Approximation schemes for a class of
subset selection problems

Kirk Pruhs'* and Gerhard J. Woeginger?

! Department of Computer Science, University of Pittsburgh, USA
kirk@cs.pitt.edu
WWW home page: http://www.cs.pitt.edu/ kirk
2 Department of Mathematics, University of Twente, The Netherlands
g.]j.woeginger@math.utwente.nl
WWW home page: http://wwwhome.cs.utwente.nl/ woegingergj

Abstract. In paper we develop an easily applicable algorithmic tech-
nique/tool for developing approximation schemes for certain types of
combinatorial optimization problems. Special cases that are covered by
our result show up in many places in the literature. For every such spe-
cial case, a particular rounding trick has been implemented in a slightly
different way, with slightly different arguments, and with slightly differ-
ent worst case estimations. Usually, the rounding procedure depended on
certain upper or lower bounds on the optimal objective value that have
to be justified in a separate argument. Our easily applied result unifies
many of these results, and sometimes it even leads to a simpler proof.
We demonstrate how our result can be easily applied to a broad family
of combinatorial optimization problems. As a special case, we derive the
existence of an FPTAS for the scheduling problem of minimizing the
weighted number of late jobs under release dates and preemption on
a single machine. The approximability status of this problem has been
open for some time.

1 Introduction

One of the commonly stated goals of algorithmic research is the development of
a modestly-sized toolkit of widely applicable algorithmic techniques. The vision
is that future researchers, particularly those without specialized training in al-
gorithmics, could use these tools to quickly develop/analyze algorithms for new
problems. In this paper, we develop an easily and widely applicable algorithmic
technique/tool for developing approximation schemes for certain types of com-
binatorial optimization problems. This tool should save algorithmic researchers
time, and is simple enough to be used by researchers without specialized algo-
rithmics training.

Over the years, there have evolved a number of standard approaches for de-
signing approximation schemes; see for instance Horowitz & Sahni [8, 9], Ibarra

* Supported in part by NSF grant CCR-0098752, NSF grant ANI-0123705, and NSF
grant ANI-0325353.

& Kim [10], Sahni [18], and Woeginger [20]. (A review of basic definitions related
to approximation schemes can be found in section 2.) We will investigate one
of these standard approaches and demonstrate that it applies to a broad family
of combinatorial optimization problems. The standard approach under investi-
gation is the technique of rounding the input; this technique goes back to the
1970s and possibly has first been used in the paper by Horowitz & Sahni [8]. The
family of combinatorial optimization problems under investigation is defined as
follows.

Definition 1. (Subset selection problems)
A subset selection problem P is a combinatorial optimization problem whose
instances I = (X, w, S) consist of

— a ground set X with |X| = n elements;
— a positive integer weight w(z) for every x € X;
— a structure S that is described by £(S) bits;

The structure S specifies for every subset Y C X whetherY is feasible or infea-
sible; this can be done within a time complexity polynomially bounded in n and
£(S).

If P is a minimization problem, then the goal is to find a feasible subset
Y C X that minimizes w(Y) = Zer w(y), and if P is a maximization problem,
then the goal is to find a feasible subset Y C X that mazimizes w(Y). O

The class of subset selection problems described in Definition 1 is very gen-
eral, and it contains many problems with very bad approximability behavior.
For instance, the weighted independent set problem (“Given a graph with vertex
weights, find the maximum weight subset of pairwise non-adjacent vertices”)
belongs to this class. It is known that weighted independent set does not possess
any p-approximation algorithm with a fixed p > 1, unless P=NP (Hastad [7]).
If we additionally impose condition (C) as in the following theorem, then the
approximability behavior of subset selection problems improves considerably.

Theorem 1. Let P be a subset selection problem with instances I = (X, w, S)
that satisfies the following condition:

(C) There exists an algorithm that solves P to optimality whose running time is
polynomially bounded in n, in W :=3___x w(z), and in £(S).

Then problem P has an FPTAS.

Theorem 1 is proved in Section 3. The proof is quite straightforward, and
it mainly uses the folklore rounding tricks from the literature. The main con-
tribution of this paper is to identify the neat and simple condition (C) that
automatically implies the existence of an FPTAS. Special cases that are covered
by Theorem 1 show up at many places in the literature. For every such special
case, the rounding trick has been implemented in a slightly different way, with
slightly different arguments, and with slightly different worst case estimations.

Usually, the rounding procedure depends on certain upper or lower bounds on
the optimal objective value that have to be justified in a separate argument.
Theorem 1 unifies many of these results, and sometimes it even leads to simpler
proofs.

Sections 4 and 5 contain a number of optimization problems (from schedul-
ing theory and from graph theory) that fit into the framework of Definition 1.
These examples illustrate the wide applicability and ease of use of our re-
sult. As one special case, we prove in Theorem 2 that the scheduling problem
1| pmtn,r; | Y, w;U; (the problem of minimizing the weighted number of late
jobs under release dates and preemption on a single machine) has a PTAS. The
approximability status of this problem has been open for some time, and the
question was considered to be difficult. In particular, the problem does not fit
into the framework for FPTAS’s established by Woeginger [20].

2 Basic Definitions

An algorithm that returns near-optimal solutions is called an approzimation al-
gorithm; if it does this in polynomial time, then it is called a polynomial time ap-
proximation algorithm. An approximation algorithm is called a p-approzimation
algorithm, if it always returns a near-optimal solution with cost at most a factor
p above the optimal cost (for minimization problems) respectively at most a
factor p below the optimal cost (for maximization problems). The value p > 1
is called the worst-case performance guarantee of this algorithm. A family of
(1 + e)-approximation algorithms over all real € > 0 with polynomial running
times is called a polynomial time approzimation scheme or PTAS, for short. If
the time complexity of a PTAS is also polynomially bounded in 1/¢, then it
is called a fully polynomial time approximation scheme or FPTAS, for short.
With respect to relative performance guarantees, an FPTAS is essentially the
strongest possible polynomial time approximation result that we can derive for
an NP-hard problem (unless P=NP holds).

3 Proof of the main result

In this section we will prove the main result of the paper. The proof method
is essentially due to Horowitz & Sahni [8]. The arguments for minimization
problems and for maximization problems are slightly different. We start with
the discussion of minimization problems.

Let ¢ > 0 be a small real number. Let I = (X, w, S) be some instance of a
minimization problem P that belongs to the class of subset selection problems
as defined in Definition 1. Let z1,...,z, be an enumeration of the elements of
the ground set X such that

w(e) < wlzs) < 0 < wla). (1)

For £k = 1,...,n, we define a so-called scaling parameter
(k) - 1 .
A = - — - w(xg). (2)
n
We introduce a number of new instances I(1), ..., I*) of problem P. Every new

instance I(*) has the same structure S and the same ground set X as I, but it
has a different set of weights w*). As a consequence, all instances %) have the
same feasible solutions as the original instance I. The weights w(*¥) are defined
as follows:

— Fori=1,...,k, we set w®) (z;) = [w(x;)/ZF)].
— Fori=k+1,...,n, we set w¥)(z;) =n[n/e].

The definition of the parameter Z(*) in (2) yields that w(®)(z;) < [n/e] for
1 < i < k. Therefore, the overall weight W(*) of all elements in instance I*) can
be bounded as

n

Wi < ZWE%L Y nln/e]l < n’[n/el. (3)

i=k+1

Hence, W*) is polynomially bounded in n and in 1/e. If we feed instance I)
to the exact algorithm in condition (C) in Theorem 1, then the running time
is polynomially bounded in n, in £(S), and in 1/e. That’s precisely the type of
time complexity that we need for an FPTAS. Hence we get Lemma 1.

Lemma 1. Every instance I*) can be solved to optimality within a time com-
plezity polynomially bounded in n, £(S), and 1/¢. O

Next, let Y* denote the optimal solution for the original instance I, and let
OPT denote its optimal objective value w(Y*). Let y () C X denote the optimal
solution for instance I*) for k = 1,...,n. Let j denote the maximal index with
z; € Y*. Obviously,

OrT = w(Y™) > w(z;). 4)

Furthermore, we claim that
v C {zy,2a,...,25). (5)

This statement is vacuously true for j = n. For j < n—1, we use that Y* is some
feasible solution for instance I9), whereas Y9) is the optimal feasible solution
for instance TU). Since |Y*| < j < n — 1, this yields

WY D) < w@ (™) < V-wl (@) < (n=1)-n/e]. (6)

By Inequality (6), the set Y can not contain any of the expensive elements
Zj41,..., 2, that all have weight n[n/ec]. This proves (5).

We now analyze the quality of the feasible solution ¥ (/) for the original
instance I. In the following chain of inequalities, the first inequality holds since

5

(5) implies w(y) < ZU) - wl)(y) for all y € YY), The second inequality holds,
since Y) is the optimal solution for weights w(j)(-). The equation in the third
line follows from (5). The inequality in the fourth line follows from [a] < a+ 1.
The inequality in the sixth line follows from |Y*| < n and from (2). The final
inequality follows from (4).

S{uw) |ye vV} <z0. 3" {wl(y) [yevV)}
<793 {ulw) yey)
=703 {Tw(y)/29] |yev*}
<793 {w(y)/29 +1]yev*)
=Y {wly) lyey } + |v7|. 2V)
<OPT 4 necetw(a)
§(1+e)-0pT.n

With this, it is clear how to get the FPTAS: We compute the optimal solutions
y (k) C X for the instances I®*) with k = 1,...,n. By Lemma 1, this can be
done with time complexity polynomially bounded in the length of the encoding
of I and in 1/e. Then we compute the costs of Y (%) with respect to instance I,
and we determine the best solution. By the above chain of inequalities, this best
solution has objective value at most (1 + €)OpPT. This completes the proof of
Theorem 1 for the case where P is a minimization problem.

Now let us discuss the case where P is a maximization problem. Consider an
instance I = (X, w, S) of P, and enumerate the elements of the ground set X as
in (1). In a preprocessing phase, we determine for every element z; (k = 1,...,n)
whether there exists a feasible solution that contains z;. This can be done as
follows: We create a new instance I¥) from I by setting the weight of element
zi to n and by setting the weights of the remaining n — 1 elements to 1. Clearly,
xi shows up in some feasible solution if and only if the optimal objective value
of I¥) is greater or equal to n. Since the overall weight in instance I*) is 2n —1,
the algorithm from condition (C) can be used to solve it in time polynomially
bounded in n and £(5).

The main part of our algorithm is built around the maximal index j for which
element z; occurs in some feasible solution. This implies

OrT > w(zj). (7)

We introduce a scaling parameter Z# = ¢-1.w(z;). We define a new instance I#
from I that has new weights w#. For i = 1,...,j we set w¥(z;) = |w(=;)/Z#],

3

and fori = j+1,...,n we set w#(z;) = 1. Similarly as in the minimization case,
instance I# can be solved to optimality within a time complexity polynomially
bounded in n, £(S), and 1/e.

The optimal solution Y# of I# satisfies the following inequalities. These
inequalities run in parallel to the inequalities for the minimization case. In the
third line, we use (7) to bound w(z;).

dlw lyeY#y>z#. 3" {wh(y) |yev#)
> 7%y {w#(y) |lyey™}
=7#.% " {lw/Z#] |lyeY™}
> 7% {w(y)/7* —1|yeY™}
=Y {w |lyey) — |y*| 7%
>OPT — nec- - w(z;)
Z(l—E)-OPT.n

Hence, also maximization problems have an FPTAS. The proof of Theorem 1 is
complete.

4 Example: Scheduling to minimize the weighted number
of late jobs

In this section, we will use the standard three-field scheduling notation (see e.g.
Graham, Lawler, Lenstra & Rinnooy Kan [5] and Lawler, Lenstra, Rinnooy Kan
& Shmoys [14]).

In the scheduling problem 1| >~ w;U;, the input consists of n jobs J; with
positive integer processing times p;, weights w;, and due dates d; (j = 1,...,n).
All jobs are available for processing at time 0. In some schedule a job is on-time
if its processing is completed by its deadline, and otherwise it is late. The goal
is to schedule the jobs without interruption on a single machine such that the
total weight of the late jobs is minimized. The problem 1 ||} w;U; is known to
be NP-hard in the ordinary sense (Karp [11]).

Problem 1|| Y w;U; belongs to the class of subset selection problems as
described in Definition 1. The ground set X consists of the n jobs with weights
wy, and total weight W = 37" | wy. The structure S consists of the processing
times p; and the due dates d; (j = 1,...,n). A subset ¥ of the jobs is feasible,
if the remaining jobs in X —Y can all be scheduled on-time on a single machine;
clearly, this information is specified by the structure S. Lawler & Moore [15] give
a dynamic programming formulation that solves 1|| Y w;U; in O(nW) time.

Then our main result in Theorem 1 implies the following well-known result of
Gens & Levner [4].

Corollary 1. (Gens & Levner [{], 1981)
There exists an FPTAS for minimizing the weighted number of late jobs in the
scheduling problem 1| " w;U;. O

A closely related problem is to maximize the total weight of the on-time
jobs. Clearly, the algorithm of Lawler & Moore [15] also solves this maximization
problem in O(nW) time. We get the following result.

Corollary 2. (Sahni [18], 1976)
There exists an FPTAS for mazimizing the weighted number of on-time jobs in
the scheduling problem 1|| > w;U;. O

In the 0/1-knapsack problem, the input consists of n pairs of positive integers
(wg, by) and a positive integer b: The weight wy denotes the profit of the kth
item, and b denotes the space occupied by this item. The goal is to select a
subset Y that has the maximum profit subject to the condition that it does not
occupy more than b space. The 0/1-knapsack problem is NP-hard (Karp [11]),
and it can be solved in O(nW) time (see for instance Bellman & Dreyfus [1] or
Martello & Toth [17]).

It is easy to see that the 0/1-knapsack problem belongs to the class of subset
selection problems of Definition 1. In fact, it is a special case of the maximization
version of the scheduling problem 1|| Y w;U; as described above: Essentially,
the kth item corresponds to a job with processing time by, weight wg, and
(universal) due date b.

Corollary 3. (Ibarra & Kim [10], 1975)
The 0/1-knapsack problem possesses an FPTAS. O

Another closely related problem is 1| pmtn, r; | > w;U;: There are n jobs J;
(j = 1,...,n) with processing times p;, weights w;, due dates d;, and release
dates r;. In this variant, job J; cannot be started before its release date r;, but
it may be preempted. Lawler [13] designs a (very complicated) dynamic program
that solves 1| pmin, ;| 3" w;U; in O(n*W?) time. We get the following (new)
result.

Theorem 2. There exists an FPTAS for minimizing the weighted number of
late jobs in the scheduling problem 1| pmtn,v; | Y w;U;.

5 Example: The restricted shortest path problem

An instance of the restricted shortest path problem (RSP, for short) consists of
a directed graph G = (V, A) and an integer bound 7. Every arc a € A has a
positive integer cost w, and a positive integer transition time ¢,. For a directed
path Y in G, the cost w(Y) and the transition time #(Y) are defined as the

sum of the costs and transition times, respectively, of the edges in the path Y.
The goal is to find a path Y with ¢(Y) < T from a specified source vertex to
a specified target vertex, that minimizes the cost. RSP is NP-complete in the
ordinary sense (Garey & Johnson [3]). Furthermore, RSP is solvable in O(|A|-W)
time by dynamic programming; see for instance Warburton [19] or Hassin [6].
One way of doing this is to compute for every vertex v € V and for every cost
¢ € {0,...,W}, the smallest possible transition time of a path from the source
vertex to v with cost c.

Problem RSP belongs to the class of subset selection problems as described
in Definition 1. The ground set X consists of the arcs a € A with costs w,.
The structure S consists of the graph G, of the transition times ¢;, of the bound
T, and of the source and sink vertices. A subset Y of the arcs is feasible, if it
forms a path from source to sink with transition time #(Y) < T. Obviously, this
feasibility information is encoded by the structure S. We get the following result.

Corollary 4. (Hassin [6], 1992)
The restricted shortest path problem RSP possesses an FPTAS. O

The result in Corollary 4 has been established in 1987 by Warburton [19]
for acyclic directed graphs and then in 1992 by Hassin [6] for arbitrary directed
graphs. Lorenz & Raz [16] and Ergun, Sinha & Zhang [2] improve the time
complexities of these approximation schemes.

References

1. R.E. BELLMAN AND S.E. DRrEYFUS (1962). Applied Dynamic Programming.
Princeton University Press.

2. F. ERGUN, R. SINHA, AND L. ZHANG (2002). An improved FPTAS for restricted
shortest path. Information Processing Letters 83, 287-291.

3. M.R. GAREY AND D.S. JoHNsON (1979). Computers and Intractability. W.H. Free-
man and Co., New York.

4. G.V. GENs AND E.V. LEVNER (1981). Fast approximation algorithms for job se-
quencing with deadlines. Discrete Applied Mathematics 3, 313-318.

5. R.L. GRaHAM, E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RINNoOY KAN (1979).
Optimization and approximation in deterministic sequencing and scheduling: A
survey. Annals of Discrete Mathematics 5, 287-326.

6. R. HassIN (1992). Approximation schemes for the restricted shortest path problem.
Mathematics of Operations Research 17, 36-42.

7. J. HAsTaD (1999). Clique is hard to approximate within n' ™. Acta Mathematica
182, 105-142.

8. E. HorROWITZ AND S. SAHNI (1974). Computing partitions with applications to
the knapsack problem. Journal of the ACM 21, 277-292.

9. E. HorowITZ AND S. SAHNI (1976). Exact and approximate algorithms for
scheduling nonidentical processors. Journal of the ACM 23, 317-327.

10. O. IBARRA AND C.E. Kim (1975). Fast approximation algorithms for the knapsack
and sum of subset problems. Journal of the ACM 22, 463-468.

11. R.M. KaARP (1972). Reducibility among combinatorial problems. In: R.E. Miller
and J.W. Thatcher, editors, Complezity of Computer Computations, Plenum Press,
New York, 85-104.

12.

13.

14.

15.

16.

17.

18.

19.

20.

E.L. LAWLER (1979). Fast approximation schemes for knapsack problems. Mathe-
matics of Operations Research 4, 339-356.

E.L. LAWLER (1990). A dynamic programming algorithm for preemptive schedul-
ing of a single machine to minimize the number of late jobs. Annals of Operations
Research 26, 125-133.

E.L. LAWLER, J.K. LENSTRA, A .H.G. RINNooY KaN, AND D.B. SHmMoYs (1993).
Sequencing and scheduling: Algorithms and complexity. In: S.C. Graves, A.H.G.
Rinnooy Kan, and P.H. Zipkin (eds.) Logistics of Production and Inventory, Hand-
books in Operations Research and Management Science 4, North-Holland, Ams-
terdam, 445-522.

E.L. LAWLER AND J.M. MOORE (1969). A functional equation and its application
to resource allocation and sequencing problems. Management Science 16, 77-84.
D.H. LoreENZ AND D. Raz (2001). A simple efficient approximation scheme for
the restricted shortest path problem. Operations Research Letters 28, 213-219.

S. MARTELLO AND P. ToTH [1990]. Knapsack problems: Algorithms and computer
implementations. John Wiley & Sons, England.

S. SAHNI (1976). Algorithms for scheduling independent tasks. Journal of the ACM
23, 116-127.

A. WARBURTON (1987). Approximation of pareto optima in multiple-objective
shortest path problems. Operations Research 35, 70-79.

G.J. WOEGINGER (2000). When does a dynamic programming formulation guar-
antee the existence of a fully polynomial time approximation scheme (FPTAS)?

INFORMS Journal on Computing 12, 57-75.

