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Introduction. There are several classical criteria for the absolute
convergence of (trigonometric) Fourier series. However, they have been
proposed more or less independently, and their interrelations do not seem
clear enough. The work of McLaughlin [1] is a trial in this direction,
but, in spite of its length, it still leaves some gaps to be filled up. Our
purpose here is to clarify the predominance of Bernstein's criterion (gener-
alized by Steckin [3]); many other criteria then follow as its corollaries.

Our results are stated in terms of the best approximations; there is
a rather complete parallelism between the modulus of continuity and the
best approximation, and there is no limitation to the "goodness" of the
behavior of a function.

1. Comparison Theorem. Consider an (L1-) complete orthonormal
system Φ = {<pn} of bounded functions over a set of finite measure, and
denote by Φn the linear space spanned by the first n elements of Φ.
The system under consideration is postulated to have the following
properties:

1° (Nikolsky property) For 1 <̂  p < q ^ oo, and PeΦn we have
II P\\q ^ An" || P||p, a = (1/p) - (1/q). We denote by A a constant which
may be different in different contexts.

2° (de la Vallee Poussin property) There exists a sequence of linear
operators Gn: lϊ-*Φln such that (i) bounded uniformly in n and p,
(ii) Gn leaves the element of Φn invariant, (iii) For 1 <Ξ p <; oo we have

| | / - Gnf\\P £ AEP(f) = Ainf{||/- P\\,; PeΦn} .

Observe that these properties are held by the system of trigonometric
functions as well as that of Walsh functions (see for examples [3] and [9]
for the former, [4] and [7] for the latter).

Our theorem now reads, indicating the conjugate exponent;

THEOREM 1. Let Φ have the properties 1° and 2° and let 1 <; p <
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q < oo. Then Σ?-i n^'E^if) ^ A ΣΓ-, nr'i'Έ^if).

PROOF. By Cauchy's condensation principle, what we have to prove
is Σ?=o 2r«E$(f) ^ A Σ~=o 2nlPEl£(f). This is reduced, by property 2°, to

Σ 2M" | | / - GWΊI, ̂ Σ 2 'f 11/- G Λ
%=0 «=0

Or, by the subadditivity and the property 1°, we see

£ A Σ 2*« | |GW- Ĝ /H, α Σ 2 " | | / - G*f\\, .
k=n k=n

Multiply both sides by 2nl9 and sum up; the result follows upon inter-
changing the order of summations.

2. Absolute Convergence of Fourier Series. The well-known Bern-
stein-Steckin criterion says

(B) Σ n-^E^if) < oo implies Σ | c» | < <*>
71 = 1 ?l = l

where cn is the Fourier coefficient of / with respect to Φ. The result
corresponding to the theorem of Zygmund (generalized by Salem) reads,
with slight generalization and in our context,

E?(f) = O(l/n) and Σ n~\E^{f))^ < -

(Z) * 1
together imply Σ Ic* I < °°

Though E{n]{f) = O(l/n) is weaker than the assumption that / be of
bounded variation (which amounts to /eLip ( 1 ) l) in trigonometric case,
(Z) is included in (B) as seen through the following simple observation:

(E2Hf)Y £ \\f-Gnf\\l £ Wf-GnfWrWf-Gnfll

Consequently Σ ^ i ^ ^ y ) ^ A ΣΓ=i (lM)(^r(/)) 1 / 2 < oo.
The following proposition corresponds to the generalization of (B)

proposed by Szasz:

(S) Σ n-WEPif) < oo for some p e [1, 2] implies Σ I cn \ < oo .

But, our theorem given in § 1 shows that the case p = 2 is of widest
applicability; that is, (S) is included in (B).



APPROXIMATION PROPERTY OF FUNCTIONS 131

3. Weighted Absolute Convergence. We gather, with slight gener-
alizations, some results corresponding to [8] 6.6.6. Besides the properties
1° and 2°, Φ is assumed to have the following property:

3° (Bernstein property) (i) For P = Σϊ=i ckΨk e Φn, write P [ α ] =
ΣiU^ckφk. Then \\PM\\P^Ana\\P\\P for a >0. (ii) F o r ^ Σ ϊ U ^ e L *
and a > 0, we have / M = Σ Γ = i ^ Λ f t e L 3 ' and E{

n

p)(f[~a]) ^An~aEι

n

p)(f).
Observe that the property 3° also is the case for trigonometric system

or the Walsh system ([5], [6]). The argument which follows is typical.

LEMMA 2. Let f = ΣϊU <V?» e L* a n d l e t E{

n

p)(f) = O(n~a) for some
a > 0. Then, for any β < a, the series

k=0

converges in Lp to a function (which is denoted by fίβ]) whose n-th Fourier
coefficient is nβcn and

E{

n

p){fm) = O(n~a+β) .

PROOF. It suffices to estimate E[*\fm). 2° (iii) gives

Applying the operator G2k+i to the function / — G2*Λ w e s e e

Now G2k+ιf — G2kf is in Φ2k+2 and property 3° yields (we may assume
β > 0, for otherwise there is nothing to prove)

|| ((jr2k+ij — (jr2kjyPi WpS* AΔ p II Lr2k+iJ — Gr2fc/ ||p ^ AΔ~ ~p) .

Thus the sequence (G2kf)w; k = 1, 2, converges in Lp (to fm say) and

The Fourier coefficients of fίβ} is easily calculated by writing

where Sn is the w-th partial sum of the Fourier series of / .

Combining the criterion (B) with Lemma 2, we obtain the following

propositions:

I. Eι

n

2)(f) = O(n-a), a>0 and β<a imply Σ n β ~ 1 1 2 \cn\<oo.

In fact, if β >l/2, Lemma 2 gives E™(fίβ~~im) ^ An~a+β-112 while for
/3 ^ 1/2 the same estimate is assured by 3° (ii).

II. E{n]{f) ^ A/n and ElΓ](f) ^ An~a together imply, for (0 <)β < a,
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For the proof, we estimate the best approximation to f[βl2] in two
norms, p = 1 and p = oo, by means of Lemma 2. Ei\fim) is then
estimated as in § 2 and the criterion (B) applies.

III. E{

n

p)(f) ^ An~a{a > 0), 1 ^ p ^ 2, αwd /9 < a -

For (S) (and (B)) applies to fw through Lemma 2.

4. Convergence of Σ I β» I' W e a r e interested in the case of "small"
β, that is, /3 < 2 for feL2 and /3 < <?' for fe Lq with 1 ^ <? < 2. Theorem
1 is then generalized (partially but sufficiently for later applications) as
follows:

THEOREM 3. Let 1 ^ p < q ^ 2, 0 < β < #'.

or equivalently by condensation,

The proof of this theorem is based on the following lemma on scalar
series of non-negative terms:

LEMMA 4. Let ak ^ 0 , Bn ^ Σ?=n»*» ι° > 1 ^^ώ 0 < β < oo.

PROOF. The case β < 1 is reduced to the simple case β = 1 by
Jensen's inequality. If β > 1, Holder's inequality with indices β, β' gives

oo oo

JiCn ^ / i Q/fc — x J jθ p Q>k =

\fc=7l

Thus
7?P <. Λn~nl2 V nkl2πβ

fc=Λ

Multiply both sides by jθΛ and sum up, and the result follows.

PROOF OF THEOREM 3. From the property 2°,
CO

τp(q) ( -C\ <f A \\ -P f^ -P11 <^ A V II Γ^ -P f^ -PW
ΆA+AJ) ^ Λ 11/ — Lr2nJ | | g =^ A 2 J II ̂ 2^+1/ — ^ W | | 9Λ=Λ

Take

ak =
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We obtain, for p = 2{1-^r) > 1,

Property 1° now shows that the last expression does not exceed

\G2n+lf- G2nf\\p

^ A Σ 2"(1-'»ί'') | | / - G. /11,, again by property 2°. q.e.d.

The simple argument leading to the Bernstein criterion (B) actually
gives more:

(BO For 0 < β < 2 , Σ (^" 1 / 2 ^ ) (/)) / 3 < oo implies Σ | cH | ' < «, .

The only change needed in the proof is Holder's inequality with indices
2/β and 2/(2 — β) in place of Cauchy-Schwarz inequality.

Combining (B )̂ with Theorem 3, we obtain

COROLLARY 5. Let 1 <; p ^ 2 am? 0 < /3 < 2.

Σ (n-ίlpfE(

n

p)(f))β < oo {mpliββ Σ I cn \β <
l l

REMARK. The usual assumption E{

n

p)(f) = O(^~α) (corresponding to
/eLip ( p )α:) with /3 > p/(p(l + a) - 1), that is, a > (1//9) - (l/p') is more
stringent than that of Corollary 5. With this strong hypothesis, the
conclusion may be derived, by Holder's inequality, from III of § 3.

The convergence of the series ΣE=i nr \cn\β may be treated along the
same line; for example, for 1 ^ p ^ 2 and 0 < β < p',

Σ (nδ-llP'E{

n

p)(f)y < oo implies Σ (n-lίPΈ{

n

p)(fίδψ < <*> >

and Corollary 5 assures, for 0 < β < 2, the convergence of Σ»=i (nδ 16V DE-
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