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APPROXIMATION ORDER FROM BIVARIATE C-CUBICS:

A COUNTEREXAMPLE

C. DE BOOR AND K. HÖLLIG1

Abstract. It is shown that the space of bivanate C1 piecewise cubic functions on a

hexagonal mesh of size h approximates to certain smooth functions only to within

0(/i') even though it contains a local partition of ever, cubic polynomial.

1. Introduction. We deal with a scale (Sh) of approximating spaces, generated from

a fixed space 5 by a simple scaling Sh '■ = oh(S), with (ohf)(x) : = f(x/h), all/, .v.

h. We are interested in the approximation order obtainable from (Sh), i.e.. in

dist(/, Sh), as a function of h and for / sufficiently smooth. Here.

dist(/. Sh) '■= infsesJI/— gll. and II • II is the sup norm on some closed domain

G ER2, ll/l|:=sup*ec|/(x)|.

It is easy to see that

dist(f,Sh) = 0(o!f(h)),    a\\fEC(G).

in case 5 contains a local and stable partition of unity. By this we mean that 1 = 2<i>,

on R2, for some <J>, £ 5 with sup,diamsupp rj>, < oc. and sup, ||<¡>, II < oo. The last

condition is automatically satisfied in case the <j>, are all nonnegative.

We are interested in suitable conditions on S which insure that

(1.1) dist(/, Sh) = 0(hk)    for all sufficiently smooth/.

It is easy to see that (1.1) implies Pk Ç S. with Pk := polynomials of degree < k. On

the other hand, this condition is clearly not sufficient for (1.1) since, e.g., S = Pk

implies that Sh = Pk for all h, hence dist(/. Sh) is independent of h in this case.

What seems to be needed is that PA be contained in S "locally", much as P, is

contained locally in S in case 5 contains a local partition of unity.

Here is a precise formulation of such a condition.

Condition Pk. For every p E Pk, there exists a 'sequence ' (<f>,) in S so that

p =2^i    and   sup,diamsupp <f>l < oo.
/

At least in case 5 is "uniform", e.g., 5 is a space of piecewise polynomial

functions on some uniform partition of R2, one would expect to conclude from this

the validity of (1.1), i.e., global approximation order 0(hk ) (see, e.g.. [BD. D]).
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650 C  DE BOOR AND K HÖLLIG

It is the purpose of this note to give an example of a piecewise polynomial space 5

on a uniform partition of R2 which satisfies Condition P4, yet gives

(1.2) dist(/, Sj^const7/!3,

for some positive const/ and for the particular function /: x k» (x(\)x(2))2. This

dashes all hopes that the approximation order from a piecewise polynomial scale

(Sh) could be settled by finding out which polynomials are contained locally in S.

Presumably, some stability has to be added to Condition Pk before global approxi-

mation order 0(hk) can be deduced.

Here is an outline of this note. In §2, we show that our example space S satisfies

Condition P4 and that (Sh) has approximation order 0(h3) at least. In §3, we

identify S within a larger space of piecewise cubic functions as the annihilator of a

set A of local linear functionals. We also show that there exists a bounded a E RA \0

so that 2XeAfl(A)A/~ 0 f°r all / with compact support, while 2SuppAcca(A)A ~ 0

only if the sum is, in effect, over all or over none of A. This is important for the final

section, in which we prove that (Sh) has approximation order at most 0(h3).

2. Smooth pp functions and box splines. We consider bivariate pp ( : = piecewise

polynomial) functions on the partition A of R2 obtained from the three families of

meshlines

x(l) = n,   x(2) = n,   x(l) = x(2) + n,    all n E Z.

We are particularly interested in the space

s--=PU'-=P4,Anc](R2)

of piecewise cubic functions on the partition A and in C'.

We have foregone the opportunity to make the symmetries in A more apparent by

having the three families of meshlines intersect each other at an angle of 120° (as is

done, e.g., in [Fr]). This needlessly complicates the notation. It is sufficient to note

that any permutation of the meshline families can be accomplished by some linear

map on R2, and the corresponding change of variables leaves Prk A invariant.

A stable and local partition of unity in S is constructed in [BD, BH,] as follows.

Consider the linear map P: R5 — R2 characterized by the fact that

i= 1,41

Pe. = e2, i = 2,5

e, + e2,     i = 3

with e, the ;th unit vector (in R5). Let M be the P-shadow of B : = [0, l]5, i.e., M is

the distribution given by the rule

M<t> :=   (<¡>° P.    all ̂ >.
JB

Since M is the shadow of a box, we call it a box spline. It is immediate from the

definition that A/» 0, suppM = P(B), and

2 M(- -j) = 1,    with V= Z2,
pf.C
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APPROXIMATION ORDER FROM BIVARIATE C'-CUBICS 651

the last because

2a/(--ui>= 2 f     4>°P=( <}>oP=f<¡>.
„ „ JB + v •/R2x[ü.l]' Jjt2

Further, one verifies that MES.

In addition, [BH,] provides an L,-bounded linear functional X with support in

supp M so that

(2.1) p =   2 M- +v)M(-v),    forah>£P3,
ve v

and shows how this result leads, in standard quasi-interpolant fashion, to the

conclusion that

(2.2) dist(/,SA) = 0(A3)

for all sufficiently smooth /. On the other hand, [BH,] makes clear that (2.1) is

sharp, i.e., that PfSM ¥= 0, with

SM'= span(M(- -v))v<EV.

Therefore, (2.2) provides the optimal approximation order from (SM h).

Since SM is a proper subspace of S, this only provides a lower bound on the

approximation order from (Sh). Further, according to Proposition 3.2 of [BH2], 5

satisfies Condition P4. This raises the hope that dist(/, Sh) = 0(h4) for all smooth/.

3. Bernstein coordinates. In this auxiliary section, we identify 5 = P4' & as a

subspace of P4°A satisfying certain homogeneous conditions. We find it most con-

venient to express these conditions in terms of the Bernstein coordinates for pp

functions on a triangulation, as introduced by Farin [Ffc], following earlier work by

de Casteljau [C] and Sabin [S]. Here is a short explanation of this very useful

representation.

On a single triangle t with vertices U, V and W, we use barycentric coordinates.

This means that each point x is associated with the triple (u, v, w) for which

x = uU + vV + wW   and    « + o + H'=l.

In these terms, we describe a polynomial p of degree *£ n by

P =      2     b,)k$ijk >
i+j + k-n

with

^k{x) = ï7jîklu'vJwk-

We deal with the 3! choices in this representation by associating b,jk with the point

xijk '■— (iU + jV + kW)/n for all i + j + k = n. The resulting function b: xijk i->

bijk is called the B(ernstein or -ezier)-net fo\p (with respect to t). It is independent

of how we associate the vertices of t with the letters U, V, VV. Moreover, if A is an

affine change of variables, then the B-net for p ° A (with respect to A~'(r)) is b ° A.

This makes it easy to compare polynomial pieces across triangle edges. For

example, on an edge of t, p is entirely determined by b restricted to that edge.
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652 C  DE BOOR AND K  HÖLLICi

Moreover, if p' is a polynomial of degree « n on a triangle t' having that edge in

common with t, then p = p' on that edge iff ¿> = 6' on that edge, with ft' the B-net

for p'.

Higher smoothness across such an edge is also very simply expressible in terms of

b and b' (see [Fa]). We now describe these conditions only to the extent that we need

them, i.e., we describe the conditions which an / £ P4°A must satisfy to belong to

S — PjA. Since such an/is continuous, the B-nets of its various pieces must agree at

all points of overlap in their domains. We can therefore think of the B-nets of its

various pieces as forming one B-net, a function b¡ defined on all of

(3.1) K3:=(Z/3)2.

Let t, t' be two triangles of A with a common edge e. There are four points of K3 on

e. Each of the three pairs x,, x2 of such neighboring points has a nearest l^-neighbor

v in t and a nearest K3-neighbor>>' in f' so that these four points form the vertices of

a parallelogram similar to t U t' and halved by e. One may verify directly that / has

continuous first derivative across e if and only if

bf(xx) + bf(x2) = bf(y) + bf(y')

for each of these three parallelograms.

Thus, associated with each edge e in A there are three linear functionals À on P4°_\,

of the form

A/:= bf(xx) + bf(x2)-bf(y)-bf(y'),

with jc,, x2 neighboring K3-points on e and y, y' adjacent F3-points in the neighbor-

ing triangles. Note that we have so normalized X that the edge points receive weight

1 and the off-edge points receive weight -1.

Since A contains three distinct edge types, this gives altogether nine nonoverlap-

ping classes A,- , i,j = 1, 2, 3, of linear functionals. To be precise, we associate A

with segment / of edge/, and, in particular, A2j with the middle segment. We need

not be more precise than that.

u_

,/
/

/

32

22

/

V<3
■AiiT

Á
Á

/

^A21T

7
Figure 1. The nine classes of local linear functionals
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APPROXIMATION ORDER FROM BIVARIATE C'-CUBICS 653

Each class A,- • is left invariant under translation of the independent variable by

any v E V. Their union A:=AnU-UA33 characterizes S within P4°A in the

sense that

5 = ker A :=   f\ ker A.
XeA

Next, we seek a E RA\0 so that 2xeAa(A)A = 0. By this we mean that 2a(X)X/

= 0 for every / of compact support. For such an /, the sum has only finitely many

nonzero terms since each X has support only in some pair of adjacent triangles of A.

There may be many solutions, but, when we require additionally that a be

constant on each A, , then the solution set can be shown to be four-dimensional.

There is a two-dimensional set of solutions which vanish on A2,, all j. These

solutions are of no interest to us since for them we have already

(3.2) 2     a(X)X = 0,
suppX ÇC

for various bounded sets G.

Solutions a for which (3.2) only holds if the sum is, in effect, over all or over none

of A are obtained as follows.

Lemma. Let a £ RA be such that a,A   = A(i, j), with

A =

-a

2a

-a

-ß

2ß
-ß

and a + ß + y = 0. Then Ia(X)X = 0.

-7

2y
-y

Proof. By its definition, each X carries an / to a weighted sum of values of bf. We

can, therefore, understand 2a(X)X by computing the weight it assigns to bf(x) for

each x E V3. There are three types of points x in K3, those at a vertex of A. those

inside an edge, and those inside a triangle. We consider each type in turn.

A vertex of A serves as an edge point for six X's, one from each of the classes A

with / ¥= 2. Thus, the total weight at a vertex point is

2A(ï,j)= -2(a + ß + y)
(#2

0.

As to inside edge points, consider without loss of generality one on an edge of

type 1. Such a point serves as an edge point for one X E A 2, and one X £ A,, U A 3,,

and as an off-edge point for one X £ A12 U A32 and one Ä £ A,3 U A33. Its total

weight is therefore

A(2, 1) + ,4(1, 1) - ¿(1,2) - ¿(1,3) = 2a + (-a) - (-/?) - (-y)

= a + ß + y = 0.

Finally, an interior point is an off-edge point for three X's, one each from A2j,

j = 1, 2, 3. Its weight is therefore -2a — 2/3 — 2y = 0.    D

We extend each X to the continuous linear functional XI on C(R2) with the aid of

the local linear map / which associates / with the unique element // of P4°A which
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654 C. DE BOOR AND K. HÖLLIG

agrees with / on/3. It is then a simple matter to check that, for every/ £ P5, the map

X h-» X//is constant on each A¡¡ (since each X vanishes on P4 and, for any j, f and

/( • +/) differ only by some cubic polynomial). In particular, forf(x) := (x(\)x(2))2,

we have (using the association of edge types indicated in Figure 1 ) that

(A,//)

6    -6 6
3       3     -12

L-6    -6        6

Therefore,

3

K:=    2   a(A,;)A,7//= 18(a + /8)-36y.
»'./—l

The number k is nonzero for many choices of a, ß, y for which a + ß + y = 0.

Make such a choice. Then, for a square Ö w¡th sides parallel to the axes,

(3.3) 2     a(X)XIf= /c-area(e) + O (perimeter (Q))
suppXcQ

while 2suppxcc?a(X)X/ has support only on triangles near the boundary of Q, hence

(3-4) 2    a(X)XI
suppA

= 0(perimeter(g)).

This is the essential fact required in the next and final section.

4. An upper bound for the approximation order. In this section, we establish the

main point of this note. With S = P4' â as defined earlier, we show that, for all small

enough h, dist( f,Sh)^ const h3 for some positive const and for the particular function

f:xr^(x(\)x(2))2.

For the proof, we pick some axis-oriented square Q in G and consider

M/,:=       2      a(X)Ioi/h,
suppAcÇ»,,

with Qh '■= {x/h: x E Q). Since Sh Ç kerph, we have

dist(/, Sh) > diste(/, S„) > diste(/,kerMJ =\ßhf\/\\ßh\\aQ).

Further, ox/hf- h*f, while area(ö^) = area(£))//r and

perimeter( Qh ) = perimeter( Q )/h.

Therefore, from (3.3),

|Ma/I= const/t2 + 0(h3)

with const   := |k| area(ö) > 0, while, from (3.4), IIJ"-/,II<r<c?) = ^(\/h). This shows

that

disi( f,Sh) ■» const h3 + 0(h4),

for some positive constant, as asserted.
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