguished from p.

In order to consider the aggregated data given in Table 1, we need to consider “cut–
off” points, and set

Rs � � � p � q � : At least s% of the subjects responded “same” �
when

�
p � q � was presented � � (5)

Observe that Rs 	 Rt in case t � s. For first stimuli, the approximation operators now
are interpreted as

p � �
Rs �̆ � Rt ��� Xn � � � Every second stimulus which could not be distin-

guished from p by at least s% of all subjects could
not be distinguished from some first stimulus of
length n by at least t% of all subjects.

p � �
Rs˘ �

�
Rt ��� Xn � � � There is a second stimulus q such that at least s%

of subjects gauged q to be the same as p, and at
least t% of subjects gauged q to be the same only
as stimuli of length n.
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We have analyzed the data for various cut–points, and have found, among other re-
sults, that

" The signal length is the first determining factor for the discrimination of the stim-
uli, because:

– Signals of length 1 or 2 are easy to discriminate from other stimuli.

– Signals of length 3 are easy to discriminate from other stimuli, if they are
located at the first position.

– Signals of length 3 in the second position overlap with signals of length 4.
Signals of length 4 overlap mainly with signals of length 5.

" The character of the impulses is of less effect because a signal must contain
mainly short Morse impulses, and should contain at least 4 (first stimuli) or 3
(second stimuli) Morse impulses to be hard to discriminate.

We invite the reader to consult [6] for the details.

5 Conclusion and outlook

In this paper we have explored various tools for set approximation based on a re-
lational connection of two “universes” U and V , or a relational connection within
one “universe” U . The intention was to find a proper extension of rough sets in case
of any binary relation. There is a list of proposals for set approximations based on
certain binary relations such as similarity relations or dominance relations. We have
shown that all these proposals can be well expressed in terms of modal style opera-
tors and that the (new) operator

�
R �̆ � R � (content-span operator) exhibits some kind of

optimality because it gives the tightest bounds among the proposed operators based
on a reflexive relation.

In case of any binary relation the content-span operator is interesting as well, because
applying

�
R �̆ � R � is a complementary approach to the one taken by formal concept

analysis – with exactly the same expressive power.

Two examples from diverse application fields indicate that the operators
�
R �̆ � R � are

not only well suited for approximating sets, but that the resulting approximations
offer meaningful interpretations. More applications, however, are needed to delineate
the situations in which either of these can be applied.
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