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Abstract. Stability has been explored to study the performance of
learning algorithms in recent years and it has been shown that stability is
sufficient for generalization and is sufficient and necessary for consistency
of ERM in the general learning setting. Previous studies showed that Ad-
aBoost has almost-everywhere uniform stability if the base learner has
L1 stability. The L1 stability, however, is too restrictive and we show that
AdaBoost becomes constant learner if the base learner is not real-valued
learner. Considering that AdaBoost is mostly successful as a classification
algorithm, stability analysis for AdaBoost when the base learner is not
real-valued learner is an important yet unsolved problem. In this paper,
we introduce the approximation stability and prove that approximation
stability is sufficient for generalization, and sufficient and necessary for
learnability of AERM in the general learning setting. We prove that Ad-
aBoost has approximation stability and thus has good generalization,
and an exponential bound for AdaBoost is provided.

1 Introduction

Stability has been considered as an important tool for studying the performance
of learning algorithms in recent years. Intuitively, the stability of a learning al-
gorithm can be referred as perturbation sensitivity in the training sample. It
was first introduced in [5] for estimating leave-one-out error and further used to
bound empirical risk of regression [10], which discovered a connection between
finite VC dimension and stability. Bousquet and Elisseeff [3] obtained an expo-
nential bound for uniform stability and proved that the Tikhonov regularized
algorithms hold uniform stability property. Kutin and Niyogi [12] generalized the
uniform stability to almost-everywhere algorithmic stability and derived general-
ization error bounds with extensions of McDiarmid’s inequality. Stability has also
been employed to bound the bias and variance of estimators for ERM (empirical
risk minimization) or general algorithm [17]. An influential work of Mukherjee
et al. [16] showed that stability is sufficient for generalization and sufficient and
necessary for consistency of ERM in supervised regression and classification.
Later, this result was extended to general learning setting by Shalev-Shwartz et
al. [22].

AdaBoost [6, 7] is one of the most influential learning algorithms during the
past decades. Many theoretical efforts have been devoted to studying the mys-
teries behind the great success of AdaBoost. There are different interpretations
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from different aspects, and they have shed important insights for understanding
the behaviors of AdaBoost. However, debates are still lasting to date, for ex-
ample, on margin-based interpretation [4, 21, 19, 25] and statistical-view-based
interpretation [2, 9, 15].

Considering the recent advances in stability, it is interesting to study the
stability issues of AdaBoost. Kutin and Niyogi [11] proved that AdaBoost has
almost-everywhere uniform stability if the base learner is L1 stable. To the best
of our knowledge, this is the only stability result for AdaBoost. The requirement
of L1 stability, however, is too restrictive, and as we will show in Section 4,
AdaBoost becomes constant learner when the base learner is not real-valued
learner. Note that as Freund and Schapire [8] indicated, AdaBoost is a classi-
fication algorithm, and so it is important to study the situation when the base
learner is not real-valued learner.

In this paper, we introduce the notion of approximation stability, and prove
that the approximation stability is sufficient for generalization, and is sufficient
and necessary for learnability of AERM (asymptotical empirical risk minimiza-
tion) in the general learning setting. Then, we prove that AdaBoost has approx-
imation stability and thus has good generalization, and an exponential bound
for AdaBoost is provided. All bounds obtained in this paper do not rely on any
space complexity measure, but rather on the way the algorithm searches the
space, and thus can be used even when the VC dimension is infinite.

In the rest of this paper we begin by introducing some notations and back-
ground knowledge in Section 2. Then, we give our results in Sections 3 and 4,
and finally present the detail proofs in Section 5.

2 Preliminaries

2.1 Notations

Let Z denote an instance space and D denote an unknown probability distri-
bution over Z. We use PrD[·] to refer to the probability with respect to D and
PrS [·] to denote the probability with respect to a uniform distribution over the
training sample S. Similarly, we use ED[·] and ES [·] to denote the expected val-
ues, respectively. For a positive number n, we denote by [n] the set {1, 2, · · · , n}.
Given two distributions p and q with finite support, ||p − q|| is defined to be
the L1-norm of p − q, i.e., ||p − q|| =

∑
z∈Z |p(z) − q(z)|. For a given sample

S = {z1, z2, · · · , zn} drawn i.i.d. according to distribution D, let Si = S \ zi be
the sample with the i-th example zi removed from S. For any u ∈ Z, we denote
by Si,u = Si ∪ {u} the sample with the i-th example zi replaced by u in S.

A learning algorithm is a function A which maps a distribution p over Z onto
a function Ap ∈ H, where H is a specific hypothesis class. Note that AS means
Ap where p is the uniform distribution on the training sample S. Throughout
this paper, we consider symmetric algorithms, i.e., algorithms depend upon the
given sample but not on the order of examples in the sample.

To measure the performance, we introduce a cost function c : H × Z → R.
We assume such cost function is bounded by some constant B, i.e., |c(h, z)| ≤ B
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for every h ∈ H and z ∈ Z. Given a sample S with size n and function h ∈ H,
define the empirical risk and expect risk, respectively, as

RS(h) = Ez∼S [c(h, z)] =
1
n

∑

z∈S

c(h, z) and R(h) = Ez∼D[c(h, z)].

The general learning setting [24] is to minimize the expect risk, i.e., minh∈HR(h).
Such setting comprises density estimation, stochastic optimization and super-
vised classification and regression. For instance, in supervised learning, z = (x, y)
is an instance-label pair and c(h, z) = c(h(x), y) is the prediction loss for h ∈ H.

Classical learning theory focuses on ERM, that is,

RS(AS) = RS(ĥS) = min
h∈H

RS(h),

where we denote by ĥS = arg minh∈HRS(h). A learning algorithm A is said to
be AERM with rate εerm(n) under distribution D if

ES∼Dn [RS(AS)−RS(ĥS)] ≤ εerm(n).

We focus on AERM learning problems in this paper and ERM can be resolved
in a similar way.

We say a learning algorithm A is consistent with rate εcon(n) under distribu-
tion D if

ES∼Dn [R(AS)−R(h∗)] ≤ εcon(n) for all n,

where h∗ = arg minh∈HR(h). An algorithm A is universally consistent with
rate εcon(n) if it is consistent with rate εcon(n) under all distributions D over
Z. A problem is learnable if there exists a universal consistent algorithm. The
most influential result in classical learning theory for supervised classification
and regression is that a problem is learnable if and only if the empirical risk
RS(h) converges to the expect risk R(h) [24]. This equivalence, however, does
not always hold in the general learning setting [1, 23].

We say a learning algorithm A generalizes with rate εgen(n) under distribution
D if

ES∼Dn [|R(AS)−RS(AS)|] ≤ εgen(n) for all n.

An algorithm A universally generalizes with εgen(n) if it generalizes with rate
εgen(n) under all distributionsD over Z. In this paper we require εerm(n), εcon(n),
εgen(n) → 0 as n →∞.

2.2 Stability

Stability has been explored as an alternative for learnability. Definitions 1 and
2 show the CV stability [12, 17] and uniform stability [3], respectively.

Definition 1. A learning algorithm A has CV stability η(n) under distribution
D if

∀ i ∈ [n], ES,u∼Dn+1 [|c(AS , u)− c(ASi,u , u)|] ≤ η(n).
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Algorithm 1 AdaBoost
Input: Sample S = {z1 = (x1, y1), z2 = (x2, y2), · · · , zn = (xn, yn)} ∈ Zn, base learner
A and iteration rounds T .
Initialization: P 1

S(zi) = 1/n for each zi ∈ S.

for t = 1 to T do
1. Call A with respect to distribution P t

S to obtain a hypothesis AP t
S
.

2. Choose αt
S = 1

2
ln

1−errt
S

errt
S

with errt
S = Ez∼P t

S
[c(AP t

S
, z)], where c(AP t

S
, z) =

I[AP t
S
(x) 6= y].

3. Update P t+1
S (zi) = 1

Zt
P t

S(zi) exp(−αt
SyiAP t

S
(xi)), where Zt is a normalization

factor (such that P t+1
S is a distribution).

end for

Output: The learner sgn(HS(x)) where HS(x) =
∑T

t=1 αt
SAP t

S
(x).

Definition 2. A learning algorithm A has uniform stability β(n) if

∀ S ∈ Zn, ∀ i ∈ [n] and ∀ z, u ∈ Z, |c(AS , z)− c(ASi,u , z)| ≤ β(n).

A relevant concept, on-average-LOO stability [22], is defined as follows:

Definition 3. A learning algorithm A has on-average-LOO stability β(n) if
∣∣∣ 1
n

∑n

i=1
ES∼Dn [c(ASi , zi)− c(AS , zi)]

∣∣∣ ≤ β(n).

Here and whenever talking about “stability” β(n) and η(n), we require β(n), η(n)
→ 0 as n →∞.

In this paper we will introduce approximation stability which is a kind of
replacement version stability. As Shalev-Shwartz et al. [22] indicated, previously
many researchers defined stability with respect to the deletion rather than re-
placement of an example. For instance, the deletion version uniform stability
[5], the hypothesis stability [3], the cross-validation-(deletion) stability [17], the
CVloo stability [16], etc. It is worth noting, however, that the deletion version
stability implies the replacement version stability but not vice versa1; this is the
reason why we focus on replacement version stability in this paper.

2.3 AdaBoost

Algorithm 1 shows a commonly used description of AdaBoost [6]. Kutin and
Niyogi [11] studied the stability of AdaBoost and proved that when the base
learner has L1 stability and is real-valued with loss function c(h, z) = |h(x)− y|,
AdaBoost has almost-everywhere uniform stability. The L1 stability is given in
Definition 4, which is equivalent to uniform stability, and the main result of [11]
is shown in Theorem 1 using our notations.
1 An example can be found in [16]: Let Z = X × {+1,−1} with X being uniform on

[0, 1]. Suppose the target function is t(x) = 1 with 0/1 loss function. Given a sample
Sn of size n, a non-AERM algorithm ASn(x) = (−1)n. Note that AS does not have
any deletion version stability but has replacement version uniform stability.
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Definition 4. A learning algorithm A has L1 stability λ (constant) if |c(Ap, z)−
c(Aq, z)| ≤ λ||p − q|| for any z ∈ Z and any given distributions p and q on Z
with finite support.

Theorem 1. Suppose the base learner A has L1 stability λ, and let

ε? =
1
2

lim
n→∞

inf ES∼Dn

[
inf

Ŝ∈Zm,m≤n
RS(AŜ)

]
> 0.

Then, for all sufficiently large n and for all T , it holds for AdaBoost that

PrS∼Dn [∀ i ∈ [n],∀ u, z ∈ Z, |c(HS , z)− c(HSi,u , z)| ≤ β(n)] ≥ 1− δ(n),

where β(n) = 2
n

∑T
t=1 2t2+1(λ + 1)t/ε2t−1

? and δ(n) = exp(−nε2?/2).

To the best of our knowledge, this is the only stability result for AdaBoost.
It is worth noting, however, that it was obtained based on real-valued learner
with the loss function c(h, z) = |h(x) − y|. We will show in Section 4 that
for this result, AdaBoost becomes constant learner when the base learner is
not real-valued learner. As Freund and Schapire [8] indicated, AdaBoost is a
classification algorithm and therefore, it is important to study the stability of
AdaBoost when the base learner is not real-valued learner, with the loss function
c(h, z) = I[h(x) 6= y] that is popularly used by classification algorithms; this
remains an open problem and we will try to tackle it in the following sections.

3 Approximation Stability

We first introduce the empirical stability, expected empirical stability, validation
stability and expected validation stability:

Definition 5. A learning algorithm A has empirical stability β(n) if

∀ S ∈ Zn, ∀ i ∈ [n] and ∀ u ∈ Z, |RS(AS)−RSi,u(ASi,u)| ≤ β(n).

A learning algorithm A has expected empirical stability β(n) under distribution
D if

∀ i ∈ [n], ES,u∼Dn+1 [|RS(AS)−RSi,u(ASi,u)|] ≤ β(n).

Definition 6. A learning algorithm A has validation stability β(n) under dis-
tribution D if

∀ S ∈ Zn and ∀ i ∈ [n], |R(AS)− Eu∼D[c(ASi,u , u)]| ≤ β(n).

A learning algorithm A has expected validation stability β(n) under distribution
D if

∀ i ∈ [n], ES∼Dn [|R(AS)− Eu∼D[c(ASi,u , u)]|] ≤ β(n).

An algorithm A has universally expected validation stability β(n) if the stability
holds with β(n) for all distributions D over Z. Combining the expected empirical
stability and expected validation stability gives approximation stability:
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Definition 7. A learning algorithm A has approximation stability (β1(n), β2(n))
under distribution D if it exhibits both expected empirical stability β1(n) and
expected validation stability β2(n).

We prove that approximation stability is sufficient for generalization in the
following theorem:

Theorem 2. If an algorithm A has approximation stability (β1(n), β2(n)), then
A generalizes with rate εgen(n) = B/

√
n +

√
3β1(n)B/2 + 4β2(n)B + 3B2/

√
n,

that is,

ES∼Dn [|R(AS)−RS(AS)|] ≤ B/
√

n +
√

3β1(n)B/2 + 4β2(n)B + 3B2/
√

n.

Note that the CLT (central limit theorem) guarantees that the average of
i.i.d. random variables converges to expectation. However, AS is dependent on
S and thus the CLT is not applicable. The proof in Section 5 shows that the
combination of expected validation stability and expected empirical stability
implies generalization, though neither the expected validation stability nor the
expected empirical stability is sufficient.

Next, we study the relationship between the approximation stability and
the learnability of AERM in the general learning setting. Lemma 1 shows that
AERM implies expected empirical stability. Hence we only need to study the
relationship between the expected validation stability and the learnability of
AERM. Theorem 3 establishes the equivalence between them.

Lemma 1 (AERM ⇒ Expected empirical stability). If a learning algo-
rithm A is AERM with rate εerm(n) under distribution D, then A has expected
empirical stability β(n) = 2εerm(n) + 2B/n.

Proof. For any i ∈ [n] and any u ∈ Z, we have

ES∼Dn [|RS(AS)−RSi,u(ASi,u)|] ≤ ES∼Dn [|RS(AS)−RS(ĥS)|]
+ ES∼Dn [|RS(ĥS)−RSi,u(ĥSi,u)|] + ES∼Dn [|RSi,u(ĥSi,u)−RSi,u(ASi,u)|]

≤ 2εerm(n) + 2B/n,

since |RS(ĥS)−RSi,u(ĥSi,u)| ≤ 2B/n from the definition of ERM. ut
Theorem 3. The following are equivalent for an AERM:

– Universal expected validation stability;
– Universal consistency;
– Universal generalization.

The equivalence between the on-average-LOO stability and learnability has
been established in [22]. We thus work by establishing the equivalence between
the expected validation stability and on-average-LOO stability under AERM,
though this equivalence does not always hold in general and we use other tech-
niques in such case in the proof.



Approximation Stability and Boosting 7

It is worth noting that the uniform stability [3], which could be strictly
stronger than any other stability, is not necessary for learnability [22]. Mukherjee
et al. [16] suggested that LOO stability implies generalization, and is necessary
and sufficient for consistency of ERM via uniform convergence of RS(h) to R(h).
It is well-known that uniform convergence is not equivalent to ERM consistency
[1, 23] and thus their work is specific to supervised learning. In the general learn-
ing setting, the equivalence between on-average-LOO stability and learnability
has been established for AERM [22]. However, out of the AERM framework
there are also many useful learning algorithms, on which the on-average-LOO
stability could not be applied. For instance, we could not guarantee that Ad-
aBoost is AERM, and thus our approximation stability is meaningful for its
analysis. Overall, comparing to previous stabilities, our approximation stability
does not only promise generalization for general algorithm, but also guarantee
sufficiency and necessity of learnability of AERM in the general setting.

Finally, we derive a bound for learning algorithm A which has both empirical
stability and validation stability. The following theorem shows that the empirical
risk converges to expect risk with high probability when β1(n) = o(n−

1
2 ) and

β2(n) = o(n−
1
2 ) where o(n) represents o(n)

n → 0 as n →∞.

Theorem 4. If a learning algorithm A has both empirical stability β1(n) and
validation stability β2(n) under distribution D, then, for all n ≥ 1 and ε > 0,

PrS∼Dn [|R(AS)−RS(AS)| ≥ ε + β2(n)] ≤ 2 exp
( −2ε2

n(β1(n) + 2β2(n))2

)
.

Uniform stability is sufficient for exponential generalization bound [3], how-
ever, it can only be used for regression or classification with real-valued learners.
Note that the uniform stability implies empirical stability and validation stabil-
ity, but not vice versa. Thus we get an exponential bound though our assumption
is weaker than that used by [3] for the uniform stability bound.

Proof. Let F (S) = R(AS)−RS(AS). For any i ∈ [n], we have

|ES∼Dn [F (S)]| ≤ |ES,u∼Dn+1 [R(AS)−RSi,u(ASi,u)]|
+ |ES,u∼Dn+1 [RSi,u(ASi,u)−RS(AS)]| = |ES,u∼Dn+1 [R(AS)−RSi,u(ASi,u)]|,
by using ES,u∼Dn+1 [RSi,u(ASi,u)] = ES∼Dn [RS(AS)]. From symmetry and i.i.d
assumption, ES,u∼Dn+1 [RSi,u(ASi,u)] = ES,u∼Dn+1 [c(ASi,u , u)], which leads to

|ES,u∼Dn+1 [R(AS)−RSi,u(ASi,u)]|
= |ES∼Dn [R(AS)− Eu∼D[c(ASi,u , u)]]| ≤ β2(n).

Thus we bound |ES∼Dn [F (S)]| ≤ β2(n). Meanwhile, it holds

|F (S)− F (Si,u)| ≤ |R(AS)−R(ASi,u)|+ |RS(AS)−RSi,u(ASi,u)|
≤ |R(AS)− Ez∼D[c(ASi,z , z)] + Ez∼D[c(ASi,z , z)]−R(ASi,u)|

+ β1(n) ≤ β1(n) + 2β2(n).

This theorem follows by applying McDiarmid formula [14] to F (S). ut
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4 Approximation Stability for AdaBoost

The following lemma shows that the L1 stability is too restrictive for non real-
valued learners with cost function c(h, z) = I[h(x) 6= y].

Lemma 2. If a learning algorithm A has L1 stability λ, then ASn
is a constant

algorithm for n > 2λ.

Proof. From the definition of L1 stability, we have

∀ S ∈ Zn,∀ i ∈ [n] and ∀ z, u ∈ Z, |c(AS , z)− c(ASi,u , z)| ≤ 2λ/n.

It follows AS(z) = ASi,u(z) since c(h, z) ∈ {0, 1} and |c(AS , z)− c(ASi,u , z)| < 1
for n > 2λ. We can also prove AS(z) = ASi(z) for all z ∈ Z in a similar way. ut

If the base learner in AdaBoost is not real-valued learner for large-size sam-
ple, then the base learner is a constant learner according to the above lemma.
This follows that AdaBoost becomes a constant learner. Thus, Theorem 1, the
only stability result for AdaBoost, does not completely explain the stability of
AdaBoost for general base learner.

Since AdaBoost is mostly successful as a classification algorithm, in contrast
to considering real-valued base learner with loss function c(h, z) = |h(x) − y|,
it may be more interesting to consider non real-valued base learner with loss
function c(h, z) = I[h(x) 6= y] which is adopted by classifiers such as decision
trees and decision stumps that are popularly used with AdaBoost in practice.

Below we will discuss the stability of AdaBoost. Observing that

Pr
S

[y 6= sgn(HS(x))] = ES [I[yHS(x) ≤ 0]] ≤ ES [exp(−yHS(x))],

we choose the cost function for HS(x) as c(HS , z) = exp(−yHS(x)). This is also
in accordance with the theory that AdaBoost can be regarded as a coordinate
descent algorithm [4, 9, 13, 18] for minimizing RS(HS). For base learner, we set
the cost function c(At

S , z) = I[At
S(x) 6= y] described in Algorithm 1.

We assume the iteration number T for AdaBoost is given in advance, and
thus T is a constant since stability could not be used to analyze AdaBoost for
unfixed or infinite T . We also assume γ ≤ errt

S ≤ 1 − γ for some small γ > 0,
because c(HS , z) may approach to infinity if errt

S → 0 or errt
S → 1, which goes

beyond our discussion (bounded cost function). Such assumption can be viewed
as a variation of “bounded edges” in [20]. A bound for c(HS , z) is given as follows.

Lemma 3. For constant T ≥ 1 and any S ∈ Zn, if the base learner in each
iteration satisfies γ ≤ errt

S ≤ 1− γ with γ > 0, then c(HS , z) ≤ (
(1− γ)/γ

)T/2.

Proof. Since αt
S = 1

2 ln((1−errt
S)/errt

S) and γ ≤ errt
S ≤ 1−γ, we have 1

2 ln(γ/(1−
γ)) ≤ αt

S ≤ 1
2 ln((1 − γ)/γ). It follows c(HS , z) = exp

( − y
∑T

t=1 αt
SAP t

S
(x)

) ≤
exp

( ∑T
t=1 |αt

S |
) ≤ (

(1− γ)/γ
)T/2 as desired. ut

Denote by B the bound of c(HS , z) for notational simplicity. We have the
following theorem on the approximation stability of AdaBoost:
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Theorem 5. AdaBoost has approximation stability (β1(n), β2(n)) for constant
T ≥ 1, if the base learner in each round has CV stability η(n), and for any
u ∈ Z, i ∈ [n], t ∈ [T ] and small γ > 0, the following holds:

ES,u∼Dn+1 [|errt
S − errt

Si,u |] ≤ ζ(n) and γ ≤ errt
S , errt

Si,u ≤ 1− γ.

Here

β1(n) =
ζ(n)T√
γ(1− γ)

and β2(n) =
BT

2

(
η(n) ln

1− γ

γ
+

ζ(n)
γ(1− γ)

)
.

Also, we have

ES∼Dn [|R(HS)−RS(HS)|] ≤ B/
√

n +
√

3β1(n)B/2 + 4β2(n)B + 3B2/
√

n.

We can also have a tighter bound for AdaBoost by considering Theorem 4:

Theorem 6. AdaBoost has empirical stability β1(n) and validation stability
β2(n) for constant T ≥ 1, if for any u, S ∈ Zn+1, i ∈ [n], t ∈ [T ] and small
γ > 0, the following holds:

Eu∼D[|c(AS , u)− c(ASi,u , u)|] ≤ η(n), |errt
S − errt

Si,u | < ζ(n),

and γ ≤ errt
S , errt

Si,u ≤ 1− γ. Here

β1(n) =
ζ(n)T√
γ(1− γ)

and β2(n) =
BT

2

(
η(n) ln

1− γ

γ
+

ζ(n)
γ(1− γ)

)
.

For ε > 0, we have

PrS∼Dn [|R(HS)−RS(HS)]| ≥ ε + β2(n)] ≤ 2 exp
( −2ε2

n(β1(n) + 2β2(n))2

)
.

5 Proofs

This section presents detail proofs of our main theorems. Before proceeding our
proofs, we introduce some tools which will be used:

Proposition 1. [22] Let |Xi| ≤ B and X =
∑n

i=1 Xi/n for i.i.d. Xi. Then we
have E[|X − E[X]|] ≤ B/

√
n.

Proposition 2. [22] If X, Y are random variables s.t. X ≤ Y almost surely,
then E[|X|] ≤ |E[X]|+ 2E[|Y |].
Proposition 3. If a learning algorithm A has expected validation stability β(n)
under distribution D, then ES,u∼Dn+1 [|R(AS)−R(ASi,u)|] ≤ 2β(n) for all i ∈ [n].

The last proposition follows from the fact ES,u∼Dn+1 [|R(AS) − R(ASi,u)|] =
ES,u∼Dn+1 [|Ez∼D[c(AS , z)− c(ASi,z , z) + c(ASi,z , z)− c(ASi,u , z)]|].
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5.1 Proof of Theorem 2

We start by introducing a ghost sample Ŝ = {ẑ1, ẑ2, · · · , ẑn} drawn i.i.d accord-
ing to distribution D and denote RŜ(AS) =

∑n
i=1 c(AS , ẑi)/n. It follows

ES∼Dn [|RS(AS)−R(AS)|] ≤ ES,Ŝ∼D2n [|R(AS)−RŜ(AS)|]
+ ES,Ŝ∼D2n [|RS(AS)−RŜ(AS)|].

We bound the first term by ES,Ŝ∼D2n [|R(AS)−RŜ(AS)|] ≤ B/
√

n from Propo-
sition 1 since AS is independent of Ŝ. For the second term, using the Jensen’s
inequality,

ES,Ŝ∼D2n [|RS(AS)−RŜ(AS)|] ≤
√

ES,Ŝ∼D2n [(RS(AS)−RŜ(AS))2].

To bound this expression, we introduce a random permutation which swaps
elements between S and Ŝ, i.e., a permutation σ on {1, 2, · · · , n, 1̂, 2̂, · · · , n̂} s.t.
{σ(i), σ(̂i)} = {i, î}. Denote by Sσ and Ŝσ the permuted samples of S and Ŝ,
respectively, and define zσ

i and ẑσ
i in an obvious way. Since S and Ŝ are chosen

i.i.d according to distribution D, ES,Ŝ∼D2n [(RS(AS)−RŜ(AS))2] equals to

ES,Ŝ∼D2n

[ ∑
σ

(
RSσ (ASσ )−RŜσ (ASσ )

)2
/2n

]

=
1

n22n
ES,Ŝ∼D2n

[ ∑

i,j,σ

(
c(ASσ , zσ

i )− c(ASσ , ẑσ
i )

)(
c(ASσ , zσ

j )− c(ASσ , ẑσ
j )

)]
.

Given σ and i, we define two permutations σ1 and σ2 as follows: σ1(i) = i,
σ1(̂i) = î, σ2(i) = î, σ2(̂i) = i and σ1(k) = σ2(k) = σ(k) for k 6= i, î. It holds

∑
σ

(
c(ASσ , zσ

i )− c(ASσ , ẑσ
i )

)(
c(ASσ , zσ

j )− c(ASσ , ẑσ
j

)

=
∑

σ1

(
c(ASσ1 , zσ1

i )− c(ASσ1 , ẑσ1
i )

)(
c(ASσ1 , zσ1

j )− c(ASσ1 , ẑσ1
j )

)
/2

+
∑

σ2

(
c(ASσ2 , zσ2

i )− c(ASσ2 , ẑσ2
i )

)(
c(ASσ2 , zσ2

j )− c(ASσ2 , ẑσ2
j )

)
/2

=
∑

(Θij + ∆ij)/2

where Θij = χ3(χ4 − χ2) and ∆ij = χ2(χ1 + χ3) with χ1 = c(ASσ1 , zσ1
i ) −

c(ASσ1 , ẑσ1
i ), χ2 = c(ASσ1 , zσ1

j )− c(ASσ1 , ẑσ1
j ), χ3 = c(ASσ2 , zσ2

i )− c(ASσ2 , ẑσ2
i )

and χ4 = c(ASσ2 , zσ2
j )− c(ASσ2 , ẑσ2

j ). Noting σ1 and σ2 are independent of j,

ES,Ŝ

[ ∑n

i=1

∑n

j=1
Θij/n2

]
= ES,Ŝ

[ ∑n

i=1

(
c(ASσ2 , zσ2

i )− c(ASσ2 , ẑσ2
i )

)

× (
RSσ2 (ASσ2 )−RSσ1 (ASσ1 ) + RŜσ1 (ASσ1 )−RŜσ2 (ASσ2 )

)
/n

]
.
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Since |c(AS , z)| ≤ B and A has approximation stability (β1(n), β2(n)), we obtain
ES,Ŝ∼D2n [|RSσ1 (ASσ1 )−RSσ2 (ASσ2 )|] ≤ β1(n) and

ES,Ŝ∼D2n [|RŜσ2 (ASσ2 )−RŜσ1 (ASσ1 )|] ≤ ES,Ŝ∼D2n [|RŜσ2 (ASσ2 )−R(ASσ2 )|]
+ ES,Ŝ∼D2n [|RŜσ1 (ASσ1 )−R(ASσ1 )|] + ES,Ŝ∼D2n [|R(ASσ1 )−R(ASσ2 )|]

≤ 2β2(n) + 2B/
√

n, (1)

from Proposition 1 and Proposition 3. Thus we show
∣∣∣ES,Ŝ

[ 1
n2

n∑

i=1

n∑

j=1

Θij

]∣∣∣ ≤ 2Bβ1(n) + 4Bβ2(n) + 4B2/
√

n. (2)

For ES,Ŝ [
∑n

i=1

∑n
j=1 ∆ij/n2], we also have

ES,Ŝ

[ 1
n2

n∑

i=1

n∑

j=1

∆ij

]
= ES,Ŝ

[ 1
n

n∑

i=1

(
RSσ1 (ASσ1 )−RŜσ1 (ASσ1 )

)

× (
c(ASσ1 , zσ1

i )− c(ASσ1 , ẑσ1
i ) + c(ASσ2 , zσ2

i )− c(ASσ2 , ẑσ2
i )

)]
.

This expression could not be summed directly since σ1 and σ2 are dependent on
i. But from symmetry and i.i.d assumption, we have

ES,Ŝ

[ 1
n2

n∑

i=1

n∑

j=1

∆ij

]
= ES,Ŝ [

(
R

Sσ∗1 (A
Sσ∗1 )−R

Ŝσ∗1 (A
Sσ∗1 )

)

× (
c(A

Sσ∗1 , z1)− c(A
Sσ∗1 , ẑ1) + c(A

Sσ∗2 , ẑ1)− c(A
Sσ∗2 , z1)

)
],

where σ∗1(1) = 1, σ∗1(1̂) = 1̂, σ∗2(1) = 1̂, σ∗2(1̂) = 1 and σ∗1(k) = σ∗2(k) = σ(k) for
k 6= 1, 1̂. Let z, ẑ be two new examples and set S1 = S1,z, Ŝ1 = Ŝ1,ẑ. In a similar
way to prove Eq.(2), we have

ES,Ŝ,z,ẑ[|RSσ∗1 (A
Sσ∗1 )−R

Ŝσ∗1 (A
Sσ∗1 )−R

S
σ∗1
1

(A
S

σ∗1
1

) + R
Ŝ1

σ∗1 (A
S

σ∗1
1

)|]
≤ β1(n) + 2β2(n) + 2B/

√
n. (3)

Since z1 and ẑ1 are independent to S1 and Ŝ1, it holds
∣∣∣ES,Ŝ,z,ẑ

[(
c(A

Sσ∗1 , z1)− c(A
Sσ∗1 , ẑ1) + c(A

Sσ∗2 , ẑ1)− c(A
Sσ∗2 , z1)

)×
(
R

S
σ∗1
1

(A
S

σ∗1
1

)−R
Ŝ1

σ∗1 (A
S

σ∗1
1

)
)]∣∣∣ =

∣∣∣ES1,Ŝ1,z,ẑ

[(
R

S
σ∗1
1

(A
S

σ∗1
1

)−R
Ŝ1

σ∗1 (A
S

σ∗1
1

)
)

× (
Ez1∼D[c(A

Sσ∗1 , z1)− c(A
Sσ∗2 , z1)] + Eẑ1∼D[c(A

Sσ∗2 , ẑ1)− c(A
Sσ∗1 , ẑ1)]

)]∣∣∣
≤ 4Bβ2(n).

Thus we derive
∣∣∣ES,Ŝ

[
1

n2

∑n
i=1

∑n
j=1 ∆ij

]∣∣∣ ≤ 4B(β1(n)+3β2(n)+2B/
√

n) from

Eq.(3), which yields ES,Ŝ∼D2n [(RS(AS)−RŜ(AS))2] ≤ 3Bβ1(n)/2 + 4Bβ2(n) +
3B2/

√
n from Eq.(2). This theorem follows. ut
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5.2 Proof of Theorem 3

The equivalence between the universal consistency and universal generalization
has been established in [22]. Combining Lemma 1 and Theorem 2 proves that A
generalizes with rate εgen(n) =

√
3εerm(n)B + 4β2(n)B + 3B2/

√
n + 3B2/n +

B/
√

n if A is AERM with rate εerm(n) and has expected validation stability
β2(n). Thus Theorem 3 follows from the following lemma.

Lemma 4 (AERM + generalization + consistency ⇒ Expected vali-
dation stability). Suppose A is consistent with rate εcons(n), generalized with
rate εgen(n), and AERM with rate εerm(n) such that nεerm(n) → 0 as n → ∞.
Then A has expected validation stability β(n) = εgen + 4εcons + 2nεerm(n).

Proof. For i ∈ [n], since |Eu∼D[c(AS , u) − c(ASi,u , u)]| ≤ |Eu∼D[c(AS , u) −
Ez∼D[c(ASi,z , u)]]|+ |Eu∼D[Ez∼D[c(ASi,z , u)]− c(ASi,u , u)]|, we have

ES∼Dn [|Eu∼D[c(AS , u)− c(ASi,u , u)]|]
≤ ES,z∼Dn+1 [|Eu∼D[c(AS , u)− c(ASi,z , u)]|]+

ES∼Dn [|Eu,z∼D2 [c(ASi,z , u)− c(ASi,u , u) + c(ASi,u , z)− c(ASi,z , z)]|]/2.

For the first term, we can easily upper bound

ES,z∼Dn+1 [|Eu∼D[c(AS , u)− c(ASi,z , u)]|] ≤ ES,z∼Dn+1 [|R(AS)−R(h∗)|]
+ ES,z∼Dn+1 [|R(h∗)−R(ASi,z )|] ≤ 2εcons(n) (4)

from the consistency of AS . For the second term, it holds

ES∼Dn [|Eu,z∼D2 [c(ASi,z , u)− c(ASi,u , u) + c(ASi,u , z)− c(ASi,z , z)]|] =
nES∼Dn [|Eu,z∼D2 [RSi,u(ASi,z )−RSi,u(ASi,u) + RSi,z (ASi,u)−RSi,z (ASi,z )]|]

= 2nES∼Dn [|Eu,z∼D2 [RSi,u(ASi,u)]−RSi,u(ASi,z )|].
We will use Proposition 2 to bound the above expression. It holds

|ES∼Dn [Eu,z∼D2 [RSi,u(ASi,u)]−RSi,u(ASi,z )]|
= |ES,u,z∼Dn+2 [c(ASi,u , u)− c(ASi,z , u)]|/n.

Meanwhile, it is easy to obtain ES,u∼Dn+1 [c(ASi,u , u)] = ES,u∼Dn+1 [RSi,u(ASi,u)]
and ES,u,z∼Dn+2 [c(ASi,z , u)] = ES,z∼Dn+1 [R(ASi,z )] from symmetry and i.i.d
assumption. This leads to

|ES∼Dn [Eu,z∼D2 [RSi,u(ASi,u)]−RSi,u(ASi,z )]| ≤ εgen/n + 2εcons/n.

For ERM, RSi,u(ASi,u)−RSi,u(ASi,z ) ≤ RSi,u(ASi,u)−RSi,u(ĥSi,u) and

ES,u∼Dn+1 [|RSi,u(ASi,u)−RSi,u(ĥSi,u)|] ≤ εerm(n).

By Proposition 2, we have

nES∼Dn [|Eu,z∼D2 [RSi,u(ASi,u)]−RSi,u(ASi,z )|] ≤ εgen + 2εcons + 2nεerm(n),

which concludes this lemma by combining with Eq.(4). ut
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5.3 Proofs of Theorems 5 and 6

The two proofs are relatively similar, and thus we only give the detail proof
of Theorem 6. Set err(t) = errt

S , err′(t) = errt
Si,u , α(t) = αt

S , α′(t) = αt
Si,u ,

ht(x) = AP t
S
(x) and h′t(x) = AP t

Si,u
(x) for short in this subsection. The following

lemma establishes AdaBoost’s empirical stability.

Lemma 5. For any u, S ∈ Zn+1, any i ∈ [n], any t ∈ [T ] and small γ > 0, if
base learner satisfies γ ≤ errt

S , errt
Si,u ≤ 1− γ and |errt

S − errt
Si,u | ≤ ζ(n), then

the combined learner HS(x) has empirical stability β1(n) = ζ(n)T/
√

γ(1− γ).

Proof. From [21] we derive

RS(HS) = 2T
∏T

t=1

√
err(t)(1− err(t))

RSi,u(HSi,u) = 2T
∏T

t=1

√
err′(t)(1− err′(t)).

Since γ < err(t) < 1−γ, it is easy to get
√

γ(1− γ) ≤
√

err(t)(1− err(t)) ≤ 1/2,
which leads to

|
√

err(t)(1− err(t))−
√

err′(t)(1− err′(t))|

=
|err(t)− err′(t)| × |1− err(t)− err′(t)|√
err(t)(1− err(t)) +

√
err′(t)(1− err′(t))

≤ ζ(n)/2√
γ(1− γ)

,

and RS(HS) < 1. Thus |RS(HS)−RSi,u(HSi,u)| is bounded by

2T−1
∣∣∣

T−1∏
t=1

√
err(t)(1− err(t))−

T−1∏
t=1

√
err′(t)(1− err′(t))

∣∣∣

+ 2T
∣∣∣
√

err(T )(1− err(T ))−
√

err′(T )(1− err′(T ))
∣∣∣

T−1∏
t=1

√
err(t)(1− err(t))

≤ 2T−1
∣∣∣

T−1∏
t=1

√
err(t)(1− err(t))−

T−1∏
t=1

√
err′(t)(1− err′(t))

∣∣∣ +
ζ(n)√

γ(1− γ)

which leads to |RS(HS)−RSi,u(HSi,u)| ≤ ζ(n)T/
√

γ(1− γ) as desired. ut
Lemma 6. If ht(x), h′t(x) are two binary learners with cost function c(h, z) =
I[h(x) 6= y], then we have Ez∼D[|ht(x)− h′t(x)|] = Ez∼D[|c(ht, z)− c(h′t, z)|].
This lemma holds from the fact |I[ht(x) 6= y] − I[h′t(x) 6= y]| = |ht(x) − h′t(x)|.
The following lemma establishes the validation stability of AdaBoost.

Lemma 7. For any u, S ∈ Zn+1, any i ∈ [n], any t ∈ [T ] and 0 < γ < 1/2,
if the base learner satisfies γ ≤ errt

S , errt
Si,u ≤ 1 − γ, |errt

S − errt
Si,u | ≤ ζ(n)

and Eu∼D[|c(AS , u) − c(ASi,u , u)|] ≤ η(n), then HS(x) has validation stability
β2(n) = TB

(η(n)
2 ln 1−γ

γ + ζ(n)
2γ(1−γ)

)
.
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Proof. We first set u = (x, y). From mean value theorem and γ ≤ err(t), err′(t) ≤
1− γ, we have |α(t)− α′(t)| ≤ ζ(n)/(2γ(1− γ)). It follows from Lemma 6 that

Eu∼D[|α(t)ht(x)− α′(t)h′t(x)|] ≤ Eu∼D[|α(t)||ht(x)− h′t(x)|]

+ Eu∼D[|h′t(x)||α(t)− α′(t)|] ≤ η(n)
2

ln
1− γ

γ
+

ζ(n)
2γ(1− γ)

, (5)

Using mean value theorem again, we obtain

|exp (−yα(t)ht(x))− exp (−yα′(t)h′t(x))|
≤

√
(1− γ)/γ |α(t)ht(x)− α′(t)h′t(x)| .

Combining with Eq.(5) gives

|R(HS)− Eu∼D[R(HSi,u)]| ≤ Eu∼D [|exp(−yα′(T )h′T (x))× Γ |] +

Eu∼D
[∣∣∣ exp(−y

T−1∑
t=1

α(t)ht(x))
(
exp(−yα(T )hT (x))− exp(−yα′(T )h′T (x))

)∣∣∣
]

≤ (Bη(n)/2) ln((1− γ)/γ) + Bζ(n)/(2γ(1− γ)) + Eu∼D[|Γ |]
√

(1− γ)/γ,

where Γ = exp
(
−y

∑T−1
t=1 α(t)ht(x)

)
− exp

(
−y

∑T−1
t=1 α′(t)h′t(x)

)
. This com-

pletes the proof by straight evaluation. ut

By Lemmas 5 and 7 we get that AdaBoost has empirical stability and vali-
dation stability, respectively. Thus, by using Theorem 4, we get Theorem 6.
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