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APPROXIMATION ORDER FROM BIVARIATE C'-CUBICS:
A COUNTEREXAMPLE

C. DE BOOR AND K. HOLLIG'

ABSTRACT. It is shown that the space of bivariate C' piecewise cubic functions on a
hexagonal mesh of size h approximates to certain smooth functions only to within
O(h*) even though it contains a local partition of every cubic polynomial.

1. Introduction. We deal with a scale (S, ) of approximating spaces, generated from
a fixed space S by a simple scaling S, := 0,(S). with (0, f X(x) := f(x/h). all f. x.
h. We are interested in the approximation order obtainable from (S§,). ie.. in
dist(f. S,). as a function of h and for f sufficiently smooth. Here.
dist(f, S,) := inf ¢ Il f— gll. and |- || is the sup norm on some closed domain
GCRLIfll:=sup co|fix)].

It is easy to see that

dist(f. S,) = O(w,(h)). allf€ C(G).

in case S contains a local and stable partition of unity. By this we mean that 1 = I¢,
on R?, for some ¢, € S with sup,diam supp ¢, < oc. and sup,ll¢, |l < oc. The last
condition is automatically satisfied in case the ¢, are all nonnegative.

We are interested in suitable conditions on S which insure that

(1.1) dist( £, S,) = O(h*) for all sufficiently smooth f.

It is easy to see that (1.1) implies P, C S, with P, : = polynomials of degree < k. On
the other hand, this condition is clearly not sufficient for (1.1) since. e.g.. S = P,
implies that S, = P, for all 4, hence dist( f. S,) is independent of 4 in this case.
What seems to be needed is that P, be contained in S “locally”. much as P, is
contained locally in § in case S contains a local partition of unity.

Here is a precise formulation of such a condition.

Condition P,.. For every p € Py, there exists a *sequence’ (¢,) in S so that

p= 2 ¢, and sup,diamsupp ¢, < oo.

At least in case S is “uniform”, e.g., S is a space of piecewise polynomial
functions on some uniform partition of R?, one would expect to conclude from this
the validity of (1.1), i.e., global approximation order O(h*) (see. e.g.. [BD, D)).
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650 C. DE BOOR AND K. HOLLIG

It is the purpose of this note to give an example of a piecewise polynomial space S
on a uniform partition of R? which satisfies Condition P,, yet gives

(1.2) dist(f, S,) = const k>,

for some positive const, and for the particular function f: x = (x( 1)x(2))%. This
dashes all hopes that the approximation order from a piecewise polynomial scale
(S,) could be settled by finding out which polynomials are contained locally in S.
Presumably, some stability has to be added to Condition P, before global approxi-
mation order O(h*) can be deduced.

Here is an outline of this note. In §2, we show that our example space S satisfies
Condition P, and that (S,) has approximation order O(h*®) at least. In §3, we
identify S within a larger space of piecewise cubic functions as the annihilator of a
set A of local linear functionals. We also show that there exists a bounded a € R*\0
so that 2 ¢ ,a(A)Af = 0 for all f with compact support, while 2, - ca(A)A =0
only if the sum is, in effect, over all or over none of A. This is important for the final
section, in which we prove that (S,) has approximation order at most O(A?).

2. Smooth pp functions and box splines. We consider bivariate pp ( : = piecewise
polynomial) functions on the partition A of R? obtained from the three families of
meshlines

x(1)=n, x(2)=n, x(1)=x(2)+n, allneZ.
We are particularly interested in the space
S:=Pi,: =P, NC(R)

of piecewise cubic functions on the partition A and in C'.

We have foregone the opportunity to make the symmetries in A more apparent by
having the three families of meshlines intersect each other at an angle of 120° (as is
done, e.g., in [Fr]). This needlessly complicates the notation. It is sufficient to note
that any permutation of the meshline families can be accomplished by some linear
map on R?, and the corresponding change of variables leaves P; , invariant.

A stable and local partition of unity in S is constructed in [BD, BH,] as follows.
Consider the linear map P: R® — R? characterized by the fact that

e, i=1,4
Pe, = 1 e,, i=2,5%,
e, te,, i=3
with e, the ith unit vector (in R%). Let M be the P-shadow of B := [0,1]°. i.e., M is
the distribution given by the rule

M¢ = f8¢oP. all ¢.

Since M is the shadow of a box, we call it a box spline. It is immediate from the
definition that M = 0, supp M = P(B), and

> M(-—j)=1, withV:=1Z2?

veEV
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APPROXIMATION ORDER FROM BIVARIATE ¢'-CUBICS 651

the last because
M(-—v = o P = o P = .
% ( ) gfﬂh;d’ sz[o,1|‘¢ -/;thb

Further, one verifies that M € S.
In addition, [BH,] provides an L-bounded linear functional A with support in
supp M so that
(2.1) p= 2 Ap(-+v)M(-—v), forallp €P,,
veEV
and shows how this result leads, in standard quasi-interpolant fashion, to the
conclusion that

(2.2) dist(f. S,) = O(h?)

for all sufficiently smooth f. On the other hand, [BH,] makes clear that (2.1) is
sharp, i.e., that P,\ S, #+ @, with
Sy 1= span(M(- —v)) e,
Therefore, (2.2) provides the optimal approximation order from (S,, ,).
Since S,, is a proper subspace of S, this only provides a lower bound on the

approximation order from (S, ). Further, according to Proposition 3.2 of [BH,], S
satisfies Condition P,. This raises the hope that dist( f, S,,) = O(h*) for all smooth f.

3. Bernstein coordinates. In this auxiliary section, we idenlify S=Pj, as a
subspace of P}, satisfying certain homogeneous conditions. We find it most con-
venient to express these conditions in terms of the Bernstein coordinates for pp
functions on a triangulation, as introduced by Farin [Fa), following earlier work by
de Casteljau [C] and Sabin [S]. Here is a short explanation of this very useful
representation.

On a single triangle 7 with vertices U, V and W, we use barycentric coordinates.
This means that each point x is associated with the triple (u, v, w) for which

x=uU+oV+wW and u+ov+w=1.
In these terms, we describe a polynomial p of degree < n by
P= 2 b, jx®i ks
i+j+k=n

with

n!
= ) wk
¢, 1(x) '_!j!k!uv wk.

We deal with the 3! choices in this representation by associating b, ,« with the point
X = (U jV+ kW)/n for all i + j + k = n. The resulting function b: X kP
b, « 1s called the B(ernstein or -ézier)-net for p (with respect to 7). It is independent
of how we associate the vertices of 7 with the letters U, V, W. Moreover, if 4 is an
affine change of variables, then the B-net for p o 4 (with respect to A7'(1))is b o 4.
This makes it easy to compare polynomial pieces across triangle edges. For
example, on an edge of 7, p is entirely determined by b restricted to that edge.
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652 C. DE BOOR AND K. HOLLIG

Moreover, if p’ is a polynomial of degree < n on a triangle 7’ having that edge in
common with 7, then p = p’ on that edge iff b = b’ on that edge, with b’ the B-net
for p’.

Higher smoothness across such an edge is also very simply expressible in terms of
b and b’ (see [Fa]). We now describe these conditions only to the extent that we need
them, i.e., we describe the conditions which an f € P, must satisfy to belong to
S = P} ,. Since such an f is continuous, the B-nets of its various pieces must agree at
all points of overlap in their domains. We can therefore think of the B-nets of its
various pieces as forming one B-net, a function b, defined on all of

(3.1) V,:= (Z2/3).

Let 7, 7" be two triangles of A with a common edge e. There are four points of V; on
e. Each of the three pairs x,, x, of such neighboring points has a nearest V;-neighbor
v in 7 and a nearest V;-neighbor y’ in 7’ so that these four points form the vertices of
a parallelogram similar to 7 U 7’ and halved by e. One may verify directly that f has
continuous first derivative across € if and only if

b/(xn) + bf(xz) = b/()’) + bf(}")

for each of these three parallelograms.
Thus, associated with each edge € in A there are three linear functionals A on P,
of the form

AFi= by(x) + by(x2) — () = b (),

with x,, x, neighboring V;-points on ¢ and y, y’ adjacent V;-points in the neighbor-
ing triangles. Note that we have so normalized A that the edge points receive weight
1 and the off-edge points receive weight —1.

Since A contains three distinct edge types, this gives altogether nine nonoverlap-
ping classes A, i, j = 1, 2, 3, of linear functionals. To be precise, we associate A,
with segment i of edge j. and, in particular, A,, with the middle segment. We need
not be more precise than that.

. f/ . . I -
o/ L4 T
. / A . . l\/ .« e
. / 32° .. /33 . :
3 | :. 5/
ATV IO Sl LTINS EDPPIS:
Do, S AR ol
M A : /A23 : . K :/
oA IR VAR
P 1;/ 13 . . .. // .
:o. / A A . / :_a_
. // 11.. 21.. 3}/ .o
: I ol
/ . . . / . .
.// . <. . / . :

700.9.0 :........aao.)...-.. :ooooooo

F1GURE 1. The nine classes of local linear functionals
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APPROXIMATION ORDER FROM BIVARIATE C'-CUBICS 653

Each class A,; is left invariant under translation of the independent variable by
any v € V. Their union A := A,, U --- UA;; characterizes S within P, in the
sense that

S=kerA:= [ kerA.
A€EA

Next, we seek a € R*\0 so that Z, . ,a(A)A = 0. By this we mean that Xa(A)A f
= 0 for every f of compact support. For such an f, the sum has only finitely many
nonzero terms since each A has support only in some pair of adjacent triangles of A.

There may be many solutions, but, when we require additionally that a be
constant on each A, then the solution set can be shown to be four-dimensional.
There is a two-dimensional set of solutions which vanish on A,;, all j. These
solutions are of no interest to us since for them we have already
(3.2) Y a(AMA=0,

suppAC G
for various bounded sets G.

Solutions a for which (3.2) only holds if the sum is, in effect, over all or over none

of A are obtained as follows.

LEMMA. Let a € R? be such that a, = A, j), with

-a B -y
A=|2a 2B 2y
-a B -

anda + B+ vy = 0. Then Sa(A)A = 0.

PROOF. By its definition, each A carries an f to a weighted sum of values of b,. We
can, therefore, understand Za(A)A by computing the weight it assigns to b,(x) for
each x € V;. There are three types of points x in V;, those at a vertex of A, those
inside an edge, and those inside a triangle. We consider each type in turn.

A vertex of A serves as an edge point for six A’s, one from each of the classes A
with i # 2. Thus, the total weight at a vertex point is

DA, j)=-2a+B+7y)=0.
i#2

As to inside edge points, consider without loss of generality one on an edge of

type 1. Such a point serves as an edge point foroneA € A, andoneX € A, U Ay,

and as an off-edge point for one A € A;; U A;; and one A € A; U Aj,. Its total
weight is therefore

A2,1) + 4(1,1) = A(1,2) = A(1,3) = 2a + (-a) = (-B) — (~7)
=a+B8+y=0.
Finally, an interior point is an off-edge point for three A’s, one each from A,
J = 1,2, 3. Its weight is therefore —2a — 28 —2y=0. O

We extend each A to the continuous linear functional A/ on C(R?) with the aid of
the local linear map I which associates f with the unique element If of P, which
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654 C. DE BOOR AND K. HOLLIG

agrees with f on J;. It is then a simple matter to check that, for every f € P, the map
A - Alf is constant on each A,; (since each A vanishes on P, and, for any j, f and
f(- +j) differ only by some cubic polynomial). In particular, for f(x) := (x(1)x(2))?,
we have (using the association of edge types indicated in Figure 1) that

-6 -6 6
(A1) =[ 3 3 —12].
-6 -6 6

Therefore,
3

K= 2 a(Aij)Ai/‘Ifz 18(a + B) — 367.
ij=1

The number « is nonzero for many choices of a, 8, y for which « + 8 +y = 0.
Make such a choice. Then, for a square Q with sides parallel to the axes,

(3.3) > a(A)AIf = k- area(Q) + O(perimeter (Q))
suppACQ
while 2\ c 0a(A)AT has support only on triangles near the boundary of Q, hence

(3.4)

> a(A )AI" = O(perimeter(Q)).

suppA
This is the essential fact required in the next and final section.

4. An upper bound for the approximation order. In this section, we establish the
main point of this note. With S = P; , as defined earlier, we show that, for all small
enough h, dist( f, S,,) = const h* for some positive const and for the particular function

fix > (x(1)x(2))%
For the proof, we pick some axis-oriented square Q in G and consider
pi= 2 alMle, .
suppAC Q,

with Q, := {x/h: x € Q). Since S,, C kerp,, we have

dist(f, S,) = disty( £, S,) = disty( f. kerpy,) =|py f1/14ll o)

Further, o, ,, f = h*f, while area(Q,) = area(Q)/h* and
perimeter(Q, ) = perimeter(Q)/A.
Therefore, from (3.3),
|, f]= const k2 + O(h?)

with const = |k |area(Q) > 0, while, from (3.4), llp, |l ¢, = O(1/h). This shows
that

dist( f, S,) = const h* + O(h*),

for some positive constant, as asserted.
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