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APPROXIMATION ORDER FROM CERTAIN SPACES

OF SMOOTH BIVARIATE SPLINES
ON A THREE-DIRECTION MESH1

RONG-QING JIA

ABSTRACT. Let A be the mesh in the plane obtained from a uniform square

mesh by drawing in the north-east diagonal in each square. Let ir£ ^ be the

space of bivariate piecewise polynomial functions in C, of total degree < k,

on the mesh A. Let m(k,p) denote the approximation order of 7r£ ̂ . In this

paper, an upper bound for m(k, p) is given. In the space 3 < 2fc — 3p < 7, the

exact values of m(k, p) are obtained:

m(k, p) = 2fc — 2p — 1    for 2fc — 3p = 3 or 4,

m(k,p) = 2k-2p-2    for 2fc - 3p = 5,6 or 7.

In particular, this result answers negatively a conjecture of de Boor and Höllig.

1. Introduction. In this paper we study the approximation order from certain

spaces of smooth bivariate splines on a three-dimension mesh. The work in this

respect has been initiated by de Boor and DeVore [BD], and de Boor and Höllig

[BH1-BH3]. Here we follow them and introduce some notation. Let

A := ^J {(xi,x2) G R2;xi = n, x2 = n or x2 - xi — n}.

n€Z

Namely, the mesh A is obtained from a uniform square mesh by drawing in the

north-east diagonal in each square. Let

be the space of bivariate pp (piecewise polynomial) functions in Cp, of total degree

< k, on the mesh A. The approximation order of S is, by definition, the integer m

for which the following holds: For any / G Cm,

dist(f,Sh) < (const)hm\f\mt00,

while, for some Gm+1-function / with ||/||m+i,oo < 00,

dist(f,Sh)¿o(hm).

Here the scale (Sh) of approximating spaces is generated from S by simple scaling:

Sh := ah(S)

with

(chf)(x) := f(x/h),    all /, x, h.
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200 R.-Q. JIA

Further,

and || ■ || is the sup norm on R2:

dist(/,5) := inf \\f
sES

■= sup |/(x)|.
xGR2

Moreover,

|/koo :=   £   ||ß°7ll,     11/IU.oo :=   £   ll^/H-
|a|=m |a|<m

We denote by m(k, p) the approximation order of 7r£ a.

Only a few results about m(k, p) are known:

( k + 1        for A; > 4p + 1 (see [BZ]),

m{k,p) = lo for 2k - 3p < 1 (see [BD]),
{ 2k - 2p   for 2k - 3p = 2 (see [BHi]),

m(3,1) = 3    (see [BH2]).

An upper bound for m(k,p) has been obtained by de Boor and Höllig (see [BH3,

Theorem 3]):

m(k, p) < min{2(rc - p), k + 1}.

Also, they raised the following

CONJECTURE. m(k, p) > min{2(fc - p), k + 1} - 1.

By using a quasi-interpolant scheme, [J] gives

(1) m(k,p)>mm{2(k-p),k + l}-2.

A question naturally arises: Can the lower bound given by (1) be improved? This

paper shows that this lower bound is sharp. More precisely, we will prove the

following results:

(2) m(k, p) = 2k-2p-\    for 2k - 3p = 3 or 4.

(3) m(k, p) = 2k-2p-2    for 2k - Sp = 5,6 or 7.

in particular,

m(k, p) = min{2(rc - p), k + 1} - 2 for 2fc - 3p = 5,6 or 7 and k < 2p + 1.

This answers negatively the conjecture of de Boor and Höllig.

Here is an outline of this paper. §§2-4 treat the algebra generated by the shift

operators, the box splines and the jump operators, respectively. Those three sec-

tions are tools, and they prepare for the core of this paper, §5, which reduces the

approximation problem to a determinant problem and hence gives an upper bound

for the approximation order, in §6, the result of §5 is applied to obtain (2) and (3).

Before proceeding with the proofs of (2) and (3), we need to introduce more

notation. For a set E, we denote by \E\ the cardinality of E. Let Z+ be the set of

nonnegative integers. Let ei,e2 be the unit coordinate vectors in the plane; i.e.,

ei = (l,0)    e2 = (0,l).

As usual, Di denotes the derivative with respect to the ¿th argument (i = 1,2). Let

e3 = ei + e2    and    D3 — Di + D2.
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BIVARIATE SPLINES ON A THREE-DIRECTION MESH 201

For a bivariate function /: R2 —> R and a real number a, the difference operators

Vr,a are given by

Vr,„/ :=/-/(•- aer)       (r? 1,2,3).

If a = 1, Vr>a is abbreviated to Vr. Let 7r be the space of all bivariate polynomials,

7Tfc the space of all bivariate polynomials of total degree < k. For a polynomial p,

its degree is denoted by degp.

2. The algebra generated by the shift operators. A mapping from Z2 to

R is called a bivariate sequence. The set of all the bivariate sequences equipped

with addition and scalar multiplication forms a linear space, which we denote by

l(Z2). All the linear operators on l(Z2) form a noncommutative algebra. We want

to consider one of its subalgebras. Let Tr be the shift operators given by

Trg ~ g(- - e,),    all g G l(Z2) (r = 1,2,3).

Clearly

T3 = T2Ti=TiT2.

Let A be the subalgebra generated by Ti, Ty1, T2 and T2~1. Then A is commutative.

Let / be the identity operator on l(Z2). Then the difference operators can be

represented as

Vr = I-Tr       (r = 1,2,3).

In particular,

V3=/-T3 = /-T1r2

= /- (J- 7i)(J- V2) = V, + V2 - ViV2.

If we impose a sup norm on /(Z2), then we get the normed linear space Zoo(Z2).

Thus we can talk about the norm of an operator on /^(Z2) in the usual sense.

Moreover, we can talk about positive operators. A sequence g G /(Z2) is called

positive, and denoted by g > 0, if

g(j)>0 for any j G Z2.

An operator L is called positive if

Lg > 0 whenever g > 0.

A sequence g G l(Z2) is called constant if there exists a real number b such that

g(j)=b   for any j'e Z2.

We denote by 1 the constant sequence which takes value 1. If L is a positive

operator on l(Z2), then we have ||L|| = ||L1||. Indeed, since -||<?||1 < g < \\g\\l, we

have

-\\g\\(Ll) < Lg < \\g\\(Ll),

and so

\\Lg\\ < \\g\\ \\L1\\.

This shows that ||L|| < \\L1\\. The other direction holds because ||1|| = 1. To give

an example of positive operators, we consider

N-l

(4) Hr^Y^Tl       (r = l,2,3),
t=o
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202 R.-Q. JIA

where N is a positive integer. Then Hrl = N; hence

\\Hr\\=N   for r = 1,2,3.

3. Box splines. Box splines were introduced in [BD and BHi] and have

proved useful in approximation problems. The key point is that the approximation

order of S is determined by all the box splines contained in S (see [BH3]). Here

we specify the definition of box splines from [BHi] to suit our discussion. For

X = (Ai,A2,A3) G Z\ with |A| = Ai + A2 + A3 as usual, let H = (&)iA| be the
sequence given by

£1 = • • * = &j = ei,    61+1 = • • • = 61+A2 = e2,    &1+A2+1 = • • • = £|A| = e3.

Then the box spline Mx := M= is defined as the distribution given by the rule

W
ME:(p^ I <f> I Vu(z')& I du,f <!>  ¿«(06

J    \i=i

where the integral is taken over the cube [0,1]'A'. Let

d := |A| - max{Ar} - 1.

Then M\ C Leo flC^-1) • In addition, d is the largest integer such that this relation

is true. In particular, a box spline Mx belongs to Loo if and only if |A| -max{Ar} >

1. In what follows, all the box splines are assumed to be in L^.

A box spline series has the following nice property with respect to derivatives:

Di I £ a(j)ME(--j) 1 = £(Vta)(j)MBV,(--i),    if et G H.
Vez2 /     jez2

Let S\ := the linear span of Mx(- — j), j G Z2; that is,

Sx:={Yd<J)MÁ--J);aGl(Z2)).

LEMMA 1.   The following inclusion relations hold:

(Io) 5a,,a2,a3 C Sx1 + i,x2,x3-i + Sx, + i,A2-i,A3    if min{A2,A3} > 1;

(2°) Sx1,x2,x3cSx1,x2 + i,x3-i + Sx1-i,x2 + i,x3    if min{A3, Ai} > 1;

(3°)        S\lt\2,\3 C Sa.-i.Aj.As+i + Sxux3-i,x3+i    if min{Ai, A2} > 1.

PROOF.   We need only prove (Io).   Any s G Sx can be expressed as a series

Ea(j)MA(- - j). Set, for j = (ji,j2) G Z2,

( a(0, ji) + ■ ■ • + a(ji, j2) for ji > 0,

b(ji,j2) := < 0 for ji = -1,

[ - a(-\,j2)-a(ji + l,j2)    for ji < -1.

Then Vi6 = a; hence

« = £(Vi6)(j)MA(. -j) = Di (j2b{j)MXl+1MM(- -j))

= (D3 - L>2) (£6(j)Ma1+1,a2,a3(- -j))

= £(V3Ö)0')Ma1+1,a2,a3-i(- - j) - £(V26)0')Ma1+1,a2-i,a3(- -j).
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BIVARIATE SPLINES ON A THREE-DIRECTION MESH 203

This shows that

S G Sai + 1,A2,A3-1 + 5ai44,A2-1,As"

The proof of Lemma 1 is complete.

4. Jump operators. We denote by Sa the space of all splines (piecewise

polynomials) on the mesh A. For s G Sa, we think of s as defined on R2\A. To

describe the jump of a given spline s in the direction er (r = 1,2,3), we introduce

the jump operators Jr as follows:

Jrs :=   lim \s(- + ser) - s(- - eer]\.
e-»+0l

On each component of R2\A, s is a polynomial; hence the above limit always exists.

Clearly, if s is continuous at x, then Jrs(x) — 0 for all r — 1,2,3. Thus the support

of Jrs is included in A. Since we think of s as defined on R2\A, Jrs is thought of

as defined on A\Z2. The operators Jr are linear and bounded: || Jr|| < 2.

If g is defined on A\Z2, and if g is a polynomial in each component of A\Z2,

then we can define

Krg(j) :=  lim g(j + 8er),       j G Z2, r = 1,2,3.
o—>+0

The operators Kr given by the above are linear and bounded: ||/fr|| < 1.

We also want to give a description for the jump of the derivatives of a given

spline. To this end we introduce the operators i2r,n on l(Z2) given by the rule

n

Rr,na := £ a(- - ter)Mn(t),        r = 1,2,3; n > 1.

t=o

(Recall that Mn is the univariate S-spline with support [0, n\ on the uniform mesh

Z.) When n < 1, we interpret UV,« as zero. Since ^"=0 ^n(i) = 1, the operator

Rrtn is bounded by 1.

We make some convention about the combination notation (™). Whatever m

and n might be, we agree that

1    if m = n

m < n.

Now we are ready to state the main result of this section.

LEMMA 2.   The following formulae hold:

KiJ2Dk-'(£a(j)Mx(. - j))

(10) =RiM-k(^\^_~l)(-^i)k-^+X^X2^ï3a

K2J3Dk-x{^a(j)Mx(-- j))

= Ä2,lA|-fc(^iA!;i)v^V*-^+^>V3^a

KzJiD*-'(Ya(j)Mx(-- j))
/oo\

-P ík~ ^ ~ ^^if    Ï7  ^A2r7*:-(Ai+A2)
= "3,|A|-fcl     A      j     )v11(-V2) 2V3 a.

(m\  _  f 1     if ;

\n)      10   ifi

(2°)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



204 R.-Q. JIA

PROOF. We need only prove (Io), because (2°) and (3°) can be proved in a

similar way. For simplicity, write

s = Y,a(iïMx('~iï-

The proof of (Io) will go case by case.

Case 1. k < X2 - 1.

In this case,

Dk2~ls = £(VÊ-1a}(y)MAl,Aî-*+i,A30 -j).

Since A2 — k + 1 > 2, Mx¡,x2-k+i,x3 is continuous in the e2 direction. This shows

that J2Dk~1s = 0. On the other hand, A; - A2 - 1 < A3 - 1; hence the right-hand
side of (Io) is also zero in this case.

Case 2. k — X2.

This case is divided into three subcases.

Subcase 1. min{Ai,A3} > 1.

In this case,

Since Ma^i^ G C(R2), we obtain the desired conclusion.

Subcase 2. Ai = 0, A3 > 1.

In this case, Mx is continuous in the e2 direction at the points j + Sei, j G Z2,

0 < 8 < 1; hence KiJ2Dk~1s = 0, while the right-hand side of (Io) is also zero,

because k — X2 — 1 < A3 — 1.

Subcase 3. Ai > 1, A3 = 0.

In this case

Dk2-1s = J2Wt1*)(j)Mxl,i,o(--3)-

We have

MXl,i,o(xi,x2) = MXl(xi)Mi(x2).

It follows that, for i — (ii,i2) G Z2 and 0..< 6 < 1,

fMAl(ti-l-i)        if ¿2 = 0,

J2MXlti,o(i + 8ei) = I   -MXl(ii+6)    if i2 = 1,

10 otherwise.

Therefore

(KiJ2Dk-xs)(i)

= ¿2 [(V2fc-1a)(i1,i2)MA1(z'1 -ii) - (Vk-la)(3i,i2 - l)MXl(ii - ji)}

ji ez

= X)(Vta)0i,i2)MXl(¿i-ii)
jiez

Ai

= J2(V2a)(ii-t,i2)MXl(t)
t=o

= RUx\-k^22a(i).

This proves (Io) in this case, since k — X2 - I = -1 — X3 - 1 and k - (X2 + A3) = 0.
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BIVARIATE SPLINES ON A THREE-DIRECTION MESH 205

Case 3. k > X2.

In this case,

Dth = Dtl~x' (£(V^a)0)MAl>0,As(- -ÏÏ) ■

By the binomial theorem, we have

Öfc-1-A2 = (D3-Di)k-^=k~jr2(k  x  A2)

p=o    ^       p

If P > A3 or k — 1 — A2 — p > Ai, then

L»P(-D1)fc-1-^-î'MA1,o,A3(x) = 0   for x i A;

hence

J2(Dl(-Di)k-l-x^Mxlfi,x3)^Q.

Assume p < X3 and k — 1 — X2 — p < Xi. Then

DP(-Dlf-i-^-v \yj(^a)(j)Mxl,o,x3(--j)

= E((-Vl)fc_1"A2^V22V3«)(Í)^A1+A2+P+l-fc,0,A3-p(--Í)-

3

Note that

Mx,+x2+p+i-k,o,x3-p(xi,x2) = -^Ai+A2+p+i-fc(a;i ~ Z2)Ma3-p(x2).

If A3 - p > 2, then Ma3_p is continuous everywhere.  Moreover, for fixed 8, 0 <

8 < 1, and i = (¿i,¿2) 6 Z2,

elimo[MA1+A2+p+i-fc(n -i2 + 8ei + ee2)

- Mxi+x2+P+i-k(ii - ii + Sei - ee2)) = 0.

This shows that

Ji Dl(-Di)k-^-v (£(^a)(j)Mxu0,x3(--j))

unless p = A3 - 1 and k < \X\. Thus

J2D^~ls

= Ji 2 - Xj(-VO^^2^)VA2vA3-iaWM|A|_Mi(. _y)
'ife - A2 - 1

A3

By straightforward calculation we have

f M|A|_fc(¿i+6) if ¿2=0,
J"2Af|A|_fc,o,i(* + «ei) = ^  - Mw_k(ii - 1 + 6) if *2 = 1,

I. 0 otherwise.

For simplicity, write

' k Ä X- 1  0 (-Vl)fe_A2"A3 V22 ̂"V
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Then the above calculation yields

J2D%-1s(i) = E [b(ji,i2)Mw_k(ii -ji) - b(jui2 - l)Mw_k(ii-ji - 1)]
ji ez

= Yl V3b(ji,i2)M\x\_k(ii -ji)
ji^-Z

= Äi,|A|-fcV36(t).

This proves (Io) in Case 3. The proof of Lemma 2 is complete.

For simplicity, we denote by Ukir,x the operator appearing on the right-hand side

of Lemma 2(r°), r = 1,2,3, respectively. Further, let

Lk,i,x-.= (^\^\l)(-Vi)k-^VÏ(Vi + V2)^,

Lk,2,x :- (* ~Xih ~ *) V*» VtX°-Xl (Vi + V2)^3,

LM,A := (fc "^ ~ ') Vj'(-V2)A'(Vi + V2)fc-^-^.

5. An upper bound for the approximation order. Let E be a finite subset

of Z\. Let S be the span of {M\(- - j); X G E, j G Z2}. In this section, we will

give an upper bound for the approximation order of S.

We want to put the operators Uk,r¡x and L^^a into a two-dimensional array.

Note that i/fe,rjA = 0 if k < d = mmx{Xi + X2,X2 + X3,X3 + Xi}-l or k > |A|. Thus

the only interesting case is d < k < \X\. Assume \E\ = n. There is a one-to-one

mapping from {1,... ,n} onto E. The image of q under this mapping is denoted

by X(q). Let

U3{k-d-l)+r,q '■— Uk¡rix(q),

Lk,r,X{q), r — 1,2,3.

-Rr,A(<7)-fc>

We observe that Lfc,r,A are homogeneous polynomials in Vi and V2 of degree k.

Let

03(fc-d-i)+r = k,        r = 1,2,3.

We are now in a position to prove the main result of this paper.

THEOREM 1. // 3(m - d) > n, and if the determinant of L — (Lpq)pq=1 is

nonzero, then the approximation order of S does not exceed m.

PROOF. Suppose to the contrary that to any h > 0 and any / G C(m+1) with

ll/llm+i.oo < oo there corresponds Uh G Sh such that ||/ — Uh\\ < £hhm with £/j —> 0

as h —y +0. It follows that

(5) \Wi/hf - o-i/hUhW < ehhm.

(Recall that Ui/h is a scaling operator. See §1.) Assume

Uh = EEa^^Mi d -j) ■

L3(k-d-l)+r,q

R.3(k-d-l)+r,q

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BIVARIATE SPLINES ON A THREE-DIRECTION MESH 207

Then

o-i/hUh = ^2Yax,h(j)Mx(- - j).
a    j

Suppose that / is a polynomial on a square Q. Then o~i/hf is a polynomial on the

square Q/h. In each component of iü2\A included in this square, ci/h(f - Uh) is

a polynomial, so we can invoke Markov's inequailty and obtain

\\D2"loi/hf - D^ai/hUhW < constehhm.

Moreover, since Ki and J2 both are bounded operators, we have

\\Ki J2Dk-xuiihf - KiJ2Dk-xcilhUh\\ < const shhm.

But /eC<m+1>; hence

KiJ2D^-1ai/hf = 0   îor k<m.

Thus

By Lemma 2,

hence

||ifiJ2L>2   1ai/huh\\< constehhm.

KiJ2D2~1ai/hUh = y ^Uk,i,xax,h',

E^ i,xax,h < const Shh?

The above estimate is also true for r = 2 or 3:

(6)

Let

and

(7)

5> r,XO-X,h < const EhhP

0>q '■— aX(q),h, 9=1,. ,n,

Çp :— 2_^ Upqaq-
q=l

|£P|| < constEhhm,       p=l,...,n.

Then (6) reads

(8)

Let

a=(oi,...,a^)T,       £ = (Çi,...,Çny.

Here r means "transpose". Equation (7) can be written

(9) [/a = ¿,

where U is the matrix (f7pg)£     x.

Let In be the n x n identity matrix. Let adj(<7) be the adjugate matrix of U.

Then

[/(adj U) = (adj U)U = (det U)In.
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By (9), we have

(10) (det f/)a = (adj U)Ua = (adj U)£.

Take h to be 1/N, where N is a positive integer. Let ß := X^P=i ßp- Then det U

has the form

detU=     E     Rou^V?1*?,
Otl+OC2=ß

where Rai,a2 G A, the algebra generated by the shift operators (see §2), and

||-Rai,a2 II — const- Assume adj U = {Vpq)pq=l. Then each Vpq has the form

v =     Y^     p(p.9) vf'v?2
a1+ct2=ß-ßp

with Ra¡jl2 G A and ||i2Í^',a2|| < const. Let

W:= hßHßH$(detU),

where Hi and H2 are the operators defined in (4). We observe that

VrHr = (I - Tr) l ¿ Tl J = / - If = VrjiV       (r = 1,2,3).

Hence
W =     E     R^<*2hßHtaiHta2VayNV^N.

ai+oc2=ß

Since Hfirll < N, we have

||/i^Ff-Qlr7f-a2|| < (i/NfN2ß~(ai+a^ = 1.

In addition, ||i?Ql,Q2|| < const and ||Vf jyVjpjvll < const; therefore

(11) ||W^|| < const.

Next, we want to estimate Wa. It follows from (10) that

Wa = hßHßHß(detU)a = hßHßH%(&d] U)Ç.

Consider h0HßHßVpq. We have

hßff0TJ0V V í?(p>9) ußfjß-aiuß-a2V7°'i  vQ2/l   n1tl2Vpq — 2_^ Äai,aj"   -"l ^2 Vl,JVV2,iV

ai+a2=/9-/3p

Note that, for ai + a2 = /? - /°p,

Also HaÍ^II < const and ||V^NV^|| < const. Therefore

\\hßHßHßVpq\\ < const iVm.

This combined with (9) enables us to conclude that

(12) ||Wa|| < const iVm||i|| < const eh.
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We restrict the domain of oi/hf and aijhUh to Z . Thus they become elements

of Z(Z2). Let Gx G A be defined by the rule

Gxa = Y,a(j)Mx(--j).

Since J2 Mx(- - j) — 1, we have

IIGaII < i.
Recall that q —> X(q) is a one-to-one map from {1,... ,n} onto E. Let Gq = Gx(q).

Then

(13) o~i/hUh = 2_^Gqaq

9=1

Substitute (13) into (5). Let W act on both sides of this inequality. Since ||W|| <

const by (11), we obtain

Wailhf -Y^GqWa,
9=1

Invoking estimate (12), we have

< coust Ehh"

< const 11 Wo11 < const Eh-E^Wa,
9=1

From the foregoing two inequalities we conclude that

(14) \\Wa1/hf\\ < const eh.

Suppose now det L ^ 0. Then in the expression

detL=     E     C-tm^^V,
ll+12=ß

there exists some (¿i,<52) such that Si + 82 — ß and Cslts2 ^ 0.   We can find a

function / G Cm+1 such that / has compact support and

f(xi,x2) =xsyxs22/(6i\S2\)    for (xi,x2) G [-a,a] x [-a,a],

where a is a sufficiently large real number.

Recall that

12
2   I

Rrin = J2Mn(t)TÏ.
t=0

Since ^2Mn(t) = 1, we have

n

I-Rr,n = Y,Mn(t)(I-Ttr)
t=0

n

= EM»wv-(/+---+^"1)-
t=0

We also have observed that V3 - (Vi + V2) = -ViV2. Now think of det<7 as a

polynomial in Vi and V2. Decompose det/7 into homogeneous components. Then
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the above facts tell us that det L is its component of the lowest degree. Therefore

we may write

detU = detL+    E    c^2Vi1V22-

ll+'12>ß

Let

7 = max{7i + -y2; cllil2 £ 0}.

Since cri/hf is a monomial of degree ß on the square [-Na, Na] x [—./Va, Na], and

since det U — det L is a polynomial in Vi and V2 of degree bigger than ß, we have

(det U)oi/hf = (det L)<r1/hf   on Z2 n \-N(a - 7), N(a - -y)]2.

Moreover,

V?V>1A/ = 0   it(iui2)¿(8i,62).

Hence

(detL)<r1/fc/ - cSus2VsyVs2*o-i/hf.

Furthermore,

HsyHs¿ (det L)oi/hf = cSlM(HiVi)Si(H2V2)s*o-i/hf

= ^„syy^v^oi/hf = cSl,s2v6yv622f = cSus2.

Finally, we obtain

Woi/hf = hßHßHß(detU)o-i/hf

= hßHtSl Hß~62 (H6yH8y> (det L>i//J)

= cSl,s2hßHß-^Hß-62l

= cfil>ía    on [-JV(a - 7 - 2/9), /V(a - 7 - 2ß)}2.

Therefore (14) becomes

kí^íjl < const £fc.

But es, ,¿2 does not depend on h. Letting h —y +0 in the above inequality, we obtain

Cjh{, = 0. This contradiction shows that the approximation order of S does not

exceed m. The proof of Theorem 1 is complete.

6. The approximation order of 7r£ A in the case 3 < 2fc - 3p < 7. De Boor

and Höllig have shown that n-Jí! A has the same approximation order that 5ioc does.

Here

Sioc := the span of {Mx(- - j); Mx G 7t£ A and j G Z2}

(see [BH3]). This fact enables us to apply Theorem 1 to obtain the approximation

order of 7r£ A in the case 3 < 2k - 3p < 7.

Let

E' := {A;p + 2 < min{Ai + A2, A2 + A3, A3 + Aj} < |A| < k + 2}.

Then Mx G 7t£ a is equivalent to A G E'. By Lemma 1, we may reduce E' to its

subset E such that

Sloe = the span of {Mx(- - j); X G E and j G Z2}.

Then we form the matrix L as in §5 and check whether det L ^ 0. In this way we

can prove the following theorem.
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Theorem 2.

(Io) m(k,p) = 2k-2p-l   for 2k - 3p = 3 or 4.

(2°) m(k,p) = 2k-2p-2   for 2k - 3p = 5,6 or 7.

PROOF, (i) The case 2k - 3p = 3.
In this case p must be an odd number. There exists some integer p > 1 such

that p = 2p-\. Then k = 3p and 2k - 2p - 1 = 2p + 1 = p + 2. By Lemma 1,

Sloe = S^n+i^p+l + Op.+l./^p.+l-

Then E = {(p,p+ l,p + l),(p+ l,p,p+ 1)} and n — \E\ — 2. It is known from
[BHi] that m(k, p) > p + 2 = 2p + 1. We want to prove m(k, p) = 2p+ 1.

We have, for m = 2p + 1, that

0 V£(Vi+V2)'i+1

V1(Vi + V2)^+1 0

Clearly, det L ^ 0. By Theorem 1 we obtain m(k, p) <2p + 1. Thus

m(k, p) = 2p + I — 2k — 2p - 1    in the case 2k — 3p = 3.

(ii) The case 2k-3p = 4.

lî p = 0, then m(2,0) = 3 is a well-known fact. Assume p > 1. There exists an

integer // > 2 such that p = 2p -2. Then fc = 3/i - 1 and 2k — 2p — I = 2p + I —
p + 3. It is known from [DM] that m(k,p) > 2k — 2p - 1. We want to prove

wi(fc, p) < 2p + 1. By Lemma 1,

^loc — Jp+i,p,p + ¿V,p+i,p + Sß^^+i + Ofj,tflilÀ.

For m = 2/x + 1, we have

L =

•       V£(Vi + V2)" 0 0 V£(V, + V2)"

0 VÏ(Vi+V2)'J 0 V?(V,+V2)"
o o v?(-v2)" vff-v^

-M-V1)V2'(V1+V2)m    V£+1(V, +V2)"    V2i(V1+V2)"+1    m(-Vi)V2'(Vi+V2)'í

Then

detL = (-l^VfV^Vi + V2)3"(Vi + 2V2) ̂  0.

This shows that

m(k, p) — 2k - 2p — 1    in the case 2fc — 3p = 4.

(iii) The case 2k - 3p = 5.

There exists an integer p > 1 such that p = 2p - 1. Then /c = 3/i + 1 and

2k-2p-2 = 2p + 2. It is shown by [J] that m(k, p)>2k-2p- 2. We want to
prove m(k, p) < 2k - 2p - 2. By Lemma 1,

Sice = the span of {Mx(- - j); X G E, j G Z2},

where

E = {(p + 2,p+l,p),(p + 2,p,p+l),(p+l,p + 2,p),

(p + l,p,p + 2), (//+1./1+1, p), (p+l,p,p+ 1)}.
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Let m = 2p + 2. To check whether det L is nonzero, we may use the following

technique to simplify the computation. We observe that each entry of the matrix

L is a polynomial of Vi and V2, so we may assign values to Vi and V2. Write

L = L(Vi, V2). If detL(l, 1) ¿ 0, then detL ^ 0. Let us now look at L(l, 1):

2M+i                   0 0 2^                  2**+1

0                     2^ 0 2^                     0
0                      0 (-1)*1 0                  (-1)**

(l + p)2'i+1          2^ 2»+2 - ß2^ -(l + p.)2'i+1    '

0 (M + l)2^ 0 (p.+ 1)2''            2"+1
(-l)''                  0 2p,(-l)'x (-l)fi+1          2p(-l)'i

By straightforward computation, we conclude that detL(l, 1) ^ 0. This shows that

m(k, p) = 2k - 2p - 2   in the case 2k - 3p = 5.

(iv) The case 2k — 3p = 6 or 7.

The process goes as before. Since the computation is tedious, we omit the details.

The proof of Theorem 2 is complete.
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