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APPROXIMATION PROPERTIES FOR GROUP C*-ALGEBRAS
AND GROUP VON NEUMANN ALGEBRAS

UFFE HAAGERUP AND JON KRAUS

Abstract. Let G be a locally compact group, let C*(G) (resp. VN(G)) be
the C*-algebra (resp. the von Neumann algebra) associated with the left reg-
ular representation / of G, let A(G) be the Fourier algebra of G, and let
MqA(G) be the set of completely bounded multipliers of A(G). With the com-
pletely bounded norm, MqA(G) is a dual space, and we say that G has the
approximation property (AP) if there is a net {ua} of functions in A(G) (with
compact support) such that ua —» 1 in the associated weak '-topology. In par-
ticular, G has the AP if G is weakly amenable (•» A(G) has an approximate
identity that is bounded in the completely bounded norm). For a discrete group
T, we show that T has the AP •» C* (r) has the slice map property for sub-
spaces of any C*-algebra -<=> VN(r) has the slice map property for a-weakly
closed subspaces of any von Neumann algebra (Property Sa). The semidirect
product of weakly amenable groups need not be weakly amenable. We show
that the larger class of groups with the AP is stable with respect to semidirect
products, and more generally, this class is stable with respect to group exten-
sions. We also obtain some results concerning crossed products. For example,
we show that the crossed product M®aG of a von Neumann algebra M with
Property S„ by a group G with the AP also has Property Sa .

0. Introduction

Connes proved in [Co] that if G is a separable connected locally compact
group, then VN(G) is always semidiscrete, and C*(G) is always nuclear. Thus
nice approximation properties for VN(C7) or C*(G) give us no information
about G in the connected case. However, for discrete groups there is an inti-
mate relation between approximation properties for VN(G) and C*(G) and
approximation properties for G. Lance proved in [Lan] that if Y is a discrete
group, then C* (Y) is nuclear if and only if Y is amenable, and it was shown in
[EL] that VN(r) is semidiscrete if and only if Y is amenable. By definition, a
von Neumann algebra Af is semidiscrete if and only if the identity map on Af
can be approximated in the point-weak * (= point- a -weak) topology by normal
finite rank unital completely positive maps (cf. [EL]). Moreover, it was shown
by Choi and Effros in [CE] and by Kirchberg in [Ki 1] that a C* -algebra A is
nuclear if and only if the identity map on A can be approximated in the point-
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668 UFFE HAAGERUP AND JON KRAUS

norm topology by finite rank completely positive contractions. Hence nuclear
C*-algebras satisfy the metric approximation property (MAP) of Grothendieck
(which only requires that the identity map can be approximated in the point-
norm topology by a net of finite rank contractions, cf. [Gr]). Since the free
group on two generators F2 is not amenable, C*(F2) is not nuclear. However,
as shown in [Haa 6], C*(F2) does have the MAP. In fact, as shown in [DH],
there is a net of finite rank complete contractions that converges point-norm to
the identity.

A C*-algebra A is said to have the completely bounded approximation prop-
erty (CBAP) if there is a positive number C such that the identity map on A
can be approximated in the point-norm topology by a net {Ta} of finite rank
completely bounded maps whose completely bounded norms are bounded by
C. The infimum of all values of C for which such constants exist is denoted
by A(A). Similarly, a von Neumann algebra Af is said to have the weak *
completely bounded approximation property (weak * CBAP) if there is a posi-
tive number C such that the identity map on Af can be approximated in the
point-weak * topology by a net {Ta} of normal finite rank completely bounded
maps whose completely bounded norms are bounded by C. The infinimum of
all values of C for which such constants exist is denoted by A(Af). In both
cases the infimum is attained.

In [Haa 7], the first author gave a characterization of those discrete groups
whose reduced group C* -algebras have the CBAP. Before describing this re-
sult, we recall some basic definitions and facts concerning Fourier algebras and
related topics for the convenience of the reader. More details can be found
in [Ey, DH and CH]. Let G be a locally compact group. The group von
Neumann algebra VN(C7) of G is the von Neumann algebra generated by
{1(g): g £ G}, where / is the left regular representation of G on L2(G),
and C*(G), the reduced group C*-algebra of G, is the C*-algebra generated
by {¡(f): f £ LX(G)}. The Fourier-Stieltjes algebra B'G) of G is the space
of coefficients (n(g)Ç, n) of strongly continuous unitary representations n of
G. With the norm

||M|U(C) = inf{||C||||z/||:M(g) = (;rU)C,z7)}
B(G) is a Banach algebra under pointwise multiplication. The Fourier algebra
A(G) of G is the closure of Cc(G)r\B(G) in B(G), where CC(G) denotes the
set of continuous functions on G with compact support. The Fourier algebra is
a closed ideal in B(G), and the elements of A(G) are precisely the coefficients
of the regular representation. Moreover, A(G) = VN(G%. We denote the
restriction of || • \\B{G) to A(G) by || • \\A^ .

A complex-valued function m on G is a multiplier for A(G) if the linear
map mu(v) = uv maps A(G) into A(G). The set of multipliers of A(G) is
denoted by MA(G), and if m € MA(G), then « is a bounded continuous
function, and mu is a bounded operator. For u £ MA(G), let Mu denote the
normal (er-weakly continuous) linear map from VN(G) to VN(G) defined by
Af„ = ml and let Afu denote the restriction of Afu to C*(G). Then u is said
to be a completely bounded multiplier if Af„ is completely bounded. The space
MqA(G) of completely bounded multipliers, endowed with the norm \\u\\m0 —
||Afa||c¿ , is a Banach space. Moreover, B(G) c M0A(G), and the B(G) norm
dominates the MqA(G) norm on B(G).   The space of completely bounded
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GROUP C" -ALGEBRAS AND GROUP VON NEUMANN ALGEBRAS 669

multipliers has a number of characterizations (cf. [CH, p. 508]). One such
characterization that we will make use of in § 1 is that the following conditions
are equivalent:

(i)   u belongs to M0A(G).
(ii) There exist bounded continuous maps P, Q:  G —► %?  (%? a Hilbert

space) such that
(1) u(rxs) = (P(s),Q(t))   \/s,t£G.

(iii) There exist bounded maps P, Q: G -> %?  (%? a Hilbert space) such
that (1) holds.

Moreover, if u £ M0A(G), then
||m||Mo = min{||P||00||ß||00},

where the minimum is taken over all (continuous) pairs P, Q for which (1)
holds. (For a short proof of the equivalence of (i) and (ii), see [Jo]. A proof
that (iii) implies (i) can be found in [Haa 7].)

It is shown in [Le] that a locally compact group G is amenable if and only
if A(G) has a bounded approximate identity. A locally compact group is said
to be weakly amenable if A(G) has an approximate identity that is bounded in
the MqA(G) norm, i.e., if there is a net {ua} in A(G) and a constant C such
that ||ttav-t>|| -> 0 for all v £ A(G) and suchthat [ | w« 11 Afo < C for all a. The
infimum (which is attained) of the constants C for which such a net exists is
denoted by A(G). Amenability implies weak amenability but there are weakly
amenable groups which are not amenable. For example, it is shown in [DH]
that A(F2) = 1, but F2 is not amenable. Moreover, A(Sp(l, n)) = 2zz - 1 for
zz > 2 [CH], so A(G) can take on any odd positive integer value. (It is not
known whether A(G) can take on any other values.) Other examples of weakly
amenable groups can be found in [DH, CH, Han, Sz, Va 1, Va 2].

It is shown in [Haa 7] that if Y is a discrete group, then the following con-
ditions are equivalent:

1. T is weakly amenable.
2. Q(Y) has the CBAP.
3. VN(T) has the weak * CBAP.

Moreover, if any (and hence all) of these conditions hold, then A(Y) = A(VN(T))
= A(C*(T)). It is also shown in [Haa 7] that there are discrete groups that are
not weakly amenable (see Remark 2.5 below).

In this paper we study a slightly weaker property for locally compact groups.
We say that a locally compact group G had the approximation property (AP)
if there is a net {ua} in A(G) such that ua —> 1 in the o(MqA(G), Q(G))-
topology, where Q(G) denotes the predual of M0A(G) obtained by completing
LX(G) in the norm

||/||ö = sup j   / f(x)u(x)dx : u £ M0A(G), \\u\\Mo < I

(cf. [He] or [DH].) In analogy with the result quoted above, we prove in §2 that
for any discrete group Y, the following conditions are equivalent:

(a) T has the AP.
(b) C*(Y) has the operator approximation property (OAP).
(c) VN(T) has the weak* operator approximation property (weak* OAP).
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670 UFFE HAAGERUP AND JON KRAUS

Here the OAP is the operator space version of Grothendieck's approximation
property introduced in [ER] under the name AP, and the weak * OAP is the
von Neumann algebra version of the OAP introduced in [EKR]. (Definitions of
these properties are given in §2.) By [Kr 3], conditions (b) and (c) are equivalent
to (respectively) conditions (b') and (c') below:

(b')   C*(Y) has the slice map property for subspaces of the compact opera-
tors K(MT).

(c')   VN(T) has the slice map property for cr-weakly closed subspaces of
B(%*) (Property Sa).

In fact, it turns out that (b') is equivalent to the apparently stronger condition
(b")   C*(Y) has the slice map property for subspaces of any C*-algebra.
On the other hand, it follows from a recent result of Kirchberg in [Ki 4], that

(b') is not equivalent to (b") for arbitrary C* -algebras.
It was discovered in [Haa 7], that although Z2 and SL(2, Z) are two weakly

amenable groups, their semidirect product Z2 xp SL(2, Z) (where p is the
standard action of SL(2, Z) on Z2) is not weakly amenable. In §1 we prove
that the AP property is stable with respect to semidirect products, and more
generally group extensions, i.e., if both a normal closed subgroup and the corre-
sponding quotient group have the AP, then the original group also has the AP.
In particular, Z2 xp SL(2, Z) is an example of a group with the AP, which is
not weakly amenable. Presently, we do not know of an example of a locally
compact group without the AP, but we conjecture that SX(3, Z) will fail to
have the AP.

In addition to the stability result mentioned above, §1 also contains several
sets of equivalent conditions for the AP. In §3 we examine the relationship be-
tween the approximation properties of a crossed product von Neumann algebra
N = M ®aG and the approximation properties of Af. We first show that the
approximation properties of Af are at least as strong as those of N : if N has
Property So- (resp. has the weak * CBAP) then Af has Property S„ (resp. has
the weak * CBAP). On the other hand, if G is a discrete group without the AP,
if Af = C, and if a is the trivial action of G on Af, then Af has Property Sa
(and in fact is semidiscrete), but VN(G) = M®aG does not have Property Sa .
Thus the best we could hope for in the converse direction is that if G has the
AP and Af has Property Sa , then TV has Property Sa . This turns out to be the
case. If we assume that G is weakly amenable and Af has the weak * CBAP,
then it does not always follow that N has the weak * CBAP, but N does have
a "two step" weak * CBAP in the sense that the identity map on TV is the limit
in the point-weak * topology of a bounded net in CBa(N) (the space of normal
completely bounded maps from N to N with the completely bounded norm)
each of whose elements is a limit of a bounded net of finite rank operators in
CBa(N). However, if we assume that G is amenable, then the weak* CBAP
for Af does imply the weak * CBAP for N. This is in analogy with the known
result that if G is amenable and Af is semidiscrete, then TV is semidiscrete.

1. The approximation property for groups
Definition 1.1. Let G be a locally compact group. Then G is said to have the
approximation property (AP) if the constant function 1 is in the cr(Afo^(G),
ß(G))-closure of A(G) in M0A(G).
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Remark 1.2. The inclusion map from B(G) into M0A(G) is a contraction (cf.
[DH, Corollary 1.8]), and so the o(M0A(G), Q(G))-closure of any subset E of
B(G) contains the closure of E in the P(G)-norm. Hence G has the AP if
and only if 1 is in the o(M0A(G), 0(G))-closure of AC(G) in MqA(G) , where
AC(G) denotes the set of functions in A(G) with compact support. Note that
1 £ A(G) if and only if G is compact, in which case AC(G) - A(G) - B(G) =
M0(G) (cf. [DH, Corollary 1.8]).

Suppose A, B and C are C* -algebras. Then for any a £ A®C (where A®C
denotes the spatial C*-tensor product of A and C), and for any cp £ (B®C)*,
we can define a linear functional coa ̂  on CB(A, B) (the space of completely
bounded maps from A to B with the completedly bounded norm) by

(2) (ûa,9(T) = (T®iac(a),q>),        T£CB(A,B).
The right-hand side of equation (2) also makes sense if cp £ (Af®P),, where
Af and R are any von Neumann algebras containing B and C respectively.
We will use the notation <yaç) for the linear functional defined by (2) in this
case as well. Next suppose M, N, and R are von Neumann algebras. Then
for any a £ M&R and cp £ (N®R)t, we can define a linear functional on
CBa(M, N) (the space of normal completely bounded maps from Af to N
with the completely bounded norm) by

(ûa,f(T) = (T®idR(a), tp),        T£CBa(M, N).
Note that in all cases we have that

(3) IIûVpII < IMIIMI-
Since u —> Af„ and u —► AfM are isometric isomorphisms from Afo^(G) into

CB(C;(G)) = CB(C;(G), C;(G)) and CPCT(VN(G)) = CPCT(VN(G), VN(G))
respectively, we can define linear functionals of the form œa,tp on MqA(G) .
For example, if a G C;(G)®K(ßf) and (p £ (VN(G)®P(^))'., then aa,f is
defined by

oia,<p(u) = o)a,9(Mu) = (Mu®idK{^)(a), <p),    u£M0A(G).

Let PAC(G) denote the set of / in AC(G) such that fdx is a probability
measure, i.e., the set of / in AC(G) such that / > 0 and fG f(x) dx = 1. Since
translation is an isometry in MqA(G), the map «-»/*« is a contraction in
B(MqA(G)) for any / G PAC(G). Hence for any / G PAC(G) and any linear
functional on MqA(G) of the form coa,<?, we can define a linear functional
oja^j on AM(G) by

toa,<f,f(d) = 0)aj<f(f*u), U£MqA(G).
It is easy to see that we always have

(4) K.fl/||<||a||||f||.
Proposition 1.3. Suppose that G is a locally compact group, and that 2? is a
separable infinite dimensional Hilbert space. Then

(a) taa 9 f £ (2(G) whenever a £ VN(G)®P(^), tp £ (VN(G)®P(¿T)),,
and f £ PAC(G).

(b) coa <pJ£ (2(G) whenever a g Q(G) ® K(MT), tp £ (C;(G) ® K(St))*,
and f £ PAC(G).

(c) o)a - G Q(G) whenever a £ C;(G)®K(ßT) and <p £ (VN(G)®P(¿T))*.
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672 UFFE HAAGERUP AND JON KRAUS

Proof, (a) Since the linear span of {tpx <g> <p2: tpx £ AC(G) and (p2 £ B(3?)*}
is norm dense in (VN(G)®P(^)),, using (4) we can reduce to the case when
(p = <px <8> <p2 for some tpx £ AC(G) and tp2 £ P(X),. Moreover, it is easy to
show that in this case we have that

ua, «.,/(") = (a, (f*u)(px®<p2) = (L^a), (f*u)tpx)   V« G M0A(G),
where Ln is the left slice map associated with <p2 . (See §2 for the definition
of slice maps.) Since L92(a) £ VN(G), to prove (a) it suffices to show that if
a £ VN(G), if (p £ AC(G), and if / G PAC(G), then (oa,<pJ£ Q(G), where
°Ja,<p,f(u) — (Mftu(a), <p) (u £ MqA(G)) . We will complete the proof by
showing that there is a g £ LX(G) such that (oa¡ipj(u) — JGu(x)g(x)dx for
all u £ MqA(G) .

So let a G VN(G), <p £ AC(G), and / G PAC(G), be fixed. Let S denote the
compact set supp(/)_1 supp(p) and let Is denote its characteristic function.
Let u £ MqA(G) . Then the calculations on page 510 of [CH] show that

(5) ([f*u]<p)(x) = ([f*lsu]<p)(x)   Vx£G.
Moreover,

([f*lsu](p)(x)= [jGf(xy)(lsu)(y-x)dy^j(p(x) = jjy(x)(p(x)(lsu)(y-x)dy.

Define a map O: G -> A(G) by [0(y)](x) = fy(x)<p(x), and define a measure
p on G by dp(y) = (lsu)(y~x)dy . Then $ is norm continuous and bounded,
and dp is a bounded Radon measure (since u is bounded and 5 is compact).
Hence there is an element v = JG <P(y) dp(y) in A(G) such that

(6) (b,v)= ¡(b,<S>(y))dp(y)   \/b £ VN(G).
JG

Setting b = l(x) in (6) yields v(x) = ([f * lsu]<p)(x), and thus

<oa,<i>,f(u) = (a, [f*u]tp) = (a,v) = / (a, <b(y))dp(y)
JG

= i u(y-x)(a,<ï>(y))ls(y-x)dy= f u(y)g(y)dy,
JG JG

where g(y) = (a, 0(>'-1))l5(y)A(v-1). Since

[\g(y)\dy= I \(a,®(y))\ls(y-x)dy,
JG JG

g is in LX(G), as required.
(b) Fix a basis for ff. Then the elements of C*(G) <g> K(^) can be viewed

as oo x oo matrices with entries in C*(G), and for each zz the natural map
from M„(C*(G)) into C*(G) <g> K(ßV) is an isometry. Moreover, if we view
Mn(C;(G)) as a subset of C;(G)®K(ß?), then the union of the Mn(C;(G)) 's
is norm dense in C*(G) <8> K(%?). Hence by (4) we can reduce to the case
when a £ Mn(C;(G)) for some zz and <p G (Af„(Cr*(G)))*. Then a = [ay],
atj £ Q(G), <p = [<pij], <pl} £ (C;(G))* = BX(G), and

o>a,,,f(u) = ^2(Mf.u(aij), tPij).
'J
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Hence it suffices to show that the map wa,fj(u) = (Mf„u(a), cp) is in Q(G)
if a £ C*(G) and <p £ BX(G). Since {1(g): g £ CC(G)} is norm dense in
C*(G), we can assume that a = 1(g) for some g £ CC(G). In this case
Mf»u(a) = l([f* u]g) (cf. [DH, p. 460]). Moreover, (5) remains valid if we
replace (p by g, and so by the duality between C*(G) and BX(G) we have

(¿a,«.,/(")= I ([f*lsu\g)(x)q>(x)dx= ¡ u(y)h(y)dy,
JG JG

where h(y) = JGf(xy'x)g(x)<p(x)ls(y)A(y~x)dx. A straightforward calcula-
tion shows that h £ LX(G), and hence ojaipj£ Q(G).

(c) By (3) we can reduce to the case where a = 1(f) ® b for some f £ Lx (G)
and some b £ K(ß^), and where <p = v ® y/ for some v g A(G) and some
y/ £ (P(X))». Then

œa^(u) = (Mu(l(f)),v)(b,y/) = (l(uf),v)(b,y/)= / u(x)g(x)dx,
JG

where g(x) = f(x)v(x)(b, ip) is in LX(G). Thus œa,<p £ Q(G).   D
For discrete groups, we can improve (a) and (b).

Proposition 1.4. Suppose that Y is a discrete group, and that %? is a Hilbert
space. Then:

(a) œa,, € Q(Y) whenever a £ VN(Y)®B(JT) and tp £ (YN(Y)®B(^"))t.
(b) (oa\v £ Q(Y) whenever a £ C;(Y)®B(^) and tp £ (Q(Y)®B(J^))*.

Proof, (a) Let f = Se be the characteristic function of {e} . Then / g PAc(Y) ,
and f *u = u for all zz G MqA(JT) . Hence coa t v = coa >9 j G Q(r). (Note that
the separability of 3f was not used in the proof of part (a) of Proposition 1.3.)

(b) Since the closed linear span of {l(x): x £Y} is C*(Y), we can assume
that a — l(x) <g> b for some x £ Y and some b £ B(%?). Let ôx be the
characteristic function of {x} , and let g(y) = (l(y) ® b, tp)ôx(y). Then g is
in lx(Y), and

o)a,<p(u) = (u(x)l(x) ®b,tp) = u(x)(l(x) ®b,q>) = ^2 u(y)g(y).

Hence coat9 £ Q(Y).   o
Proposition 1.5. Suppose that G is a locally compact group, and that %? is a
separable infinite dimensional Hilbert space. Let co £ Q(G). Then co — œa^
for some a £ C;(G)®K(^) and some tp £ (VN(G)®P(¿T))*.

The next lemma will be used in the proofs of Proposition 1.5 and Theorem
2.2.
Lemma 1.6. Suppose that A isa C*-algebra, that M is a von Neumann algebra,
and that ß? is a separable infinite dimensional Hilbert space. Let X be a closed
subspace of CB(A, M) such that X = E* for some Banach space E. Let

S = {œa>?: a £ (A®K(^))X and <p £ ((M®B(ßr))„){\,
where œa, P is defined on X by

o)a,9{T) = (T®idK{r)(a),q>),        T £ X.
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Then S is convex. Moreover, if S c E, then every œ £ E is of the form
oi-oia,9 for some a in A®K(H) and tp in (M®B(ßT))*.
Proof. We first show that S is convex. Let J^(2) denote the direct sum of two
copies of %T. Then we can identify M®B(^2)) with M2(M®B(^)) in an
obvious way, and we can identify (M®B(^^))t with M2((M®B(%*))*) in
such a way that if b = [b¡j] £ M®B(#W) and tp = [?y] G (M®B(^2^))t,
then

(b, <P) = J2(biJ> 9tj)-
ij

Similarly, we can identify A ® K(%fW) with M2(A ® K(MT)), and if T e
CB(A, M) then for any a = [ay] eA® K(ßfW) we have

T ® idK(jrm)(a) = [T® idjc(Jr)(ay)].
Now let eoaiiPl and û>fl2)P2 be elements of S, and suppose 0 < X < 1. Let

a be the diagonal matrix in A®K(^^) with diagonal entries ax and a2 and
let ç> be the diagonal matrix in (M®B(^2^))t with diagonal entries X<px and
(1 - X)(p2 . Then

||a|| < max{||ai||, ||ût2||} < 1   and   ||p|| < X\\<px\\ + (1 -X)\\tp2\\ < 1,
and for any T £ CB(A, M) we have

a>a,r(T) = (T®idK(^m)(a), tp)
= (T®idK^)(ax), X<px) + (T®idK{Ji?)(a2), (1 - X)<p2)

= (Aû>fll)fl +(1 -X)(ûaitfl)(T).

Moreover, since %? and ^"(2) are unitarily equivalent, <ya>ç> = cOb>v for some
b £ (A®K(%f))x and some y/ £ ((M®B (<%*)) t)x. Hence S is convex.

Next suppose that S c E. We first claim that 5" is norm dense in the unit
ball Ex of E. To see this, suppose that the claim is not true, and let co be
an element of Pi that is not in the closure of S. Then since S is convex and
balanced, there is a T £ E* = X such that
(7) \(C0a,,,T)\<l<((0,T)    Vcoa<(/>£S.
Since T £CB(A,M) we have
imU = sup{\\T® idK(ßr)(a)\\: a £ (A®K(^))X}

= sup{\(T®idK{^(a), <p)\: a g (A®K(ß?))x and <p £ ((M®B(^)),)X}
= sup{\(œa,9, T)\: œa,9 £ S} < 1.

But then \(co, T)\ < \\(o\\ \\ T\\cb < 1 , which contradicts (7) and proves the claim.
Let ^(oo) denote the direct sum of a countably infinite number of copies

of %?. Since %? and ^(oo) are unitarily equivalent, to complete the proof of
the lemma it suffices to show that every co £ E is of the form co = œa 19 for
some a £ A® K(^°°x) and tp £ (M®B(^{oo)))t. We can also assume that
co G Ex. So let co £ Ex . Then there is an cox £ S such that ||w - cox\\ < 2~x.
Since 2(co-cox) £ Ex , there is an co2 £ S such that ||eu- &zi - 2~xco2\\ < 2~2.
Continuing in this fashion, we can find a sequence {o)n} in S such that

-S*2~i+l(0¡

i=\
<2~\        « = 1,2,
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Thus co = E~i2~'+1Wz. Since co,■ £ S, there are b¡ £ (A ® K(%?))x and
y/i G ((Af®P(X))*)i such that a>i = cob.yVi. Let a, = (2-'+1)1/2 , let a¡ = ajb¡
and let <p¡ = aw . Let a be the diagonal matrix in Af®P(^(oo)) with diagonal
entries ax, a2, ... (where we view the elements of M®B(^°°^) in the obvious
way as oo x oo matrices with entries in M®B(ßP)). Then since a, G A®K(ßif)
and ||a,-|| —> 0, a £ A ®K(%?{-°°)). Moreover, since ^2°lx \\q>¡\\ < oo, we can
define cp £ (M®B(^^))t by

oo

?»([fly]) = £<*» • ?»••).       [fl'7l e M®B(%?^).
¡=i

A straightforward calculation shows that w = ft>a, <?, which completes the
proof.   D

Proof of Proposition 1.5. Let /I = Q(G), M = VN(G) and let X = Af0^(G),
where Afo^(G) is viewed as a subspace of CP(^, Af) by identifying u £
M0A(G) with Mu. Then M0A(G) = (2(G)*, and S C (2(G) by Proposition
1.3(c), so an application of Lemma 1.6 completes the proof.   D

If A is a C*-algebra, and %? is a separable infinite dimensional Hilbert
space, a net {Ta} in CB(A) is said to converge in the stable point-norm topol-
ogy (resp. in the stable point-weak topology) to T g CB(A) if r^id^^a) -»
^®id/i:(^)(a) in norm (resp. weakly) for all a G A®K(%?) (cf. [ER]). If M is
a von Neumann algebra, a net {Ta} in CBa(M) is said to converge in the sta-
ble point-weak * topology to T £ CBa(M) if Ta ®idB(^)(a) —> T® idB(jr)(a)
(T-weakly for all a £ M®B(^) (cf. [EKR]). The proof of the next result is
similar to the proof of Proposition 2.3 in [Kr 3], and is left to the reader.

Proposition 1.7. Let M and N be von Nemann algebras, and suppose that the
net {Ta} in CBa(M) converges in the stable point-weak* topology to T g
CBo(M). Then Ta®idN(a)^> T®id^(a)   o-weakly for all a in M®N.

Remark 1.8. Let A be a C*-algebra, let Af be a von Neumann algebra, and let
E — A®Mt, the (completed) operator space projective tensor product of A and
Af» (cf. [BP]). Then £ isa Banach space, and CB(A, M) — E*. Moreover,
a net {Ta} in CB(A,M) converges to T in the a(CB(A, M), P)-topology
if and only if for each a in A ® B(%?) (where X is a separable infinite
dimensional Hilbert space) the net {Ta®idB{H)(a)} converges to T®idB^)(a)
in the CT-weak topology of M®B(^) (cf. [EKR]). Now suppose that A is
contained in Af, and that {Ta} is a net in CB(A) that converges to T £ CB(A)
in the stable point-norm topology. Then it follows from Lemma 1.6 (viewing
{Ta} as a net CB(A, Af)) that {Ta} converges to T in the <r(CP(^, Af), E)-
topology, and hence

(Ta ® idB{jr)(a) ,cp)^(T® idB(*)(d), <P)
U \/a £ A ® B(3T), Vçz G (Af®P(X))t.

Moreover, an argument similar to that in the proof of Proposition 2.3 in [Kr
3] shows that we can replace B(ßf) by any von Neumann algebra N. We will
make use of these facts in §2.
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Theorem 1.9. For any locally compact group G, the following three conditions
are equivalent:

(a) G has the AP.
(b) There is a net {ua} in AC(G) suchthat {MUa} converges in the stable

point-weak * topology to idvN(G) •
(c) There is a net {ua} in AC(G) suchthat {MUa} converges in the stable

point-norm topology to idCr*(C) •

If G is discrete, then (a)-(c) are equivalent to:

(d) For any Hilbert space ^, there is a net {ua} in AC(G) suchthat MUa®
idB(jyX(a) —► a in norm for every a in C*(G) ® B(^).

Proof, (a) => (b) By Remark 1.2, there is a net {va} in AC(G) suchthat va -> 1
in the o(MqA(G) , ß(G))-topology. Let / G PAC(G), and let zza = f*va . Then
since / and va have compact support, ua £ AC(G). Let %? be a separable
infinite dimensional Hilbert space and let a £ VN(G)®P(^). Then it follows
from Proposition 1.3(a) and the fact that /* 1 = 1 that

(MUa®idB{T)(a), cp)

= o>a,v,f{va) - ay ,,,(1) = (a, cp)   "icp £ (VN(G)®P(¿F))*,

and so AfUa -> idvN(G) in the stable point-weak * topology.
(a) => (c) An argument similar to that in the proof of (a) => (b) shows that

idC;(G) is m the closure of {Afu : u £ AC(G)} in the stable point-weak topology.
But since {Afu: u £ AC(G)} is a linear subspace of CB(A), the stable point-
weak and stable point-norm closures of {Mu: u £ AC(G)} coincide (cf. [EKR]).
Hence condition (c) holds.

(a) => (d) Since {Af„ ® id^^: u £ AC(G)} is a linear subspace of
B(C*(G)®B(^)), it suffices to show that idç.-(G) ® idß(^) is in the point-weak
closure of {Af„ <8>idß(^) : u £ AC(G)}. But this follows easily from Proposition
1.4(b), and so condition (d) holds.

(b) => (a) Let {ua} be a net in AC(G) such that MUa -» idvN(G) in the stable
point-weak* topology. Then o)a,9(ua) —> coa,(/,(l) for all a £ C*(G) ® B(ßf)
and cp £ (VN(G)®B(^))t, and hence ua ^ 1 in the o(M0A(G), Q(G))-
topology by Proposition 1.5. Thus G has the AP.

(c) => (a) and (d) => (a) The proofs of these implications are similar to the
proof of (b) => (a) and are left to the reader.   D

Remark 1.10. If AC(G) is replaced by A(G) in conditions (b), (c), and (d) of
Theorem 1.9, we obtain three new conditions, which we denote by (b'), (d),
and (d'). It follows from Remark 1.2 that (b'), (c'), and (d') are equivalent
to (b), (c), and (d) respectively, and so (b'), (c') are equivalent to (a) and (d')
is equivalent to (a) if G is discrete.

As noted in the introduction, a locally compact group G is amenable if and
only if A(G) has an approximate identity that is bounded in the v4(G)-norm,
and G is weakly amenable if and only if A(G) has an approximate identity
that is bounded in the Afo^4(G)-norm. Our next result shows that the AP can
be characterized by a "stable" approximate identity condition.
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Theorem 1.11. Let G be a locally compact group, and put K — SU(2). The
following three conditions are equivalent:

(a) G has the AP.
(b) For every locally compact group 77, there is a net {ua} in AC(G) such

that
(9) \\(ua®l)v-v\\A{GxH)^0   W£A(GxH).

(c) There is a net {ua} in A(G) such that

(10) \\(ua®l)v-v\\A{GxK)^0   W£A(GxK).

Proof, (a) =>■ (b) Let 77 be a locally compact group. As shown in the proof of
Theorem 1.6 in [DH], if « G M0A(G), then

(11) Mu®idvN(tf) = MU(SX,
where we identify VN(G) ® VN(77) with VN(G x 77) in the usual way. Hence
it follows from Theorem 1.9 and Proposition 1.7 that there is a net {va} in
AC(G) such that
(12) (a, (va®l)v) = (MVa9i(a), v) -» (a,v)
[    ' VaGVN(Gx77),VuG^(Gx77).
Thus id^cxtf) is in the point-weak closure of the subspace {mu9X : u £ AC(G)}
of B(A(G x 77)). Hence idA^xH) is the point-norm closure of {mu®x : u £
AC(G)} (cf. [DS, Corollary VI. 1.5]), and so there is a net {ua} in AC(G) satis-
fying (9).

(b) => (c) This implication is trivial.
(c) =» (a) Let {ua} be a net in A(G) satisfying (10). Then it follows from

(11) and (12) (replacing 77 by AT and va by ua) that
(13) MUa ® idvN(ic)(û) -» a rj-weakly   Vîz G VN(G)® VN(Ä").
It is well known that VN(K) =• 0~ , Af„(C). Moreover, if W is a separable
Hilbert space with basis ii ,&»••• > and if pn denotes the projection onto
fêi, &,..., 6i], then the map

oo oo

<D: P(X) - ©A/„(C): a - ($e„ae„
n=l n=\

is a completely isometric a -weakly continuous map. Thus we can view B(%?)
as a subspace of VN(AT), and so it follows from (13) that the net {MUa} con-
verges in the stable point-weak * topology to idvN(G) • Hence G has the AP by
Theorem 1.9.   D

If G is weakly amenable, then G has the AP. This fact is implied by the
next result, which shows the relationship of weak amenability to the definition
of the AP.
Theorem 1.12. Let G be a locally compact group. The following conditions are
equivalent:

(a) G is weakly amenable, and A(G) < L.
(b) The function 1 is in the o(MqA(G) , Q(G))-closure of {u £ A(G): \\u\\Mo

<L}.
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Proof, (a) =*• (b) Put S = {u £ A(G): \\u\\Mo < L}. Since A(G) < L, there is
a net {wQ} in 5 such that

(14) ll«a«-«b(G)-0   W£A(G).
Hence

(MUa(a) ,v) = (a, uav) -+(a,v)   Va g VN(G), Vïj g A(G),

and so AfUo —> idvN(G) in the point-weak * topology. Since {AfUQ} is a bounded
net in CP(T(VN(G)), MUa —> idvN(G) in the stable point-weak* topology (cf.
[Kr 3, Proposition 2.9]), and so ua —► 1 in the o(MqA(G) , ß(G))-topology
by the proof of the implication (b) => (a) of Theorem 1.9. Thus 1 is in the
o(MqA(G) , Q(G))-closure of S.

(b) =>■ (a) By the proof of the implication (a) =>■ (b) of Theorem 1.9, there is
a net {va} in S suchthat Af„a —► idvN(G) in the stable point-weak * topology,
and hence in the point-weak * topology. Since S is convex, an argument similar
to that in the proof of the implication (a) => (b) of Theorem 1.11 shows that
there is a net {ua} in S satisfying (14). Hence G is weakly amenable, with
A(G) < L.   U

For a locally compact group G, let Pi(G) denote the set of continuous
positive-definite functions u on G such that u(e) = 1. Note that if u £ PX(G),
then Afu is completely positive (cf. [DH, Proposition 4.2]) and ||w|U(g) =
IMIa/o = u(e) = 1. If G is amenable, then A(G) has an approximate identity
{ua} such that each ua is in Pi(G)n.4(G) (cf. [Lau, Lemma 7.2]). Moreover,
if A(G) has an approximate identity {ua} such that each ua is in (.4(G))i
(the unit ball of A(G) with respect to the A(G)-norm), then G is amenable
(cf. [Le]). Using these facts (and the fact that f*u£ (A(G))X if / G PAC(G)
and u £ PX(G) n A(G)) the proof of Theorem 1.12 can be easily modified to
give a proof of the next result. The details are left to the reader.

Theorem 1.13. Let G be a locally compact group. The following conditions are
equivalent:

(a) G is amenable.
(b) The function 1 is in the o(MqA(G) , Q(G))-closure of Px(G)nA(G) in

M0A(G).

We next discuss the stability properties of the AP.

Proposition 1.14. If G is a locally compact group with the AP, then every closed
subgroup of G also has the AP.
Proof. Let 77 be a closed subgroup of G, and put K = SU(2). Then since
77 x K is a closed subgroup of G x K, the restriction mapping u —> u\hxk is a
contraction from A(GxK) onto A(H x K) (see the proof of Proposition 1.12
in [DH]). Since G has the AP, it follows easily from this and Theorem 1.11
that 77 has the AP.   □

Theorem 1.15. Let G be a locally compact group, and suppose that 77 is a closed
normal subgroup of G. If H and G/H have the AP, then G has the AP.

For the proof of Theorem 1.15 we need a lemma.
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Lemma 1.16. Let G be a locally compact group, and suppose that 77 is a closed
subgroup of G such that AG(h) = AH(h) for all h G 77. For each f £ CC(G),
let Of denote the map defined on MqA(H) by

®f(u) = f*udh*f   Vu£M0A(H),
where dh is a fixed left Haar measure on 77. Then Of is a bounded linear map
from M0A(H)  into M0A(G)  that is o(M0A(H), Q(H))-o(M0A(G), (2(G))
continuous.
Proof. For any / g CC(G) the function defined on G by x -* JHf(xh)dh is
constant on each left coset of 77, and hence we can define a function Tuf on
G/77 by

(15) THf(x)= [ f(xh)dh,       x G G/77.
JE

For any f £ CC(G), THf £ CC(G/H) (cf. [Re]). In particular, THf is always
bounded.

Since the modular functions of G and 77 agree on 77, we can choose a
measure p on the quotient space G/77 that is invariant under the natural
action of G on G/77 and satisfies the relation
(16)

/    THf(x) dp(x) = I     ( f(xh) dh dp(x) = [ f(x) dx   V/ G CC(G).
JG/H JG/H JH JG

(See, e.g., Chapter 8 of [Re].)
Let / G CC(G), and let u £ M0A(H). Then

(17) (udh*f)(y)= ( u(h)f(y~xh)dh   Vy£G.
JH

It follows from (17) and the lemma on p. 58 of [Re] (using the fact that u is
bounded) that the function udh* f is continuous on G, and hence for each
x in G the function gx defined on G by

gx(y) = f(y)(udh*f)(y-lx),       y£G,
is in CC(G). Let Uf = Oy(w). Then, using (16) and (17), we have that

Uf(x)= I      \ gx(yh)dhdp(y)
JG/H JH

(18) = /     / f(yh) I u(k)f(x~xyhk)dkdhdp(y)
JG/H JH JH

= [     [  I f(yh)f(x-xyk)u(h-xk)dkdhdp(y)
JG/H JH JH

for all x eG.
To show that Uf g MqA(G) , it suffices to show that there is a Hilbert space

3? and bounded continuous maps P, Q: G -► ß? such that
(19) uf(y-lx) = (P(x),Q(y))   Vx,vgG.

Since u £ MqA(H) , there is a Hilbert space X and bounded continuous
maps C, "'■ H -> ÏÏ suchthat u(k~xh) = (Ç(h), n(k)) for all h and k in 77,
and such that

sup{||£(/z)||: h £ 77} = sup{||z/(/z)||: h G 77} = (\\u\\MoAIH))l>2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



680 UFFE HAAGERUP AND JON KRAUS

Since / G CC(G), we can define functions p, q: H —» 3? by

p(x) = f f(xh)C(h)dh,    q(x) = f 7(xT)n(h)dh,        h £ G.
JH JH

Put L = (\\u\\MoA(H))l/2 • Then for any x G G and Ç £ 3? we have that

(20) \(p(x) ,Q\<j \JW)\\m),t)\dh<(LJH \f(xh)\dh) um,
and hence

(21) IIP(*)II<£ / \f(xh)\dh   Vx£G.
JH

Similarly,
(22)

\(p(x) -p(y), Ç)\ < (lJ \f(xh)-f(yh)\dh) \\(\\   Vx, y £ G, Vi G Jf,

from which it follows easily (using the lemma on p. 58 of [Re]) that p is
continuous. Note that the estimates (20), (21) and (22) remain valid if we
replace p by q and Ç by n. Hence q is also continuous. Moreover, for any
x and y in G we have that

Uf(y-Xx)= [     í [ f(zh)f(x-xyzk)u(h~xk)dkdhdp(z)
JG/H JH JH

= [     [ [ f(y-xzh)f(x-xzk)u(h-xk)dkdhdp(z)
,~«, JG/hJhJh

= I      I  I f(y-lzh)f(x-xzk)(C(k), n(h))dkdhdp(z)
JG/H JH JH

= [    (p(x-xz),q(y-xz))dp(z),
JG/H

where the G-invariance of p is used in the second equality.
If p and q were constant on cosets, we could complete the proof by defining

functions P and Q from G to L2(G/H,^) by P(x)(z) = p(x~xz) and
Q(x)(z) = q(y~xz), since then P and Q satisfy equation (19). However, p
and q need not be constant on cosets, so we need to make use of cross sections.

It is shown in [Ke] that there is a map p: G/H —> G which is a locally
bounded Baire cross section for the quotient map tih: G -* G/H, i.e., p~l(B)
is a Baire set if B is a Baire set, p(C) is relatively compact if C is compact,
and %h(p(x)) = x for all x £ G/H. Let p be such a cross section, and define
a Baire measure co on G by co(B) = p(p~x(B)), B a Baire set. Then if / is
any nonnegative continuous function on G, fop is a Baire map on G/77, and

(24) [ f(x)dco(x)= [    f(p(x))dp(x).
JG JG/H

In particular, for any y G G,

(25) / \\p(y-xx)\\2dco(x) = f     \\p(y-xp(x))\\2dp(x).
JG JG/H

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUP C*-ALGEBRAS AND GROUP VON NEUMANN ALGEBRAS 681

It follows from (21) and (25) that

/ \\p(y-xx)\\2dco(x) < f     (l j \f(y-xp(x)h)\dh]   dp(x)
JG JG/H \    JH /

= /     (l f \f(y-xxh)\dh]   dp(x)
JG/H  \    JH J

2
= /     (l I \f(xh)\dh)   dp(x),

JG/H \    JH /

where we used the fact that nH(p(x)) = x in the first equality, and the G-
invariance of p in the last equality. Put

K(f)= I    (7 \f(xh)\dh)  dp(x)
JG/H \JH J

and MT = L2(G,Jf, co). Then the function P:G^Mf defined by
[P(x)](y)=p(x-ly),    x,y£G,

satisfies

(26) \\P(x)\\2 < K(f)L2   Vx£G.
Hence P is bounded. Moreover, for any y and z in G,

IIPCv) - P(z)||2 < /    (l f \f(y~lxh) - f(z~xxh)\ dh]   dp(x)
JG/H \    JH /

<2L2||rK|/|||oo I     Í \f(y-xxh)-f(z-xxh)\dhdp(x)
JG/H JH

= 2L2||r„|/| IU / \f(y-lx) - f(z~xx)\ dx,
JG

from which it follows easily that P is continuous.
Similar calculations show that the function Q: G —» Mf defined by

[Q(x)](y) = q(x~xy),        x,y£G,

is bounded and continuous, and it follows easily from (23) and (24) that

Uf(y-xx) = (P(x),Q(y))   Vx,vgG.
Hence Of maps MqA(H) into MqA(G) , and Of is clearly linear. Moreover,
since the estimate (26) is also valid when P is replaced by Q, \\Of(u)\\M0A{G) <
K(f)\\u\\M0A(H) > and thus Of is bounded.

To show that Of is o(M0A(H), Q(H))-o(M0A(G), (2(G)) continuous, it
suffices to show that (Of)* maps Q(G) into Q(77), and since (Of)* is con-
tinuous, the proof will be complete if we show that (Of)*(g) £ Q(H) for any
g £ LX(G). So let g £ LX(G). Then we can define a function gf on 77 by

gf(h)= [ f(x)(g*f)(xh)dx,       h£H
JG

It is straightforward to check that gf £ LX(H), and that

", (*/)*(*)> = / U(h)gf(h)dh = (U, gf)
JH
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for all u £ M0A(H). Hence (Of)*(g) = gf. Since LX(H) c Q(H), this
completes the proof.   D

Proof of Theorem 1.15. By Remark 1.2, there is a net {ua} in AC(H) such
that ua -* lH in the o(M0A(H), (2(77))-topology. Then Of(ua) -* Of(lH)
in the <7(Affj.4(G), g(G))-topology for any / g Cc(G) . Since each ua is in
LX(H) and / G L2(G), uadh* f £ L2(G) for all a, and hence Of(ua) £
L2(G) * L2(G) = A(G) for all a. (In fact, <P/(wQ) G AC(G) for all a, since
the functions ua , f and / all have compact support.) Hence to complete the
proof, it suffices to show that Ig is in the o(M0A(G), Q(G))-closed linear span
of {Of(lH):f£Cc(G)}.

Let / G CC(G), and put g = THf. Then it follows from (18) that

Of(lH)(x) = (g*~g)(x)   VxgG.

Since 77 is a closed normal subgroup of G, the function TH maps CC(G) onto
CC(G/H) (cf. [Re]). Hence

(27) {Of(lH): f G Q(G)} = {(g * g) o nH: g g Cc(G/H)}.
Moreover, the map TH extends to a map (still denoted by 7#) from LX(G)
onto LX(G/H) such that (15) is valid a.e. for each / G LX(G), and such that
(16) is valid for all /el1.

Define a map ¥ on M0A(G/H) by *P(u) = uonH, u£ M0A(G/H). Then
\P is an isometry from M0A(G/H) onto the subspace of Afnj4(G) consisting
of functions that are constant on the left cosets of 77. For any f £ LX(G) and
for any u G MqA(G/H) we have

(u, THf) = /     u(x) / f(xh)dhdp(x)
JG/H JH

(28) =/      [ [V(u)](xh)f(xh)dhdp(x)
JG/H JH

= [\y(u)](x)f(x)dx = (V(u),f).
JG

It follows easily from (28) that ¥ is o(M0A(G/H), Q(G/H))-o(M0A(G), (2(G))
continuous.

Let E denote the linear span of {g*g: g £ CC(G/H)} . Then E is dense in
A(G/H) in the P(G/77)-norm, and so it follows from Remark 1.2 that lG/H
is in the er(Afo4(G), ß(G!))-closure of E. Hence if follows from (27) that Ig
is in the o(MqA(G) , ß(G))-closed linear span of {0/(1//): / G CC(G)}, and
so G has the AP.   D

Corollary 1.17. If 77 aziiz" K are locally compact groups with the AP, and if
p: K —> AutT7 is a continuous homomorphism, then the semidirect product
H xpK has the AP.

If G is amenable, and 77 is a closed normal subgroup of G, then G//7
is amenable. It is an open question whether G/77 has the AP if G has the
AP. However, since free groups are weakly amenable (cf. [DH]), and since any
discrete group is the quotient of a free group, a positive answer to this question
would imply that all discrete groups have the AP, which seems unlikely.
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We conclude this section with a discussion of a weaker version of the AP. It
is shown in [DH] that if we let X denote the completion of LX(G) with respect
to the norm

WfWx = sup

then MA(G) = X*.

Definition 1.18. Let G be a locally compact group. Then G is said to have the
AP' if the function 1 is in the o(MA(G), X)-closure of A(G) in Af^(G).

If a £ VN(G) and cp g (VN(G)),, we can define a linear functional coa>ip
on MA(G) by setting cûa,v(u) = coa<l/,(Mu), and for any / G PAC(G), we can
define a linear functional coaf j on MA(G) by coa^j(u) = coa<<p(f * u).
It follows easily from the proof of Proposition 1.3 that the linear functionals
coa ;(¡) j are all in X, that (with the obvious definitions) coa 9 f is in X when-
ever 'a £ C;(G), cp £ (C;(G))*, and / G PAC(G), and that aa,f is in X
whenever a £ C*r(G) and cp g (VN(G))„.

Proposition 1.19. Let G be a locally compact group, and consider the following
conditions:

(a) G has the AP'.
(b) There is a net {ua} in AC(G) such that {MUa} converges in the point-

weak * topology to idvN(G) •
(c) There is a net {ua} in AC(G) suchthat {Af„Q} converges in the point-

norm topology to idc;(G) •
(d) There is a net {ua} in AC(G) suchthat \\uav-v\\A(GX -* 0 ~iv £ A(G).
(e) Every a in VN(G) satisfies condition (77) ofEymard.

Then (a) implies (b), (c) and (d), and (d) implies (e).
Proof. The proofs that (a) implies (b), (c) and (d) are similar to the proofs of
the corresponding implications in Theorems 1.9 and 1.11, and are left to the
reader. The proof that (d) implies (e) is the same as the proof of (4.16) in
[Ey].   D

Clearly the AP implies the AP'. For connected semisimple Lie groups with
finite center, the AP and the AP' are equivalent. This follows by the method
of proof used in [CH, Proposition 1.6] to show that A(G) = A'(G) for these
groups. We do not know whether the AP and the AP' are equivalent in general.

2. The discrete case
If Af is a von Neumann algebra, we let Fa(M) denote the set of normal

finite rank maps from Af to Af, and if A is a C*-algebra, we let F(A) denote
the set of bounded finite rank maps from A to A. Following [ER] and [EKR]
we say that a von Neumann algebra Af has the weak * operator approximation
property (weak * OAP) if the identity map from Af to Af is in the stable
point-weak* closure of Fa(M), and that a C*-algebra A has the operator
approximation property (OAP) if the identity map from A to A is in the
stable point-norm closure of F (A). We say that A has the strong operator
approximation property if for any C*-algebra P there is a net {Ta} in F (A)
such that Ta ® idB(a) —► a in norm for every a in A® B. Note that since

/ f(x)u(x) dx :u£ MA(G), \\u\\M < 1} ,
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{T®idB: T £ F(A)} is always a subspace of B(A®B), A has the strong if for
any C*-algebra B there is a net {Ta} in F (A) suchthat Ta®idB -» id^^^ in
the point-weak topology of B(A ® B).

If Af and N are von Neumann algebras, and if cp is in the predual Af» of
Af, then the right slice map Ry is the unique normal linear map from M®N
to N such that R9(a ® b) - cp(a)b (a £ M, b £ N). Left slice maps are
similarly defined, if V c M and W c N are a-weakly closed subspaces, the
Fubini product F(V, W) of V and W is the set of all x £ M®N all of whose
right slices R<p(x) are in W and all of whose left slices Lv(x) (\p £ A7») are
in V . The Fubini product is a o -weakly closed subspace of M®N, and so we
always have that F(V, W) contains the a -weakly closed linear span V®W of
the elementary tensors v ®w (v £ V, w £ W). However, as shown in [Kr 3],
F(V, W) can be strictly larger than V®W. (This can be viewed as saying that
there are elements in F(V, W) that cannot be "synthesized" from their slices.)
If R is a von Neumann algebra, a rj-weakly closed subspace V of B(M?) is
said to have Property Sa for R if F(V, W) = V®W for every rr-weakly
closed subspace W of R. A rr-weakly closed subspace V of B(M?) is said to
have Property Sa if it has Property Sa for R for every von Neumann algebra
R. It is shown in [Kr 3] that the weak * OAP is equivalent to Property Sa .

Slice maps can also be defined for C*-algebras by making the obvious modi-
fications of the definitions (cf. [To]). For example, if A and B are C*-algebras
and if cp £ A*, the right slice map Rf is the unique bounded map from A ® B
to B such that Ry(a ® b) = cp(a)b (a £ A, b £ B). If A and B are C*-
algebras, and if W is a closed subspace of B, the triple (A, B, W) is said to
have the slice map property if {x G A ® B: Rf(x) £ W Vcp £ A*} = A®W,
and A is said to have the slice map property for B if (A, B, W) has the slice
map property for every closed subspace W of B. A C* -algebra A is said to
have the general slice map property if it has the slice map property for every
C*-algebra B . It is shown in [Kr 3] that A has the OAP if and only if A has
the slice map property for K(Mf) (Mf a separable infinite dimensional Hilbert
space), and that A has the strong OAP if and only if A has the general slice
map property.

Theorem 2.1. Let Y be a discrete group. The following conditions are equivalent:
(a) T has the AP.
(b) VN(Y) has Property Sa   (VN(T) has the weak*OAP).
(c) C;(Y) has Property S for subspaces of K(MT)  (Q(Y) has the OAP).
(d) C*(Y) has Property S for subspaces (C*(Y) has the strong OAP).

Moreover, if any (and hence all) of conditions (a)-(d) are satisfied, then A(Y)
has the Banach space approximation property.
Proof. Since Y is a discrete group, if we let Sx denote the characteristic func-
tion of {x}   (x £ Y), then {Sx : x £ Y} is a basis for l2(Y), and

tr(a) = (aôe, Se),       ae YN(Y),

is a faithful normal trace on VN(T). Moreover if zz G AC(Y) (so u has fi-
nite support), then since C*(Y) is the closed linear span of {l(x): u(x) £ Y} ,
both Af„ and Mu are finite rank operators (with range the linear span of
{l(x): u(x) t¿ 0}). Hence it follows immediately from Theorem 1.9 that (a)
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implies (b), (c), and (d). Moreover, if condition (b) holds, it follows from The-
orem 3.1 in [Kr 3] that A(Y) = VN(T)» has the Banach space approximation
property. Since (d) implies (c) is trivial, it suffices to prove that (b) => (a) and
that (c) =¡> (a).

(b) => (a) Let Af = VN(T). Then there exist a normal *-isomorphism n
from Af onto a von Neumann subalgebra N of M®M such that n(l(x)) -
l(x) ® l(x) for all x in Y (cf. [St, 18.7]). Let e be the normal conditional
expectation from M®M onto N that leaves tr®tr invariant, and put p =
n~x o e . For T £ Fa(M), let uT be the function defined on Y by

(29) uT(x) = tr(l(x)*T(l(x))),        x£Y.

It is shown in [Haa 7] that ut is in l2(Y) (and so is in A(Y)), and that

(30) MUT = po(T®idM)on.

Let {Ta} be a net in Fa(M) that converges in the stable point-weak * topology
to id¿f, and let ua = uja. Then since p and n are normal '-isomorphisms
such that pon- id\f, it follows easily from (30) and Proposition 1.7 that
{MUa} also converges to idjv/ in the stable point-weak* topology. Hence G
has the AP by Remark 1.10.

(c) =>• (a) Let A = Q(Y). It is shown in [Haa 7] that for any T £ F (A),
(29) again defines a function in l2(Y), and that (30) remains valid if we replace
Af„r by AfMr . Since A has the OAP, there is a net {Ta} in F (A) such that
Ta -> id^ in the stable point-norm topology. Hence by Remark 1.8, for any
von Neumann algebra N we have that

(31) (Ta®idN(a),cp)^(a,cp)   V<p£(M®N)t.

Setting ua = ura, it follows from the modified (30) and from (31) (applied
to N = M®B(Mf)) that coa,9(ua) -* coa,v(l) Va G A ® K(M*) and \/tp £
(M®B(M?)\ . Hence, by Proposition 1.5, 'ua -> 1 in the a(M0A(Y), Q(Y))-
topology, and so Y has the AP.   D

A C*-algebra A is said to be exact (cf. [Ki 2]) if for any exact sequence of
C*-algebras 0 —► C —> D —> E —»0, the sequence of C*-algebras 0 —» A ® C —►
A®D ^> A®E -+ 0 is also exact. It is shown in [Ki 2] that a C*-algebra is exact
if and only if (A, B(Mf), K(M?)) has the slice map property. Hence the general
slice map property implies exactness, and so it follows from Theorem 2.1 that
for C*-algebras A of the form A = C*(Y), the OAP implies exactness. On the
other hand, Kirchberg has shown that if A = cone(C*(SL(2, Z))), then A has
an extension B by K(M?) which is not exact (cf. [Ki 4]). Since SL(2, Z) is
weakly amenable (cf. [DH]), C*(SL(2, Z)) has the general slice map property,
and hence so does A. Thus A has the OAP. Since the OAP is preserved by
extensions [Ki 5], B is an example of a C*-algebra which has the OAP but is
not exact. In particular, B does not have the strong OAP.

A class of C* -algebras for which the OAP implies the general slice map
property (and hence exactness) is the class of locally reflexive C* -algebras, in-
troduced in [EH]. For completeness, we give a proof of this result, which was
announced in [ER]. (See also [Ki 5] for a different proof of Theorem 2.2.)

Theorem 2.2. Let A be a locally reflexive C*-algebra with the OAP. Then A
has the strong OAP, and so has the general slice map property.
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Proof. Since A has the OAP, there is a net {Ta} in F (A) such that Ta —> id^
in the stable point-norm topology. Let B be a C*-algebra. It suffices to show
that
(32) (Ta®idB(a),tp)^(a,cp)   Va £ A®B,V<p £ (A®B)*.
Let cp £ (A ® B)*. Since A is locally reflexive, cp has a unique extension to a
continuous linear functional cp on A**®B (where we view A as a subalgebra
of A** in the usual way) which is cr-weakly continuous in the first variable (cf.
[EH]). Let Af = A**, and let E = A®Mt. For each c £ A ® B, let cpc denote
the linear functional on CB(A, M) defined by

(T,0c) = (T®idB(c),0)   VT£CB(A,M).
If 0C £ E, then if follows from Remark 1.8 that

(Ta ® idB(c), cp) = (Ta ® idB(c), 0) = (Ta, cpc) -* (iàA , 9c) = (c,Ç>),

where we view id^ as an element of CB(A, M). Hence it suffices to show that
0c £ E for all c £ A®B. By the Krein-Smulian theorem, to show that 0C £ E,
it is enough to show that 0C is a(CB(A, M), E) continuous on the closed
unit ball of CB(A, M). So let {SR} be a net in (CB(A, M))x that converges
in the o(CB(A, M), £')-topology to an element S of (CB(A, M))x. Then it
follows from Remark 1.8 that Sß(a) -» S (a) cr-weakly for all a in A. Hence,
since 0 is cr-weakly continuous in the first variable,

((Sß ® idB)(a®b),0) = (Sß(a) ®b,0)-> (S(a) ®b,0)   Va g A, \/b g P.
Since the net {Sß ® id#} is bounded, it follows easily from this and from the
definition of 0C that (Sß, 0C) —► (S, 0C) for all c £ A® B . This completes
the proof.   D

Remark 2.3. It is an open problem whether exactness implies the OAP. Since
exactness implies locally reflexivity (cf. [Ki 3]), it follows from Theorem 2.2
that this problem is equivalent to the problem of whether exactness implies the
general slice map property. It is a result due to Connes that if Y is a discrete
closed subgroup of a connected Lie group (in particular, if Y — SL(3, Z)), then
C*(Y) is a subalgebra of a nuclear C*-algebra, and so is exact (cf. [Ki 4]). (It
is an open problem whether C*(Y) is exact for all discrete groups Y.) Hence
if 5L(3, Z) fails to have the AP, then by Theorem 2.1 Q(SL(3, Z)) would
provide an example of an exact C*-algebra which does not have the OAP.

Now suppose that G is a second countable locally compact group, and that
T is a lattice in G, i.e., a closed discrete subgroup of G for which G/Y has
a bounded G-invariant measure. Then the quotient map p: G —► G /Y has a
Borel cross section. Let Q be the range of a Borel cross section, and let pr be
the counting measure on Y. Define a function O on M0A(Y) by

0(u) - lci*Upr*lçi, U£MqA(Y),
where In denotes the characteristic function of Q. It is shown in [Haa 7]
that O is a contraction from MqA(T) into MqA(G) , and that O maps A(Y)
into A(G). Moreover, O(lr-) = lG, and an argument similar to that in the last
paragraph of the proof of Lemma 1.16 shows that <I> is o(MqA(Y) , Q(Y))-
o(MqA(G), Q(G)) continuous. Hence if Y has the AP, then G has the AP.
The converse is also true, by Proposition 1.14. Combining the results, we obtain:
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Theorem 2.4. Suppose G is a second countable locally compact group, and that
Y is a lattice in G. Then G has the AP if and only if Y has the AP.

Remark 2.5. As noted in the introduction, we do not know of any examples of
locally compact groups without the AP. It is shown in [Haa 7] that if G is a
noncompact simple Lie group with finite center and real rank > 2, then G is
not weakly amenable. The proof of this result is based on the following results:
(1) every such Lie group has a closed subgroup with finite center and locally
isomorphic to either SL(3, R) or Sp(2, R), (2) closed subgroups of weakly
amenable groups are weakly amenable, (3) if G and 77 are locally isomorphic
simple Lie groups with finite center then G is weakly amenable if and only if 77
is weakly amenable, and (4) SL(3, R) and Sp(2, R) are not weakly amenable.
Closed subgroups of groups with the AP have the AP (Proposition 1.14) and
it is easily verified that (3) remains valid if weak amenability is replaced by
the AP. Hence if both SL(3, R) and Sp(2, R) fail to have the AP, then no
noncompact simple Lie group with finite center and real rank > 2 has the AP.
Also note that it follows from Theorem 2.4 that 57(3, R) fails to have the AP
if and only if SL(3, Z) fails to have the AP.

3. Crossed products and the approximation property
Let Af be a von Neumann algebra, and let G be a locally compact group. If

there is a homomorphism a from G to the group Aut(Af) of '-automorphisms
of Af that is continuous with respect to the point-weak * topology on Aut(Af ),
the triple (Af, G, a) is called a W*-dynamical system. If (M, G,a) is a
^'-dynamical system, we denote the associated crossed product von Neumann
algebra by M ®aG.

The main results of this section are the following pair of theorems.

Theorem 3.1. Let (Af, G, a) be a W*-dynamical system, and let N = M®aG.
(a) If N has Property Sa for a von Neumann algebra R, then M has

Property Sa for R.
(b) If N has the weak* CBAP, then so does M, and A(M) < A(N).

Theorem 3.2. Let (Af, G, a) be a W*-dynamical system, and let N — M®aG.
(a) If G has the AP and M has Property Sa for a von Neumann algebra

R, then N has Property S0 for R.
(b) If G is weakly amenable and M has the weak * CBAP, then id# is

the limit in the point-weak* topology of a bounded net in CBa(N) each
of whose elements is the limit in the point-weak* topology of a bounded
net in Fa(N).

(c) If G is amenable and M has the weak * CBAP, then N has the weak *
CBAP and A(N) < A(M).

Theorems 3.1 and 3.2 are natural generalizations of the following two known
results:

( 1) If N = M ®aG is semidiscrete, then so is Af.
(2) If Af is semidiscrete and G is amenable, then N — M ®a G is semidis-

crete.
Statement (2) follows from a result of Connes [Co, Proposition 6.8] combined
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with Wassermann's result in [Wa] that semidiscreteness is equivalent to injectiv-
ity for general von Neumann algebras. In the same paper Wassermann proved
statement (1) in the case G = R, but his proof (cf. [Wa, p. 46]) works without
any changes for an arbitrary locally compact group G. Note that statements
(1) and (2) can also be proved by making trivial modifications in the proofs of
Theorem 3.1(b) and Theorem 3.2(c) given below.

The proofs of Theorems 3.1 and 3.2 make use of operator valued weights (cf.
[Haa 4 and Haa 5]). If Af is a von Neumann algebra, the extended positive
part M+ of M is the set of homogeneous, additive and lower semicontinuous
functions on Af + with values in [0, oo]. A/+ can be regarded as a subset of
M+ in the obvious way. Suppose N is a von Neumann subalgebra of M.
An operator valued weight T from Af to N is a map of M+ into N+ that
satisfies

(i)   T(Xx) = XT(x), X>0, X£M+,
(ii)   T(x + y) = T(x) + T(y), x,y£M+,

(iii)   T(a*xa) - a* T(x)a, x £ M+ , a £ N.
Moreover, T is said to be normal if

(iv)   x¡ / x =>• T(x¡) / T(x), xt,x G Af+ .
Put

zzt = {xgA7: T(x*x)£ N+},
mT = n*TnT = span{x*y: x, y £ nT}.

It is easily verified that T has a unique linear extension 7s: m^ —► /V which
satisfies

(v)   T(axb) = aT(x)b,x £mT,a,b £N.
Note that if T( 1 ) = 1, then t is a conditional expectation from Af to N.

An operator valued weight from Af to iV is said to be faithful if T(x*x) =
0 =*• x = 0, and is said to be semifinite if nj is cr-weakly dense in Af. The set
of faithful, normal, semifinite weights from Af to N is denoted by P(Af, N).

Lemma 3.3. Let M and N be von Neumann algebras with N c M, let T £
P(M, N), and let a £ zzr. Then there is a unique normal completely positive
map S from M to N satisfying

S(x) = T(a*xa),        x £ M+.

Moreover,

(33) S(bxc) = bS(x)c,       b £ Nn{a*}', c £ Nn{a}', x £ M,
and

\\S\\cb = \\T(a*a)\\.
Proof. Since a £ nj, a* M a c mr • Hence we can define S on Af by
S(x) = f(a*xa), x g Af. Then S is normal and positive, (33) follows
from (v), and the uniqueness of S is clear. Let Z be a separable infi-
nite dimensional Hilbert space.  Then there is unique operator valued weight
T®idB{jr) £ P(M®B(M"), N®B(M")) satisfying

(34) (<px ® <p2) o (T®idB(ßr)) = (<f>i oT)® (<p2 o idBtjr))
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for all pairs of faithful, normal, semifinite weights <j>x and (¡>2 on N and B(M>)
respectively (cf. [Haa 5, Theorem 5.5]). It follows easily from (34) that

T ® idÄ(;r)((a ® I)*(a ® 1)) = T(a*a) ® 1 G N®B(Mf),

and that if S is the unique normal positive map from M®B(Mf) to N®B(M?)
satisfying

S(x) = T®idB{jr)((a®l)*x(a®l)),        x£ (M®B(M'))+,
then

(35) S(x®y) = S(x)®y,       x£M,y£B(Mi).

Since S is positive, it follows from (35) that S is completely positive. Since
S is completely positive, \\S\\cb = \\S(l)\\ = ||7(a*a)||.   D

If Af and R are von Neumann algebras, if E is a subset of CBa(M),
and if x £ M®R, then we denote the cr-weakly closed convex hull of {T ®
idj?(x) : T £ E} by C(x ; E; R), and we denote the cr-weakly closed linear span
of {T ® idR(x) :T £ E} by S(x;E;R). Note that if E is convex (resp., if
E is a subspace), then C(x ; E; R) (resp., S(x ; E ; R)) is the a-weak closure
of {T ® idR(x) : T £ E} for all x in M®R. The proof of the next lemma is
similar to the proof of Proposition 2.1 in [Kr 3], and so is left to the reader.

Lemma 3.4. Let M be a von Neumann algebra, let ^ be a separable infinite
dimensional Hilbert space, and let E be a convex subset of CBa(M). Suppose
that x £ C(x ; E ; B(Jf)) for all x in M®BL%). Then there is a net {T¡} in
E suchthat Ti ® idB(s?x(x) -> x  a-weakly for all x in M®B(X).

Before proving Theorem 3.1, we recall some basic facts about crossed prod-
ucts, mainly to establish notation. Let (Af, G, a) be a W/*-dynamical system.
We may assume that Af (acting on M') is in standard form. Let a -► ua be
the canonical unitary implementation of Aut(Af) on M* (cf. [Haa 1]), and put
u(t) — uat for all t in G. Then t -* u(t) is a strongly continuous unitary
representation of G on /, and

at(a) = u(t)au(t)*,        a£ M, t £ G.

We will identify L2(G, Mf) with M* ® L2(G) in the usual way. Let X be the
unitary representation of G on L2(G,M') defined by

(X(s)Ç)(t) = Ç(s-lt),        C£L2(G,M*),s,teG,
and let n be the *-representation of Af on L2(G, Mf) defined by

(n(a)t)(t) = *7\a)cl(t),        a£M,t¡£ L2(G,M*), t £ G.
Then

X(s) = l®l(s),        S£G
(where s -» l(s) is the left regular representation of G on L2(G)),

n(a,(a)) = X(t)n(a)X(t~x),        a£M,t£G,

and N = M ®aG is generated by n(M) and X(G). Moreover,

(36) n(a) = U*(a® l)U,       a£M,
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where U is the unitary operator on L2(G,ß^) defined by

(i/f)(0 = ((u(t) ® \)Ç)(t) = u(t)¿Í(t),       Í G L2(G,M-),t£G.
Note that since n is a *-isomorphism, in order to proof part (a) of Theorem

3.1 it suffices to show that if N has Property Sa for R, then zr(Af) has
Property Sa for R. It is shown in [Haa 3] that there is a faithful normal
semifinite operator valued weight T from N to n(M). When G is discrete this
weight is a normal conditional expectation onto zr(Af) (cf. [Haa 3, Corollary
3.7]) and hence n(M) has Property Sa (cf. [Kr 1, Proposition 1.19]). However,
in the general case, T( 1 ) need not be in N, and more work is needed.

Let K(G, M) denote the space of er-strong* continuous functions from G
to Af with compact support. With the product

(x*y)(s)=     at(x(st))y(rx)dt,        x, y £ K(G, M), s £ G,
Jg

and involution
xi(t) = A(t)-xa-x(x(r1)*),        x £ K(G, Af), t £ G,

K(G, M) is an involutive algebra, and the formula

p(x) = [ X(t)n(x(t))dt
JG

defines an involutive representation of K(G, M) on L2(G, Mf) (cf. [Haa 2,
Lemma 2.3]).

For f£Lx(G),let
f*(t) = A(t)-x7(Fx),        t£G

(this is denoted by ß in [Haa 2]). With this involution and the usual convolu-
tion product, LX(G) is an involutive algebra, and the formula

X(f)= ( f(t)X(t)dt,        f£Lx(G),
JG

defines an involutive representation of L'(G) on L2(G, Mf) (cf. [Di, Chapter
13]). Moreover, X(f) £ N for all / G LX(G), since X(t) £N for all / G G.

For f £ CC(G), let x(f) denote the function from G to Af given by

(X(f))(t)=f(t)l, t£G.
Then it is easily checked that x(f) £ K(G, M), that
(37) p(x(f)) = X(f),
and that

(38) x(D = x(f)K
Note that it follows from (37) and (38) that

(39) X(f*) = p(x(fn
Lemma 3.5. Let T be the operator valued weight from N = M ®a G to M
constructed in [Haa 3, Theorem 3.1]. Then X(f) £ zît- for all f £ CC(G). Let
Tf denote the unique completely positive map from N to M satisfying

Tf(x) = T(X(f)*xX(f)),        x£N+.
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Then

(40) Tf(n(a)) = / \f(t)\2n(ajx(a))dt   Va G M, V/g Cc(G).
JG

Proof Let / G CC(G). It follows from (37) and [Haa 3, Theorem 3.1(c)] that

T(X(f)*X(f)) = T(p(x(f))*p(x(f))) = T(p(x(f)hx(f))) = n((x(f)hx(f))(e)).
Moreover, using [Haa 2, Lemma 2.3(b)] we get that

(x(f)**x(f))(e)= ¡(x(f)(t))*x(f)(t)dt= ¡(f(t)l)*f(t)ldt
JG JG

\f(t)\2dt\l = \\f\\2l.-aIG
Hence X(f) £ nT and

(41) ||7>|U = 2-
1,Next fix a G Af and / G CC(G), and put x(t) = f(t)a^l(a), t £ G. It is

easily checked that x £ K(G, M). Moreover,

n(a)X(f)= [ f(t)n(a)X(t)dt= [ f(t)X(t)n(a;\a))dt
JG JG

= / X(t)n(x(t))dt = p(x).Jg
Hence (using [Haa 3, Theorem 3.1(c) and Haa 2, Lemma 2.3(b)]) we have that

(42)
Tf(n(a*a)) = T(X(f)*n(a)*n(a)X(f)) = T(p(x)*p(x))

= T(p(x* * x)) = 7c((xt * x)(e)) - n ( Í x(t)*x(t) dtj

= n ^jWW(a*)f(t)aTx(a)dtS) = n [j\f(t)\W(<fa)dt) .

Since Af is the linear span of its positive elements, (40) follows from (42).    D

Proof of Theorem 3.1. (a) As noted above, it suffices to show that n(M) has
Property S„ for R. Moreover, in order to show that zr(Af) has Property Sa
for R, it suffices to show that x£S(x; Fa(n(M)) ; R) Vx G n(M)®R (cf. [Kr
3, Theorem 2.8]).

Let {fi}iei be a net of nonnegative functions in CC(G) satisfying

(43) ¡ fi(t)dt=\
JG

whose supports shrink to zero. Then

lim [ f(t)g(t)dt = g(e)   Vg£C(G).
'    JG

For each i £ I, let gi denote the square root of f , and put 7) = Tgl. Then
using (40) we get that

(Ti(n(a)) ,<p)= f fi(t)(n(a-x(a)) ,cp)dt   Va G Af, Mcp £ n(M)t.
JG
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Hence

(44) lim(Ti(n(a)),<p) = (n(aJx(a)),cp) = (7i(a), cp)   Va G Af ,Vcp £n(M)*.i
It follows from (41) and (43) that ||7,||c¿, = 1 for all i £ I, and so (44) implies
that
(45) T ® idÄ(x) -+ x cr-weakly   Vx G n(M)®R

(cf. [Kr 3, Proposition 2.9]).
Now let x G n (M)® R. Then since x G N®R, and since N has Property

Sa for R, there is a net {S^gA in Fo(N) such that

(46) Hm(Sx ® idÄ(x),\p) = (x,yt)   Vip £ (N®R).

(cf. [Kr 3, Theorem 2.8]). Since for each i in I, T¡ ® id« is a cr-weakly
continuous map from N®R to n(M)®R, it follows from (46) that for each i
in 7 we have that

(47) lim((7,- o Sx) ® idÄ(x), cp) = (7,- ® idÄ(x), cp)   Icp £ (n(M)®R)..

Finally, since the restriction of T¡ o S¿ to n(M) is in Fa(n(M)) for all i £ I
and for all X £ A, (47) and (45) together imply that x G S(x ; Fa(n(M)) ; R).
Since x is an arbitrary element of n(M)®R, this completes the proof of part
(a).

(b) Since n is a '-isomorphism, A(Af) = A(zc(Af)), and so it suffices to
show that A(7t(Af)) < A(N). Let E = {S £ Fa(n(M)): \\S\\cb < A(N)}, and
let R = B(Ji), where X is a separable infinite dimensional Hilbert space.
Since N has the weak * CBAP, it has Property S„ for P, and it follows from
the proof of part (a) (using the fact that the net {Si} can be chosen such that
ll-SilU < A(A0 for all A G A) that
(48) x G C(x ; E ; P)   Vx G n(M)®R.
Since E is convex, it follows from (48) and Lemma 3.4 that A(7r(Af)) <
A(A0.   □

The proof of Theorem 3.2 is along the same lines as that of Theorem 3.1,
making use of the existence of an operator valued weight from M®B(L2(G))
to /V. Before proving Theorem 3.2, we establish some preliminary results.

Let p be the unitary representation of G on L2(G, Mf) defined by

(p(s)Z)(t) = *l/2(s)Z(ts),        i G L2(G, Mf),s,t£G,

and let r be the right regular representation of G on L2(G), defined by

(r(s)f)(t) = Al/2(s)f(ts),       f £ L2(G) ,s,teG.
Then p(s) = 1 ® r(s), s £ G.

Put Af0 = M®B(L2(G)). Since we are identifying L2(G,M') with M* ®
L2(G), M0 can be viewed as a von Neumann subalgebra of B(L2(G, Mf)).
Moreover, since Af'®l c N' (cf. [Haa 2, Theorem 2.1]), N c Mo .

For each t in G, put w(t) = u(t) ® r(t), and let ßt be the '-automorphism
of Afo defined by

ßt(x) = VU(t)XW(t)* , X £ Mq.
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Then (Afo, G, ß) is a If7*-dynamical system.
For each / in L°°(G) and each s in G, let sf and fs be the functions in

L°°(G) defined by
J(t) = f(st)   and   f(t) = f(ts),        t£G.

Let v be the '-representation of L°°(G) on L2(G,Mf) defined by

v(f)=l®Mf,        f£L°°(G),
where Mf is the operator of multiplication by / on L2(G). Note that v(f) £
Afo for all / in L°°(G), and that

(HfK)(t) = f(tW)   V/G L°°(G), V£ G L2(G, M?),Vt£ G.
The proof of the next lemma is straightforward, and is left to the reader.

Lemma 3.6. (a) For any t £ G

w(t) = U*p(t)U   and   UX(t)U* = u(t)®l(t).
(b) For any f £ L°°(G) and any a £ M

n(a)v(f) = Hf)n(a).
(c) For any f £ L°°(G) and any t £ G

X(rx)u(f)X(t) = u(tf)   and   ßt(u(f)) = v(f).
Lemma 3.7.  N = {a £ Af0 : ßt(a) = a Vi G G}.
Proof. Put (MqY = {a£M0: ßt(a) = a Vf g G} . By Theorem 2.1 in [Haa 2],
N' is generated by Af'®l and {U*p(t)U: t £ G} = {w(t): t £ G} . Hence

N = N" = (M'®1)' f){w(t):t£ G}'
= Mo n {a £ B(L2(G, X)) : w(t)aw(t)* =aVt£G}
= (MqY.   D

Lemma 3.8. For x £ (Af0)+, let S(x) be the function on (Af0)| defined by

(S(x))(cp)= f (ßt(x),cp)dt,        cp£(Mo)t.
JG

Then S(x) £ N+ for all x £ (Af0)+, azza" S £ P(M0, N). Moreover, v(f) £ ms
for all f in Lx (G) n L°°(G), and

(49) S(v(f))=[jj(t)dt)l   V/GL'(G)nL°°(G).

Proof. The proof that S(x) £ Ñ+ for all x G (Af0)+ , and that S is a faithful,
normal operator valued weight from Af0 to (MqY = N is similar to the proof
of Lemma 5.2 in [Haa 5], and so is left to the reader. Also note that (49)
implies that v(f) g ns for all / G CC(G), and hence that S is semifinite,
since the identity operator on L2(G,Mf) is in the strong closure of {v(f): f £
CC(G)} . Since LX(G) n L°°(G) is the linear span of its nonnegative elements,
to complete the proof of the lemma it suffices to show that v(f) g ms and
that (49) is valid whenever / is a nonnegative function in Lx(G)nL°°(G). So
suppose / G L'(G) n L°°(G), f >0. Then Mf is a positive operator, and so
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v(f) = 1 ® Mf £ (M0)+.  For £ G L2(G, M*), let coç be the positive vector
functional in (Mo)t defined by

(a, a>f) = (ai, £) = / ((at)(t), t(t)) dt,        a£ M0.
JG

Then

(S(v(f)))(a>t) = f(ßt(u(f)),co()dt= [(v(fi),cot)dt
JG JG

= JG(JG((i>(ft)Z)(s),m)ds) dt
= J(J(f(st)Z(s),Ç(s))ds)dt

= J(Jf(st)(Ç(s),t(s))dt)ds
= J ((J f(st)dt)z(s),Z(s)} ds

f(t)dt\l)(œ().-ulG

It follows from the proof of Theorem 1.5 in [Haa 4] that two elements of
N+ that agree on the set of positive vector functional have the same spectral
resolution, and so are equal. Hence v(f) g ms and (49) holds.   D
Lemma 3.9. Let f g CC(G). Then v(f)* g ns. Let Sf denote the unique
completely positive map from Af0 to N satisfying

Sf(x)=S(u(f)xv(f)*),        xe(M0)+,

and put v = f* f. Then
(a) ii-syiu 2

2 •
(b) Sf(n(a)xn(b)) = n(a)Sf(x)it(b)  Vx G Af0, Va, b £ M.
(c) Sf(n(a)X(t)) = v(t)n(a)X(t) VaGAf.VfGG.

Proof. Since v(f)v(f)* = v(\f\2)  and since  |/|2 G L'(G) n L°°(G), it fol-
lows from Lemma 3.8 that v(f)* £ ns and that \\Sf\\cb = \\Sf(l)\\ = \\f\\j.
Moreover, (b) follows immediately from (33) and Lemma 3.6(b).

Next observe that for any t £ G we have that

(50) u(f)X(t)v(f)* = v(f)v(t-J)X(t) - v(f(t-J))X(t).
Since X(t) G TV, it follows from (50) and (49) that

Sf(X(t)) = S(u(f(t-J))X(t)) = S(v(f(t-J)))X(t)
= [jj(s)Wxs~)ds)x(t)=[jj(s)f(s-h)ds)x(t)

= v(t)X(t).
Hence for any a £ M and any t £ G,

Sf(n(a)X(t)) = n(a)Sf(X(t)) = v(t)n(a)X(t).   D
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Proof of Theorem 3.2. (a) Since Property Sa for R is preserved by '-isomor-
phisms, it suffices to show that UNU* has Property Sa for R. Since N is the
cr-weakly closed linear span of {n(a)X(t): a £ M, t £ G} , UNU* is the cr-
weakly closed linear span of {Un(a)X(t)U* : a£ M, t £ G} — {au(t)®l(t): a £
M, t £ G} (where for the last equality we used (36) and Lemma 3.6(a)). Hence
UNU* c B(M")®VN(G).

For / G CC(G), let Sf v be the normal completely positive map from
UMqU* to UNU* defined'by

SftU(x) = USf(U*xU)U*,        x £ UMqU*.
Put v - f* f. Then v £ A(G), and for all a G Af and t £ G we have that

SftU(au(t) ® l(t)) = USf(U*(Un(a)X(t)U*)U)U*
(51) = USf(n(a)X(t))U* = Uv(t)n(a)X(t)U*

= au(t) ® v(t)l(t) = idB(^) ®Mv(au(t) ® l(t)).
Since UNU* is the cr-weakly closed linear span of {au(t) ® l(t): a £ M, t £
G} , it follows from (51) that

(52) Sf<u(x) = idB{jr)®Mv(x)   VxgGVG*.
Let O be the unique '-isomorphism from B(M?)~® VN(G)®R to VN(G)<8>

B(Mf)®R such that
0(a®b®c) = b®a®c,        a£ B(Mf), b £ VN(G), c £ R.

Since G has the AP, and since the linear span of {v : v = f * f for some
/ G CC(G)} is dense in A(G) in the 5(G)-norm, it follows easily from Remarks
1.10 and 1.2 and from Proposition 1.7 that for every x G B(M*)®VN(G)®R
we have that

<D(x) G S(0(x) ; {Mv : v = f * / for some f£Cc(G)}; B(M')®R),
and hence

(53) x G S(x ; {id5m ®MV : v = /*/for some / G Q(G)}, R)
for every x G B(M")®VN(G)®R. Combining (52) and (53) we get that

(54) xGS(x;{S/if/:/GCc(G)};P)   Vx£UNU*®R.
Since M has Property Sa for R, so does Afo (cf. [Kr3, Proposition 3.4] for

the case dim(P) = oo. The case dim(P) less than infinity is trivial, because in
this case any von Neumann algebra has Property Sa for R). Hence UMqU*
also has Property Sa for R. Thus

(55) x G S(x ; Fa(UM0U*) ; R)   Vx G UM0U*®R
(cf. [Kr 3, Theorem 2.8]).

Let x G UNU*®R, and let / G CC(G). Then since Sft v ® id/? is cr-weakly
continuous, and since the restriction of Sf tU o T to UNU* is in Fa(UNU*)
whenever T £ Fa(UMoU*), it follows from (55) that

(56) SftV ® idÄ(x) G S(x; Fa(UNU*) ; R).
Combining (54) and (56) we get that x G S(x ; Fa(UNU*) ; R) Vx G UNU*®R,
which implies (by Theorem 2.8 in [Kr 3]) that UNU* has Property Sa for R.
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(b) Let L = A(G), and let E denote the linear span of {/*/:/ G Q(G)} .
Since E is dense in A(G) in the B(G)-norm, the argument in the third para-
graph of the proof of Proposition 1.1 in [CH] (with AC(G) replaced by E)
shows that there is a net {v,},-6/ in E such that

(57) \\ViU - u\\A(G) -» 0   Vu£A(G),
and

(58) INk<L   V/G7.
It follows from (57) and (58) that
(59) id5(^) ®Mv¡(x) -► x <7-weakly   Vx G B(M?)~® VN(G)
(see the proof of the implication (a) =>■ (b) of Theorem 1.12).

Since each v¡ is a linear combination of functions in {f * f: f £ CC(G)} ,
it follows from (52) that for each i g 7 there is a normal completely bounded
map T¡ from UMqU* to GA/G* suchthat
(60) 7,(x) = idB(^} ®MVi(x)   Vx G GVG*.

For each i £ I, let 51, be the operator in CBa(N) defined by

Si(x) = U*T¡(UxU*)U,        X£N.
Then it follows from (60) that

\\Si\\cb<L   Vz'G7,
and it follows from (59) (and the fact that UNU* c B(M*)®VN(G)) that
(61) Si(x) -» x cr-weakly   Vx G N.

Since Af has the weak * CBAP, it follows from straightforward modifications
of the proofs of Proposition 3.4 and Lemma 2.5(ii) in [EL] (replacing Stine-
spring's Theorem by the representation theorem for normal completely bounded
maps in the proof of Lemma 2.5(h)) that A(Af) < A(M0) < A(M)A(B(L2(G))).
Since A(P(L2(G))) = 1, A(Af) = A(Af0). Hence there is a net {TX}X€A in
Ea(Mo) bounded by A(Af) suchthat

Tx.(x) —► x cr-weakly   Vx G Afo.

For each z G I and X £ A, let S¡yx be the operator in Fa(N) defined by

SlA(x) = U*Tl(UTx(x)U*)U,        x£N.
Then for each z G 7 we have that

(62) I|SmIU<A(A/)||7;|U   VAgA
and

(63) SiA(x) -* Si(x) cr-weakly   Vx G N.

Hence id a? is the limit in the point-weak * topology of a bounded net {S¡} in
CBa(N) each of whose elements is the limit in the point-weak * topology of a
bounded net in Fa(N).

(c) If, in the proof of part (b), we make the stronger assumption that G is
amenable, then it follows from the proof of Lemma 7.2 in [Lau], the density of
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CC(G) in L2(G), Lemma (3.1) in [Ey], and the argument in the third paragraph
of the proof of Proposition 1.1 in [CH] (with AC(G) replaced by {f * f: f £
CC(G) and ||/||2 = 1}) that the net {v¡} can be chosen to be in {/*/:/ G
CC(G) and ||/||2 =1}. Hence (using Lemma 3.9), we can assume that the
operators T¡ are completely positive unital maps. Then

(64) ||S,|U=1   Vz'G7,
and it follows from (62) that
(65) ||SM|U<A(Af)   Vz'g7,VAgA.

Let 3? be a separable infinite dimensional Hilbert space. Then it follows
from (64) and (61) that

Si ® idB(^)(x) -> x cr-weakly   Vx G N®B(3?)

and it follows from (65) and (63) that

Si.x ® iaß(jr)(x) -» Si ® idB(x)(x) cr-weakly   Vx G N®B(^)
(cf. [Kr 3, Proposition 2.9]). Hence

x£C(x;{T£Fa(N): \\T\\cb <A(M)}; B(5f))   Vxg/V®P(^),
and so A(7V) < A(Af) by Lemma 3.4.   D

Remark 3.10. Suppose that G and 77 are locally compact groups, and that
p: G -> Aut77 is a continuous homomorphism. Then p induces an action a
of G on Af = VN(77) suchthat M®aG is unitarily equivalent to VN(HxpG)
(cf. [Su, Proposition 2.2]). Thus combining Theorem 3.2(a) with Theorem 2.1
we get another proof of the fact that the semidirect product of two discrete
groups with the AP has the AP. Moreover, it follows from Theorem 3.2(c) and
the first author's characterization of weakly amenable discrete groups that if G
is an amenable discrete group, and 77 is a weakly amenable discrete group, then
HxpG is weakly amenable. On the other hand, if G = SL(2, Z), if 77 = Z2 ,
and if p is the natural action of SL(2, Z) on Z2 , then G is weakly amenable
(with A(G) = 1), Af = VN(77) is semidiscrete, but M®aG does not have the
weak* CBAP, since, as noted above, Z2 xp SL(2, Z) is not weakly amenable.
Thus the "two step weak * CBAP" in Theorem 3.2(b) cannot always be replaced
by the weak * CBAP in the nonamenable case, even if we assume that A(G) = 1
and that Af is semidiscrete. Note that it follows from the proof of Theorem
3.2(c) that if the net {T¡} in the proof of Theorem 3.2(b) can be chosen to be
bounded, then N has the weak * CBAP. Hence we can not always choose this
net to be bounded, even though the net {S¡} is always bounded.
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