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APPROXIMATION ORDER FROM CERTAIN SPACES
OF SMOOTH BIVARIATE SPLINES
ON A THREE-DIRECTION MESH!

RONG-QING JIA

ABSTRACT. Let A be the mesh in the plane obtained from a uniform square
mesh by drawing in the north-east diagonal in each square. Let w,‘:’ A be the
space of bivariate piecewise polynomial functions in C?, of total degree <k,
on the mesh A. Let m(k, p) denote the approximation order of 1rk A- In this
paper, an upper bound for m(k, p) is given. In the space 3 < 2k — 3p <17, the
exact values of m(k, p) are obtained:

m(k,p) =2k —2p—1 for 2k —3p=3or4,

m(k,p) =2k —2p—2 for2k—-3p=5,6o0r7.

In particular, this result answers negatively a conjecture of de Boor and Héllig.

1. Introduction. In this paper we study the approximation order from certain
spaces of smooth bivariate splines on a three-dimension mesh. The work in this
respect has been initiated by de Boor and DeVore [BD], and de Boor and Hoéllig
[BH;-BH3). Here we follow them and introduce some notation. Let

= U {(z1,72) € R*;zy =n, T3 =nor o — ; = n}.
nez
Namely, the mesh A is obtained from a uniform square mesh by drawing in the
north-east diagonal in each square. Let
S:=mp 5 =Tk,aNCP

be the space of bivariate pp (piecewise polynomial) functions in C?, of total degree
< k, on the mesh A. The approximation order of S is, by definition, the integer m
for which the following holds: For any f € C™,

dist(f, Sn) < (const)h™|f|m,c0,

while, for some C™*!-function f with | f|lm+1,00 < 00,
dist(f, Sn) # o(h™).
Here the scale (S,) of approximating spaces is generated from S by simple scaling:
Sh :=on(9)
with
(ahf)(x) = f(:l:/h), all f,z,h.
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200 R.-Q. JIA

Further,
dist(f,5) := imf |If ~s]],
and || - | is the sup norm on R?:
£l = fllco := sup |f(z)].
zER?
Moreover,

oo = 2 ID*fll, Iflmeo == D ID*f].
|a|=m la|<m
We denote by m(k, p) the approximation order of ﬂ,’:, A
Only a few results about m(k, p) are known:

k+1  fork>4p+1 (see [BZ]),
m(k,p)=1¢ 0 for 2k — 3p < 1 (see [BD]),
2k —2p for 2k — 3p = 2 (see [BH,4]),

m(3,1) =3 (see [BH3]).
An upper bound for m(k, p) has been obtained by de Boor and Héllig (see [BHg,
Theorem 3)):
m(k, p) < min{2(k — p), k + 1}.
Also, they raised the following
CONJECTURE. m(k,p) > min{2(k — p),k + 1} — 1.
By using a quasi-interpolant scheme, [J] gives

(1) m(k, p) > min{2(k — p),k + 1} — 2.

A question naturally arises: Can the lower bound given by (1) be improved? This
paper shows that this lower bound is sharp. More precisely, we will prove the
following results:

(2) m(k,p) =2k —-2p—1 for 2k —3p=3or 4.

3) m(k,p) =2k —2p—2 for 2k —3p=>5,6or 7.
In particular,
m(k,p) = min{2(k — p),k +1} —2 for 2k —3p=5,6 or 7Tand k < 2p+ 1.

This answers negatively the conjecture of de Boor and Hollig.

Here is an outline of this paper. §§2-4 treat the algebra generated by the shift
operators, the box splines and the jump operators, respectively. Those three sec-
tions are tools, and they prepare for the core of this paper, §5, which reduces the
approximation problem to a determinant problem and hence gives an upper bound
for the approximation order. In §6, the result of §5 is applied to obtain (2) and (3).

Before proceeding with the proofs of (2) and (3), we need to introduce more
notation. For a set E, we denote by |E| the cardinality of E. Let Z be the set of
nonnegative integers. Let e, ez be the unit coordinate vectors in the plane; i.e.,

e1 =(1,0) e2=(0,1).
As usual, D; denotes the derivative with respect to the 7th argument (z = 1,2). Let
e3s=¢€;+e and D3 = D;+ Ds.
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BIVARIATE SPLINES ON A THREE-DIRECTION MESH 201

For a bivariate function f:R? — R and a real number a, the difference operators
V..s are given by

Veof :=f— f(- — ae,) (r=1,2,3).

Ifa=1, V,, is abbreviated to V,. Let 7 be the space of all bivariate polynomials,
7 the space of all bivariate polynomials of total degree < k. For a polynomial p,
its degree is denoted by deg p.

2. The algebra generated by the shift operators. A mapping from Z2 to
R is called a bivariate sequence. The set of all the bivariate sequences equipped
with addition and scalar multiplication forms a linear space, which we denote by
I(Z?). All the linear operators on I(Z2) form a noncommutative algebra. We want
to consider one of its subalgebras. Let T, be the shift operators given by

T,g:=g(-—e), algel(Z? (r=1,23)
Clearly
T3 = ToTy = Ty Ts.

Let A be the subalgebra generated by Ty, T; *, T and T; !. Then A is commutative.
Let I be the identity operator on {(Z2). Then the difference operators can be
represented as

V,=I-T, (r=12,3).

In particular,
Va=I-T3=1-T1T,
= I— (I— Vl)(I—- Vz) = V] +V2 - V1V2.
If we impose a sup norm on /(Z2), then we get the normed linear space lo,(Z?).
Thus we can talk about the norm of an operator on l.,(Z?) in the usual sense.
Moreover, we can talk about positive operators. A sequence g € I(Z?) is called
positive, and denoted by g > 0, if
g(5) >0 for any j € Z2.

An operator L is called positive if
Lg >0 whenever g > 0.

A sequence g € I(Z2) is called constant if there exists a real number b such that
g(7) =b for any j € Z2.

We denote by 1 the constant sequence which takes value 1. If L is a positive
operator on I(Z2), then we have ||L|| = ||L1||. Indeed, since —||g||]1 < g < ||g||11, we
have
—llgll(L1) < Lg < lglI(L1),

and so

ILgll < llgll 1 L.
This shows that |L|| < ||L1||. The other direction holds because ||1|| = 1. To give
an example of positive operators, we consider

N-1

(@) Ho:=) T} (r=123),

t=0
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202 R.-Q. JIA

where N is a positive integer. Then H,1 = N; hence
|He| =N forr=1,2,3.
3. Box splines. Box splines were introduced in [BD and BH;] and have
proved useful in approximation problems. The key point is that the approximation

order of S is determined by all the box splines contained in S (see [BHg]). Here
we specify the definition of box splines from [BH;] to suit our discussion. For

A = (A1, A2, A3) € Z% with [A| = A; + Az + A3 as usual, let E = (&) be the
sequence given by

G=-=80,=¢€, En+1= =842 =€, Etat1 == =e€3.
Then the box spline M) := Mz is defined as the distribution given by the rule

[Al
Mzio— [ 6 ulidé | du

=1
where the integral is taken over the cube [0, 1]1*I. Let
d:= |\ —max{\ } - 1.
Then M), C LPnCcE-1. In addition, d is the largest integer such that this relation
is true. In particular, a box spline M) belongs to L, if and only if |A| —max{\,} >

1. In what follows, all the box splines are assumed to be in L.
A box spline series has the following nice property with respect to derivatives:

D; (E a(g)Mz(- —j)) =) (Via)(j)Mz.,(- - j), ife€E.

jez? jez?
Let Sy := the linear span of M,(- — j), J € Z2; that is,
Sy = {Dal)Ma(- - Dsacyz?)}.
LEMMA 1. The following inclusion relations hold:
(1°) Saiazas CSxn+12225-1 FSx+1,2,-1,0; o min{A2,A3} > 1;
(2°)  Sxnidads C©Saa+1as—1 +Sx—105+41,0s  of min{Az, A1} > 15
(3°) Sxiazrs € Sr—1,a28+1 + Sapaa—12s+1 o min{A, A2} > 1.

PROOF. We need only prove (1°). Any s € S) can be expressed as a series
Ea(])MA( - .7) Seta for J = (jlaj?) € Z2a

a(O’jZ) +--- 4+ a’(jl)j?) for jl ..>_ 0,
b(j],jz) = 0 fOI‘ jl = —1,
—a(-1,732) = —a(n +1,52) forz < -1

Then Vb = a; hence
5= 3 (V)M = 5) = D1 (32 b0)Mas 1320 = 5))
= (D3 - D2) (Z b(I)M,+1,00,04 (- — J'))
=3 (Vsb) ()M, +1.2505-1( = 3) = D (V2b) (1) Mx, 41,0, -1,25 (- = 5)-
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BIVARIATE SPLINES ON A THREE-DIRECTION MESH 203

This shows that
se S’\l +1,A2,03—1 + S)\l +1,22—1,)3"
The proof of Lemma 1 is complete.

4. Jump operators. We denote by Sa the space of all splines (piecewise
polynomials) on the mesh A. For s € S, we think of s as defined on R?\A. To
describe the jump of a given spline s in the direction e, (r = 1,2,3), we introduce
the jump operators J, as follows:

Jrs = 51_15_10[3(- + ee,) — (- — ge,)].

On each component of R?\ A, s is a polynomial; hence the above limit always exists.
Clearly, if s is continuous at z, then J,s(z) = 0 for all » = 1,2,3. Thus the support
of J,s is included in A. Since we think of s as defined on R%\A, J,s is thought of
as defined on A\Z2. The operators J, are linear and bounded: ||J,|| < 2.

If g is defined on A\Z2, and if g is a polynomial in each component of A\Z2,
then we can define

K,q(j) := 6l_iE0g(j + be,), JEZ? r=1,2,3.

The operators K, given by the above are linear and bounded: | K, | < 1.
We also want to give a description for the jump of the derivatives of a given
spline. To this end we introduce the operators R, ,, on I(Z?) given by the rule

n

R, na:= Za(. — te,) M, (t), r=123 n>1
t=0
(Recall that M, is the univariate B-spline with support [0, 7] on the uniform mesh
Z.) When n < 1, we interpret R, as zero. Since ) ;- Mn(t) = 1, the operator
R, is bounded by 1.
We make some convention about the combination notation ('7’:) Whatever m
and n might be, we agree that

m\ _ { 1 ifm=n
n 0 ifm<n.
Now we are ready to state the main result of this section.
LEMMA 2. The following formulae hold:

KyJ. D5t (E a(7)Mx(- — j))

(1°) Ry (k ;az\i-l- 1) (—V, )k~ Oatra)glagds,
Ky J3D5™! (Z a(7)Mi(- - j))
) = Ra|x-k (k ;ﬁ; 1) Vv Ret g
KsJ.DF ™ (3 al)Ma(- - 4)
(3°) k=X —1

= R3:|/\|—k( Ag—1 )Vi“ (_VZ)A2V§_(A1+)‘2)a,
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204 R.-Q. JIA

PROOF. We need only prove (1°), because (2°) and (3°) can be proved in a
similar way. For simplicity, write

5= a()Ma(- - 3).

The proof of (1°) will go case by case.
Case 1. k< )y — 1.
In this case,

D5 ~'s = (VE71a) ()M, as—ks1.05 (- — 9.

Since A2 —k+ 1 > 2, M), x,—k+1,), i8S continuous in the e; direction. This shows
that J,D5~'s = 0. On the other hand, k — Ay — 1 < A3 — 1; hence the right-hand
side of (1°) is also zero in this case.

Case 2. k = )s.

This case is divided into three subcases.

Subcase 1. min{A;, A3} > 1.

In this case,

DE~'s =) (VE~a)(5)May, 1.0, (- — 5)-

Since My, 1.1, € C(R?), we obtain the desired conclusion.

Subcase 2. A1 =0, A3 > 1.

In this case, M) is continuous in the ey direction at the points 7 + de;, 7 € 22,
0 < 6 < 1; hence K1J2D§_ls = 0, while the right-hand side of (1°) is also zero,
because k — Ay — 1< A3 — 1.

Subcase 3. Ay > 1, A3 =0.

In this case

Ds~'s = (V5 a)(5)M,,10(- - 5)-
We have
My, 1,0(z1,22) = My, (z1)Mi(z2).
It follows that, for 2 = (i1,42) € Z2and 0 < 6 < 1,

M,\l(i1+5) if 10 =0,
JoMy, 10(0 +6e1) = — My, (i1 +6) ifiz=1,
0 otherwise.

Therefore
(K1J2D5™'s)(2)

= Y [(VEa)(j1,52) M, (ix — 51) — (V5 'a) (5, 52 — )My, (51 — 51)]
NnezZ

= Z (Vka)(51,32) My, (11 — 51)
NneZ

A1
= E(V’ga)(il —t,12) M, (t)
t=0

= R1,|,\|_kV§’a(i).
This proves (1°) in this case, since k — A2 —1=—1=Az—1and k— (A2 +A3) =0.
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BIVARIATE SPLINES ON A THREE-DIRECTION MESH 205

Case 3. k> Ag.
In this case,

Dyts = DET17 (30(V3°0)0)Mas 0 (- = ) -

By the binomial theorem, we have

k—1-X2 1
R S D Yl U - (S N o
p=0

Ifp>A3ork—1—X2—p> A, then
Dg(—Dl)k_l_)‘"”M)\bo,)\s(:c) =0 forz¢A;

hence
Jo(D§(=Dy)*~17227P My, 0.3,) = 0.

Assume p < A3 and k—1— Ay — p < A;. Then

Dg(_Dl)k—l—)‘z—p (Z(Véza)(j)MAl,o,Afs ( - J))

J
=y ((—Vl)k-ln'\’_pVQ’Vga) () Mx, 4 224p+1-k,025—p(- — 9)-
J

Note that

M), +2a+p+1-k,02a—p(T1, T2) = M, 4 254p+1-k(T1 — T2) Mxg—p(22).
If A3 —p > 2, then M),_,, is continuous everywhere. Moreover, for fixed §, 0 <
6 < 1,and ¢ = (i1,12) € Z?,
Jim (M +aa+p+1-k(61 — t2 + Ber + ceg)
- M)\l+)\2+p+1_k(i1 — 13+ b6ey — Eez)] =0.
This shows that

Jz [DR(=D1) 127 (3 (V30) (1) Ma, 024 (- = )| =0
unless p = A3 — 1 and k < |A|. Thus

JzDg_ls
k—X2—1 _ 1 .
=0 [ (M3 1) O e M a5
By straightforward calculation we have
) M|,\|_k(i1 + 5) if 25 =0,
J2M|,\|—k,0,1(@ + 661) = - M|)‘|_k(i1 -1+ 5) if1g =1,
0 otherwise.
For simplicity, write

k=X —1 e -
b=( )\33 ) )(—vl)'c A=Ay 3rv3sla,
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206 R.-Q. JIA

Then the above calculation yields
JoDE1s(i) = Y [b(s1,52) Mja (i1 — 51) — b(s, 52 — )M x_k(i1 — 51 — 1)]
NnEZ
= ) V3b(ji, i2) Mip —k(i1 — 51)
NnEZ
= Ry x1-k V3b(2).
This proves (1°) in Case 3. The proof of Lemma 2 is complete.

For simplicity, we denote by Uk, » the operator appearing on the right-hand side
of Lemma 2(r°), r = 1,2, 3, respectively. Further, let

Loty i= <k —A2— 1) (=Vp)E—22=2agd2(V, 4 Vy)s,

Az —1
k—Xs—1 -
Li,2,x :=( /\131 )Vi\lvlzf 2NV + Va)s,

k—X1—1
Lk :=( o1 )V?*(—vz)*ﬁ(vl+v2)k—h—kz.

5. An upper bound for the approximation order. Let E be a finite subset
of Z3. Let S be the span of {M\(- — 7); A € E, j € Z%}. In this section, we will
give an upper bound for the approximation order of S.

We want to put the operators Uk, and Li, ) into a two-dimensional array.
Note that Uy, = 0if £ < d =minx{A;+ A2, A2+ A3,A3+ A1} —1or k > |A|. Thus
the only interesting case is d < k < |A|. Assume |E| = n. There is a one-to-one
mapping from {1,...,n} onto E. The image of ¢ under this mapping is denoted
by A(q). Let

Us(k-d—1)+rq = Uk,r(q)s
L3(k-d~1)+rq = Lk,rr(a)» r=12,3.
R3(k—d-1)+r,q := Rr(g)-k>

We observe that L, are homogeneous polynomials in V3 and V3 of degree k.
Let

Bak-d-1)4+r =k,  r=1,2,3.

We are now in a position to prove the main result of this paper.

THEOREM 1. If 3(m — d) > n, and if the determinant of L = (Lpg)p q=1 S
nonzero, then the approzimation order of S does not exceed m.

PROOF. Suppose to the contrary that to any k > 0 and any f € C(™+1) with
| fllm+1,00 < 00 there corresponds up € Sy, such that || f —up|| < eph™ with ep — 0
as h — +0. It follows that

(5) loynf —o1/punll < enh™.
(Recall that oy, is a scaling operator. See §1.) Assume

up = EZG,\,h(j)M«\ (,—z -J') -
J

A
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BIVARIATE SPLINES ON A THREE-DIRECTION MESH 207

Then
oumnun =Y > axn()Ma(- - 5).
J

A

Suppose that f is a polynomial on a square Q. Then o, f is a polynomial on the
square Q/h. In each component of R?\A included in this square, o1 /,(f — un) is
a polynomial, so we can invoke Markov’s inequailty and obtain

||D§"101/hf - Df"lal/huhll < const e h™.
Moreover, since K; and J; both are bounded operators, we have
| K1J2D%~ 201/ f — K1J2 D%~ 101 pun|| < consteph™.
But f € C(™+1); hence
K1J2D§’lal/hf =0 fork<m.

Thus
||K1J2D§‘101/huh|| < const e h™.
By Lemma 2,
K1J2 D57 oy nun = Y Uk 1,200,15
' A
hence

Z Uk,1,00xn|| < consteph™.
A "

The above estimate is also true for r = 2 or 3:

(6) Z Uk,r,2axn|| < consteph™.
)

Let

aq = ak(‘]),h’ q= 1,---,",
and

n
(7) & = Z Upq@q.
. q=1

Then (6) reads
(8) €]l < consterh™,  p=1,...,n.
Let

a=(ay,...,an)", E=(&1,.-, &)
Here 7 means “transpose”. Equation (7) can be written
(9) Ua=¢,

where U is the matrix (Upq)p g=1-
Let I, be the n X n identity matrix. Let adj(U) be the adjugate matrix of U.
Then
U(adjU) = (adjU)U = (det U)I,.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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By (9), we have

(10) (detU)a = (adjU)Ua = (adjU)¢.
Take h to be 1/N, where N is a positive integer. Let 3 := E;’:l Bp. Then detU
has the form

detU = E Ro, .0, VSIVS2,
a1 +az2=0

where R,, o, € A, the algebra generated by the shift operators (see §2), and
| Ray oz || < const. Assume adjU = (Vpq)p =1 Then each V;, has the form

Vog = Z R&’:’,‘Q, vitvs?
artoz=8—Pp
with R®%), € A and |R$'%, || < const. Let
W := WP HP HY (det U),
where H; and H; are the operators defined in (4). We observe that

N-1

V.H,=(I-T;) (ET:) =1-TN=V,n (r=123)
t=0

Hence
W= E Ral,azhﬂHf—al Hg_az V(ll,lN (11,2N'
a1 +az=0
Since ||H,|| < N, we have

118 HE=o Hf=o2| < (1/N)P N2~ (astan) 1,
In addition, ||Ra, a, [l < const and ||V{'y V32| < const; therefore
(11) W]l < const.
Next, we want to estimate Wa. It follows from (10) that
Wa = kP HP HE (det U)a = WP HP HZ (adj U)¢.
Consider R HY H2V,,,. We have
WHiH Ve = ) REY WPHI ™ HE Vi V.

g ,02
ay+az=0 _ﬁy
Note that, for a; + az = — Bp,
IR HY = HY = < N%» < N™.
Also ||R$'9, || < const and VN V323 Il < const. Therefore
|RPHPHBV,,|| < const N™.
This combined with (9) enables us to conclude that

(12) |[Wa|| < const N™||¢|| < constep,.
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BIVARIATE SPLINES ON A THREE-DIRECTION MESH 209

We restrict the domain of ¢y, f and o /pup to Z2. Thus they become elements
of [(Z?). Let G, € A be defined by the rule

Gra =Y a()Ma(- - j).
Since Y My\(- — 7) = 1, we have

IGall < 1.
Recall that ¢ — A(g) is a one-to-one map from {1,...,n} onto E. Let G4 = G»(q)-
Then
(13) O1/hUp = Z Gqaq.
q=1

Substitute (13) into (5). Let W act on both sides of this inequality. Since ||W|| <
const by (11), we obtain

n
Waoynf - Z GWa,|| < consteph™.
q=1
Invoking estimate (12), we have
n
‘ E GoWay|| < const |Wa|| < constep.
gq=1

From the foregoing two inequalities we conclude that
(14) [Wo1/nfll < constep.
Suppose now det L # 0. Then in the expression
detL= Y Cy V'V,
Nn+v2=4

there exists some (61,62) such that 6; + 6, = § and Cs, 5, # 0. We can find a
function f € C™*! such that f has compact support and

f(z1,22) = 251252 /(61182!) for (21, 22) € [-0, 0] X [-a, ql,

where ¢ is a sufficiently large real number.
Recall that

R =) M,()T:.
t=0

Since Y M,(t) = 1, we have

=Ry =3 M) -T2)

t=0
=3 M, )V, (I +---+Tt1).
t=0

We also have observed that V3 — (V; + V2) = —=V;V,. Now think of detU as a
polynomial in V; and V3. Decompose det U into homogeneous components. Then
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the above facts tell us that det L is its component of the lowest degree. Therefore
we may write
detUs=detL+ Y ¢y, V]V
mn+v2>8
Let
v = max{y1 +V2; €,y # 0}

Since 011 f is a monomial of degree § on the square [-Na, Na] x [-Na, NaJ, and
since det U — det L is a polynomial in V; and V. of degree bigger than 3, we have

(detU)oy/nf = (det L)oy/nf on 72N [-N(a—7%), N(a—~)]2

Moreover,
V}‘Vg’ol/hf =0 if (y1,72) # (61,62).
Hence
(det L)oy/nf = cs, &VVee 1/nf-
Furthermore,

H{ H* (det L)oy/nf = cs,,5,(H1V1)" (H2V2)" 010 f
= co1,6 VN VN1 RS = 06,6, VIV [ = C5,,65-
Finally, we obtain
Waynf = hPHPHE (det U)oy nf

= hPH{ ™% Hy = (H}' Hy* (det U)oy n f)

= C5,,6, hﬁf‘.’{i_s1 Hg_& 1

=C6,6; ON [_N(a -7- 2ﬂ)a N(a - 2ﬂ)]2
Therefore (14) becomes

les,,s,| < constep.

But cs, 5, does not depend on h. Letting h — +0 in the above inequality, we obtain
¢s,,6; = 0. This contradiction shows that the approximation order of S does not
exceed m. The proof of Theorem 1 is complete.

6. The approximation order of 771’;, a in the case 3 < 2k—3p < 7. De Boor
and Hollig have shown that 7r£, A has the same approximation order that Sjoc does.
Here

Sioc := the span of {M)(- —5); My €} 5 and j € z?%}
(see [BHg]). This fact enables us to apply Theorem 1 to obtain the approximation
order of 7r£,A inthecase 3<2k—3p<7.

Let

E' = {)p+2<min{A; + Az, A2 + Az, A3 + A1} < |A| < k +2}.

Then M) € 1r£' a Is equivalent to A € E’. By Lemma 1, we may reduce E’ to its
subset E such that

Sioc = the span of {My(- —j); A € E and j € Z*}.

Then we form the matrix L as in §5 and check whether det L # 0. In this way we
can prove the following theorem.
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THEOREM 2.
(1°) m(k,p) =2k —2p—1 for2k—-3p=3 or4.
(2°) m(k,p) =2k —2p—2 for2k—-3p=5,6o0rT.

PROOF. (i) The case 2k — 3p = 3.
In this case p must be an odd number. There exists some integer g > 1 such
that p=2u—1. Thenk=3uand 2k —2p—1=2u+1=p+ 2. By Lemma 1,

Sioc = [PRTRS 7R By Sn+1,n,#+1-

Then E = {(u,u+ L,u+1),(p+ L, u,p+ 1)} and n = |E| = 2. It is known from
[BH,] that m(k,p) > p+2 =2u+ 1. We want to prove m(k,p) = 2u + 1.
We have, for m = 2u + 1, that

0 VE(Vy + Va)ptl

L= VE(Vy + Vg)pt! 0

Clearly, det L # 0. By Theorem 1 we obtain m(k, p) < 2u + 1. Thus
m(k,p) =2u+1=2k—-2p—1 in the case 2k —3p=3.

(ii) The case 2k — 3p = 4.

If p = 0, then m(2,0) = 3 is a well-known fact. Assume p > 1. There exists an
integer u > 2 such that p=2p—2. Thenk =3y —1land 2k —2p—-1=2u+1=
p+ 3. It is known from [DM] that m(k,p) > 2k — 2p — 1. We want to prove
m(k,p) <2u+ 1. By Lemma 1,

Sioc = ut+1lpp t Su,n+l,u + Su,u,u+l + Su,u,n-

For m = 2u + 1, we have

VE(V1+ Va)# 0 0 VH(V1+ Va)#
L= 0 V'f(Vl + Va)# 0 V’l‘(Vl + Vy)#
- 0 0 Vi(-Va)* Vi(-Va)*
WVVE(V1+V2) VUV 4+ Vol VE(V1+ V)it p(—V1)VE(V1 + Vo)
Then

det L = (—1)#+H1VHTIH(V, + V3)3H(V; 4+ 2V,) #0.
This shows that
m(k,p) =2k —2p—1 in the case 2k — 3p = 4.

(iii) The case 2k — 3p = 5.

There exists an integer 4 > 1 such that p = 2u — 1. Then k = 3u + 1 and
2k —2p—2 =2u+2. It is shown by [J] that m(k,p) > 2k — 2p — 2. We want to
prove m(k, p) < 2k — 2p — 2. By Lemma 1,

Sioc = the span of {M,(- —j); A€ E, j € Z?},
where .

E={(u+2,p+Lp),(e+2,pp+1),(+1L,p+2,u),
(b+1,p,p+2),(p+1,p+ 1), (k+1,u,u+ 1)}
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Let m = 2u + 2. To check whether det L is nonzero, we may use the following
technique to simplify the computation. We observe that each entry of the matrix
L is a polynomial of V; and V3, so we may assign values to V; and V,. Write
L =L(Vy,Vq). If det L(1,1) # 0, then det L # 0. Let us now look at L(1,1):

2 gu+1 0 0 ou gut1
0 0 24 0 o6 0
Lan=| © 0 0 (-1)# 0 (~1)#
’ —u2h = (14 p)2rtl 26 oK+2 —p2¢ = (14 p)2eHt
o4 0 (u+1)2¢ 0 (u+1)2¢ gu+l
0 (-1)# 0 2u(-1# (-1 gu(-1)k

By straightforward computation, we conclude that det L(1, 1) # 0. This shows that
m(k,p) =2k —2p—2 in the case 2k — 3p = 5.

(iv) The case 2k —3p=6or 7.
The process goes as before. Since the computation is tedious, we omit the details.
The proof of Theorem 2 is complete.
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