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Abstract. Let p: E -* B be a real m-plane bundle and S an n-dimensional
subspace of the space of sections T(E) of E. S is said to be ¿-regular if
whenever xu .. ., xk are distinct points of B and v¡ £ p~l(x¡), 1 < i < k,
there exists a a e S such that o(xf) = v, for 1 < ¡ < k. It is proved that if E
has a Riemannian metric and £ is compact Hausdorff with at least k + 1
points, then 5 is ¿-regular if and only if for each <p E T(E), the set of best
approximations to <p by elements of 5 has dimension at most n — km. This
extends a classical theorem of Haar, Kolmogorov, and Rubinstein (the case
of the product line bundle). Complex and quaternionic analogues of the
above are obtained simultaneously. Existence and nonexistence of ¿-regular
subspaces of a given dimension are obtained in special cases via cohomo-
logical methods involving configuration spaces. For example, if £ is the
product real (2m — l)-plane bundle over a 2-dimensional disk, then T(E)
contains a ¿-regular subspace of dimension 2km — 1, but not one of
dimension 2km — 1 — a(k), where a(k) denotes the number of ones in the
dyadic expansion of ¿.

1. Introduction. Let K denote either the real numbers, the complex num-
bers, or the quaternions and let p: E -» B be a K w-plane bundle. Let T(E)
denote the space of continuous sections of E, and let S be a finite-dimen-
sional (over K) subspace of T(E).

Definition 1.1. S is k-regular (k a positive integer) if whenever xv . . . , xq
are distinct points of B, q < k, and v¡ e p~\x¡) are arbitrarily chosen for
1 < i < q, then there exists a a G S such that o(x¡) = t>, for 1 < i < q.

If B contains at least k points xv . . ., xk and S is fe-regular, then the map
S -»/>~'(*i) ffi • • • ®p~l(xk) given byoH» (a(*i),. . ., o(xkJ) is K-lincax and
onto, and so dim^ S > km.

The concept of fe-regularity will be seen to be of significance in the theory
of approximation of arbitrary sections of E by elements of S. Suppose B is
compact Hausdorff and that E has a Riemannian, Hermitian or symplectic
metric (depending on whether K = R, C or H). Then T(E) is a Banach space
over K with norm given by  ||<p|| = sup{||<p(x)|| |jc S B). Given any <p G
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384 DAVID HANDEL

r(£:>, define d(q>, S) = inf{||rp - a|| \o e S) and let ®s(ç>) = {a G S\ \\q> -
or11 = d(<p, S)} — the ie/ of best approximations to <p by elements of S. By
elementary approximation theory (see, e.g. [1, Chapters I and II]), ©5(<p) is a
nonempty convex subset of S for each <p G T(E). In §2, the following will be
proved:

Theorem 1.2. Suppose B is compact Hausdorff and contains at least k + 1
points. Let p: E —» B be a K m-plane bundle with a metric, and suppose S is an
n-dimensional (over K) subspace ofT(E). Then S is k-regular if and only if for
each <p G T(E), dimA-'Ss(<)p) < n — km. (The latter condition means that any
n — km + 2 members of ®s(<p) are affinely dependent over K.)

In particular, under the above hypotheses, a A:-regular subspace S will have
dimension km if and only if each <p G T(E) has a unique best approximation
by elements of S1.

In case E is the product K line bundle over B, T(E) becomes C(B, K), the
space of Ä"-valued continuous functions on B with the supremum norm, and
Theorem 1.2 specializes to a classical theorem of Haar, Kolmogorov, and
Rubinstein (see [10, pp. 237-242]). In this case, Ac-regularity can be refor-
mulated as follows: If a„ ... , a„ is a A"-basis for S c C(B, K), S is Â>regular
if and only if whenever x„ . . . , xq, q < k, are distinct points in B, the vectors
(a,(x,),. . . , on(x¡)) G K", I < i < q, are linearly independent over K.

The proof of Theorem 1.2 is elementary, entailing appropriate extensions of
arguments from classical approximation theory (cf. [1, pp. 67-72]), and
should be accessible to both topologists and analysts.

The remainder of the paper, which is directed primarily toward algebraic
topologists, is concerned with the problem: Given a K m-plane bundle p:
E -* B, and positive integers k, n, does T(E) contain an n-dimensional (over
K) A:-regular subspace? Some examples with noncompact base spaces are
included, as these have approximation-theoretic implications for bundles over
compact spaces which are contained in, or contain, these base spaces. In [3],
[6], [7] and [8] cohomological methods involving configuration spaces were
used to obtain negative results in the real product line bundle case. In §3,
these methods are extended to the general case. In §4, a number of elemen-
tary constructions are given for the manufacture of Ar-regular subspaces,
extending some results of [7] and [8]. In §5, results of §§3 and 4 are applied to
obtain some existence and nonexistence results for A;-regular subspaces, some
of which are best possible. For example, if E is the product real (2m — 1)-
plane bundle over R 2, then T(E) contains a Ar-regular subspace of dimension
2km - 1, but not one of dimension 2km — 1 — a(k), where a(k) denotes the
number of ones in the dyadic expansion of k (a best possible result when A: is
a power of 2). If Ln denotes the canonical real line bundle over real projective
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SPACE OF SECTIONS OF A VECTOR BUNDLE 385

/i-space, then T(L„) contains a 2-regular subspace of dimension n + 1, but not
one of dimension n. T(L„ © L„) contains a 2-regular subspace of dimension
2/1 + 2, but not one of dimension 2n + I. li E is the product real 2-plane
bundle over a disjoint union of k copies of S2, then T(E) contains a
2A>regular subspace of dimension 6A;, but not one of dimension 6k — 1.

Aside from any intrinsic interest the results of this paper may hold, the
main appeal of this work to algebraic topologists would be the role played by
configuration spaces. The latter have figured prominently in a number of
other places, e.g. [9], and there is the potential for interaction between the
present paper and these other works. In particular it would be interesting to
pursue the possible connections of Theorem 1.2 and Proposition 3.1 applied
to the tangent bundle of a Riemannian manifold with the work of [9].

The author thanks the referee for a number of helpful suggestions.

2. Best approximation of sections. Throughout this section,/?: E -» B will be
a K m-plane bundle with a metric appropriate to K, and B will be compact
Hausdorff.

Lemma 2.1. Let S C T(£) be k-regular, and suppose B contains at least
k + 1 points. Then for each tp G T(E) and o G ®s(<p), there exist at least
k + 1 points x in B for which \\<p(x) — a(x)\\ = d(tp, S).

Proof. Say x,, . . ., xr, r < k, are all the points in B for which \\<p(x) —
a(x)\\ = d(<p, S). By the A;-regularity of S, there exists t G S such that
r(x¡) = <p(x¡) - o(x¡) for 1 < / < r. Since ||<p(jc) - a(x)\\ < d(<p, S) for at
least one x G B, we have d(q>, S) > 0.

Write p(x) = <p(x) — o(x). Since p(x¡) = r(x¡) for 1 < i < r, there exists an
open subset U of B containing xv . . . , xr such that \\p(x) — r(x)\\ < d(y, S)
for all x G U. Since B is compact, there exists a real M > 0 such that
||t(x)|| < M for all x G B. Since B — U is compact, \\o(x)\\ assumes a
maximum value L on B — U. Since U contains all the x„ we have L <
d(<p, S). Choose e so that

d(<p,S)~ L
0 < e < mini ...}.

M
Let a' = o + ex. Then a' G S. For x G U,

\\<p(x) - o'(x)\\ = 11(1 - e)p(x) + ep(x) - er(x)\\

< (1 - £)||p(x)|| + e||p(x) - t(x)||

< (1 - e)d(<p, S) + ed(q>,S) = d(<p,S).
For x G B - U,

\\<p(x) - o'(x)\\ = \\p(x) - ct(x)|| < ||p(x)|| + e||r(x)||

< L + eM < d(<p, S ).
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386 DAVID HANDEL

Thus ||ç> — o'll < d(<p, S), a contradiction.

Lemma 2.2. Let Vx, . . ., Vk be finite-dimensional inner-product spaces over
K and write V «■ Vx © • • • © V^. Let W be a proper linear subspace of V.
Then there exists a (vx, . . ., vk) G V such that

(i)||ü,.|| < Iforl <i<k,
(ii) for each (x„ . . ., xk) £ W, max{||ü,. - x¡\\ |1 < / < Ar} > 1.

Proof. For y = ( y„ . . . , yk), z = (z„ . . ., zk) G K write p(y, z) =
max{|| v,. - z,|| |1 < i < A:} and p(y, W) = inf{p(y, x»x G W). Then for
each y G V, there exists anx6Wsuch that p(y, W) — p(y, x).

Let C - {(u„ ..., tfc) € F| ||o,|| < 1 for 1 < /" < A:}. Since W is a proper
subspace of V, C g. W. Choose any v' G C - W and let 8 = p(v', W). Then
8 > 0. Choose w G W satisfying p(t/, w) = 8 and set « = (l/8)(v' - w).
Then u G C, and for each x & Wv/e have

p(t>, x) = p(-g (»' - "0, *) = gP(«' - w» &0 = ^p(t/, w + Sx).

Since w + 8x G W we have p(t/, w + 8x) > 8, and so p(v, x) > 1 for all
x e W.

Proof of Theorem 1.2. Suppose 5 is Ar-regular and <p G T(E). Let q > n —
km + 1 and suppose av ..., a € ®s(<p). Then t = q~x~2.9¡_x o¡ G ®5(<p).
By Lemma 2.1 there exist k distinct points (in fact at least k + 1 distinct
points) xx, . .., xk G B such that \\<p(xt) — r(x¡)\\ = d(<p, S) for I < i < k.
Thus, for 1 < / < Ar,

d(<p,S)=\\<p(xl)-T(x¡)\\ = $i{«*)-°M)}l
Since \\<p(Xj) - o,(x,)|| < d(<p, S) for all i,j, it follows that oX*,) - o/.x¡) =
<p(x¡) - ot(x¡) fot 2 < j < q, 1 < / < Ac. Thus (a, — a,X*,-) = 0 for 1 < i < k,
2 < j < q. Let /: 5 -*/7_1(x,) © • • • ©/»-'(x*) be given by f(a) =
(a(x,), . . ., o(xk)). Then / is a iT-homomorphism which, by the Ar-regularity
of S, is onto. It follows that the dimension of the kernel of / is n — km. Since
a, — Oj €5 ker/ for 2 < j < q, and 9 — 1 > n — km, it follows that the a, —
a,, 2 <./ < q, are linearly dependent over K, and hence o„ .. ., oq are
affinely dependent over K. Thus dim^®5(<p) < n — km.

Now suppose S is not Ar-regular. Then there exist distinct points x,,..., xk
G B such that the #-homomorphism /: S-^p~\xl)® • • • ®p~x(xk) as
above is not onto. Thus it follows from Lemma 2.2 that there exist t>, G
p~l(x¡), 1 < / < Ar, such that ||t3,|| < 1 for 1 < / < Ar, and for each
(v¡, . . .,yk) G image of /, max{||ü, — y,|| |1 < 1 < Ar} > 1. Using the nor-
mality of B, there exists \¡* G F(E) such that \\ip(x)\\ < 1 for all x G B and
Tp(x¡) = v¡ for  1 < i < k. Since dim^ ker/ > « — Arm, there exist linearly
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independent  ol.er G ker/ where  r > n — km + 1.   For   1 < i < r,
choose \ > 0 such that sup{||\a,(x)|| \x G B) < \/r. Define <p G T(E) by

?(*) = (i - ¿J|W*)||)*(*)■
We will show that dim^ $5(<p) > r.

Note that <p(x,) = v¡ for 1 < i < Ar. By the choice of the v¡, we have, for
each o G S,

max{||ü,.- <j(x,.)|| |1 <¡<k}> 1

and so d(<p, S) > 1. The proof will be completed by showing that 2'_, £¡\o¡
G $s(<p) whenever |e,| < 1 for 1 < i < r.

For x G £ we have

<p(x) - 2   e,V,W/-i <IM*)|| + 2lkV,(*)||/—i
-||*(*)||(i - ¿ IIW*)ll) + ¿ ll*M(*)||

\ 1-1 / i-\

< l-SlrViWI+SNIrViWII
= i-20-KI)||V>,(*)||<i-

1-1

This,   together with  the  fact  that  d(<p, S) > 1,  implies  d(y, S) = 1   and
S^.eAov G®5(qe).

3. A nonexistence criterion for Ar-regular spaces. Let F(B, Ar) denote the Arth
configuration space of B, i.e. the subspace of the Ar-fold Cartesian product Bk
consisting of all Ar-tuples of distinct points. Let p: E -» B be a K m-plane
bundle and write

<b(E, Ar) = {(»„ . . ., vk) G Ek\p(Vi) *p(vj) for i *j).

Then q: q>(£, Ar) -> F(B, Ar) given by q(vx, . . ., vk) = (p(vx), ... ,p(vk)) is a
J£ Arm-plane bundle (in fact, the restriction of Ek to F(B, Ar)).

The symmetric group 2¿ acts freely on <&(E, k) and F(2?, A;) by permuting
factors, q is equivariant with respect to these actions. If B is Hausdorff, for
each subgroup G of 2fc, the induced map $(E, Ar)/G-» F(B, k)/G is a. K
Arm-plane bundle.

Proposition 3.1. If E is as above and ifT(E) admits an n-dimensional (over
K) k-regular subspace S, then for each subgroup G of Hk, &(E, k)/G admits a
K (n — kmyplane bundle inverse.
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388 DAVID HANDEL

Proof. If u lies in a space on which G acts, write [u] for its orbit under G.
The composition

(F(B, k)/G) X KnL(F(B, k)/G) X S^®(E, k)/G

where / is the identity crossed with a AT-isomorphism of K" onto S, and
g([X[,. . . , xk], a) = [<x(Xi), . . ., o(xk)], is a homomorphism of K vector bun-
dles covering the identity map on F(B, Ar)/ G, which, by the Ar-regularity of S,
is surjective.

Remark 3.2. If Ex and E2 are vector bundles over B, then

$(£, © E2, k)/G = <D(£„ Ar)/G © <J»(£2> Ar)/G.
If E is the product line bundle B X K, then 4>(£, Ar)/ G can be identified with
F(5, Ar) X G Ä'*, where G acts on AT* by permuting factors.

Let d~i($(E, k)/G) denote the ith dual characteristic class of <&(E, k)/G
(Stiefel-Whitney, Chern, or symplectic Pontrj agin, depending on whether
K - R, C or H).

Corollary 3.3. If E is as above and if T(E) admits an n-dimensional (over
K) k-regular subspace, then for each subgroup G of 2^, &¡($(E, Ar)/ G) = 0 for
i > n — km.

The truth of the converse of Proposition 3.1 in general is unknown, though
unlikely. However, for k — 1 we have:

Proposition 3.4. Let E be as above. Then T(E) admits a \-regular subspace
of dimension < n over K if and only if E admits a K (n — my plane bundle
inverse.

Proof. If a K (n — m)-plane inverse of E existed there would exist a
AT-epimorphism of vector bundles /: B X K" —* E covering the identity on B.
Let e,, . . ., e„ be a basis of K" over K and define a,: B -* E by a,(x) =
f(x, e¡), 1 </"<«. Then the a, span a subspace of T(E) of dimension at most
n over K which, by the surjectivity of/, is 1-regular.

Since $(£, 1) = E, the converse follows from Proposition 3.1.

4. Existence criteria for Ar-regular spaces.

Proposition 4.1. Let is, and E2 be K vector bundles over B and suppose
T(E¡) admits a k-regular subspace of dimension n¡ over K, i = 1, 2. Then
T(EX © E2) admits a k-regular subspace of dimension n{ + n2 over K.

Proof. If S¡ is an «,-dimensional Ar-regular subspace of r(£■,-), i = 1,2, then
5, © S2 is the desired Ar-regular subspace of T(EY © E^.

Analogous results hold for other functions of vector bundles, e.g. tensor
products, exterior powers.
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Proposition 4.2. Let E = E¡ ® E2 and suppose T(E) contains a k-regular
subspace of dimension n over K. Then T(El) contains a k-regular subspace of
dimension < n over K.

Proof. Let m: E -» Ex be the projection and suppose S is a Ar-regular
subspace of T(E) of dimension n over K. Then {iro\o G S) is the desired
Ar-regular subspace of T(Er).

Remark 4.3. Let S c C(Kq, K) be the space of polynomial functions over
K of degree < Ar - 1 (K = R or C). It can be shown that S is Ar-regular.
Thus, it follows from Propositions 4.1 and 4.2 that if B is a subspace of some
Ä* and E -» B is a K vector bundle (AT may be H, by considering the
underlying real or complex structures), then T(E) contains a finite-dimen-
sional Ar-regular subspace. (When K = H it can be checked that the above S
is Ar-regular if Ar < 2 but fails to be Ar-regular for Ar > 3.)

Proposition 4.4. Let p: £ -» B be a K m-plane bundle, and S an n-dimen-
sional (over K) k-regular subspace of T(E), k > 2. Then for each x0 G B,
T(E\B — {x0}) contains an (n — my dimensional (over K) (Ar — \)-regular
subspace.

Proof. Let T = {o G S\o(x0) = 0}. 1-regularity of S implies that 0-» T'-»
5-»/j"'(x0)-»0 is exact, where/(a) = o(x¿), and so dim^T = n — m. Take
7" = T\(B — {x0}). 7" is (Ar — l)-regular, for if x,, . . ., xq are distinct points
of B - {x0} with q < Ar — 1 and o, G p~l(x¡), 1 < / < q, then x0, . . ., xq are
distinct points of B and so, by the Ar-regularity of S, there exists a G S such
that er(x0) = 0, a(x¡) = t>, for 1 < i < q.

Proposition 4.4 extends [8, 2.2] and [2, p. 355].

Proposition 4.5. Let B be a metric space andp: £ -» B a K vector bundle
over B. Let A be closed in B and suppose T(E\B — A), T(E\A) contain
k-regular subspaces of dimensions r and s, respectively, over K. Then T(E)
contains a k-regular subspace of dimension < r + s.

Proof. Let 5 c T(E\B -A), To T(E\A) be Ar-regular subspaces with
bases a,, ..., ar and t„ . . ., tj? respectively, over K. We can assume E has a
metric. We can suppose ||a,(x)|| is bounded for 1 < i < r (for if we let
/(x) = 1 + max,||a,(x)||, then a,//, .. ., a,.//also span a Ar-regular subspace).
Choose a continuous a: B —> [0, 1] such that a(A) = 0, a(x) > 0 for x G B —
A. Define o,: B -* E by

S(x)= Í a(xK(x)'       ifxGB-A,
10,       ifxG^4.

Then each ö, G T(E), and the a¡\B — A  span a Ar-regular subspace S of

T(E\B - A).
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390 DAVID HANDEL

Using the normality of B, each t, extends to a section f,: B —» E. Take U to
be the space spanned by 5„ . . . , âr, f „ .. . , f,. U is Ar-regular, for if
x„ . .., x, G .4, >>/+1, . . .,yq G B — A are distinct points with q < Ar, and
ty G />_1(x,), Wj G p~\yj), then the Ar-regularity of T implies there exists a t in
the span of the r, such that t(x,) = «, for 1 < / < i. The Ar-regularity of S
implies there exists a a in the span of the öj such that a(yj) = vv, — r(yj) for
i + I < j < q. Then o + t has the required properties.

Proposition 4.5 extends [7, 3.1].

5. Examples. If E denotes the product K m-plane bundle over B, we
identify T(E) with C(B, Km), the space of continuous functions of B into Km.

Proposition 5.1. Let K = R or C. Then for each Ar > 1, C(K, Km) contains
a km-dimensional (over K) k-regular subspace.

Proof. The space of polynomial functions over K of degree < Ar - 1 is a
Ar-dimensional (over K) Ar-regular subspace of C(K, K). The result now
follows from Proposition 4.1.

Note that Proposition 5.1 is a best possible result. Proposition 5.1 also
holds when K = H and Ar < 2, but the case K = H, k > 3 is unsettled.

Theorem 5.2. Let k and m be positive integers and let a(k) denote the
number of ones in the dyadic expansion of k. Then:

(a) C(R 2, R 2m) contains a k-regular subspace of real dimension 2km.
(b) C(R2, R2"1'1) contains a k-regular subspace of real dimension 2km — 1,

but not one of the real dimension 2km — 1 — a(Ar).

Proof. By Proposition 5.1, C(R2, R2™) = C(C, Cm) contains a Ar-regular
subspace of complex dimension Arm, and hence of real dimension 2Arm,
proving (a).

By [3, Example 1.2], C(R2, R) contains a Ar-regular subspace of real
dimension 2 Ar - 1. The positive part of (b) now follows from this, (a) applied
to C(R2, R2m~2), and Proposition 4.1.

Write P2k for the real Ar-plane bundle F(R2, Ar) x2t Rk -» F(R2, k)fLk. By
[4, Theorem 1], 2P2k is trivial and so w((2m — l)P2¿) = *>(Pxk)- By P»
Theorem 3.1], wk_a(k-)(P2k) ¥= 0. The negative part of (b) now follows from
Corollary 3.3 and Remark 3.2.

Theorem 5.2 extends results of [3]. Note that Theorem 5.2(a) is best
possible, and Theorem 5.2(b) is best possible when Ar is a power of 2.

We recall the following result from [11]:

Theorem 5.3 (Wu). Let M be a closed, connected, n-dimensional manifold
and let u denote the first Stiefel- Whitney class of the double covering F(M, 2)
-» F(M, 2)/22. Let i be the largest integer such that w¡(M) ¥= 0. Then un+i **
0, un + i+i =0.
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Lemma 5.4. Let X be a Hausdorff space and write Pxa = F(X, 2) X^ R2.
Let L denote the real line bundle associated with the double covering F(X, 2) —►
F(X, 2)/2j. Then the 2-plane bundle Px¿ -* F(X, 2)/22 is the Whitney sum of
L and a trivial line bundle.

Proof. L = F(X, 2) X ̂ _R where the generator of 22 acts on R by multi-
plication by -1. The map (F(X, 2) x^. R)x R-* Px¿ given by ([x,, x2;
r], s) H» [x,, x2; s + r, s — r] is well defined, and is the desired bundle isomor-
phism.

Theorem 5.5. Let M be a closed, connected, n-dimensional manifold. Let q be
the largest integer for which wq(M) ¥= 0. Suppose C(M, Rm) contains a 2-regu-
lar subspace of real dimension N. Then C^'S]1) must be even for N — 2m < i
< n + q.

Proof. By Remark 3.2, F(M, 2) x^R"1)2 can be identified with mPM;2. By
Lemma 5.4,

w*•*»*-v+v-U'V-VY
where u is the first Stiefel-Whitney class of the double cover F(M, 2) -»
F(M, 2)/22. The result now follows from Corollary 3.3 and Theorem 5.3.

Lemma 5.6. C(C, C) contains a 2-regular subspace of complex dimension
n+ 1.

Proof. The space of complex polynomial functions of degree < 1 is the
desired 2-regular subspace.

Corollary 5.7. C(R2n, R2) contains a 2-regular subspace of real dimension
2n + 2.

Theorem 5.8. Let M be a closed n-dimensional manifold which embeds in
Rn+k, n + k even. Suppose that either wk_2(M) or wk_l(M) is nonzero. Then
C(M, R 2) contains a 2-regular subspace of dimension n + k + 2, but not one of
dimension n + k + 1.

Proof. This follows immediately from Corollary 5.7 and Theorem 5.5.

Corollary 5.9. (a) Let RP" denote realprojective n-space. Ifnis a power of
2, then C(RP", R2) contains a 2-regular subspace of dimension 2n + 2, but not
one of dimension 2n + 1.

(b) Let n be odd. Then C(S", R2) contains a 2-regular subspace of dimension
n + 3, but not one of dimension n + 2.

(c) Let n be even. Then C(S", R2) contains a 2-regular subspace of dimension
n + 4, but not one of dimension n + 3.
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392 DAVID HANDEL

Theorem 5.10. Let X be the disjoint union of k copies of S2. Then C(X, R2)
contains a 2k-regular subspace of dimension 6k, but not one of dimension
6Ar - 1.

Proof. Let D be a Ar point subspace of X consisting of one point from each
S2. Then X - D is embeddable in R2, and so by Theorem 5.2, C(X - D, R2)
contains a 2Ar-regular subspace of dimension 4Ar. Clearly, C(D, R 2) contains a
2Ar-regular subspace of dimension 4Ar. Clearly, C(D, R2) contains a 2Ar-regu-
lar subspace of dimension 2Ar. Thus by Proposition 4.5, C(X, R2) contains a
2Ar-regular subspace of dimension < 6Ar.

Let G = S2 x • • • x 22 c 22fc where there are Ar factors 22 and where the
generator of the z'th factor is the transposition which interchanges 2/ — 1 and
2i, 1 < /' < Ar. To show that C(X, R2) does not contain a 2Ar-regular subspace
of dimension < 6Ar it suffices to show, by Corollary 3.3 and Remark 3.2, that
w2k(F(X, 2k) X G (R 2)2k) ¥= 0. There is an evident map of 4Ar-plane bundles

E=[F(S2,2) XX2(R2)2] X • • • x[F(S2,2) X^(R2)2]

i
F(S2, 2)/22 X • • • xF(52,2)/22

-*     F(X,2k)xc(R2)2k

i
-* F(X, 2k)/G

and so it suffices to show that w2k(E) =£ 0. If u denotes the first Stiefel-
Whitney class of the double covering F(S2, 2) -» F(S2, 2)/22, it follows from
Lemma 5.4 that

w(F(S2, 2) X£2 (R2)2) = w(F(S2, 2)X^R2)2 = (l + u)2=l + u2.

By Theorem 5.3, u2 ¥^ 0, u3 = O.Thus w(F(S2, 2) X^ (R2)2) - 1 + u2 and so

w(E) = (1 + u2) X ■ ■ ■ X (1 + u2)    and   w2k(E) = u2 X ■ ■ • Xu2¥^0,

each containing Ar factors.
Let Ln denote the canonical real line bundle over RP". We regard RP" as

the quotient space obtained from S" by identifying x ~ — x, x G S", and Ln
as the quotient space obtained from S" X R by identifying (x, t) —
( —x, — t), (x, ()6S"X R. Write [x] and [x, t], respectively, for the points
in RP" and Ln, respectively, determined by x G S", (x, r) € S" X R.

Theorem 5.11. T(Ln) contains a 2-regular subspace of dimension n + 1, but
not one of dimension n.

Proof. If x = (je,,. . ., x„+1) G S", define a, G T(L„) by a,[x] = [x, x,],
1 </'<« + 1. Let S be the subspace spanned by the o¡. It is easily checked
that S is 2-regular and n + 1-dimensional over R.
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Suppose r(L„) contained a 2-regular subspace of dimension n. Then by
Proposition 4.4, for each x0 G RP", T(Ln\RP" — {x0}) would contain a
1-regular subspace of dimension n — 1. It follows that T(L„_l) would contain
a 1-regular subspace of dimension a — 1. Thus by Proposition 3.4, L„_,
would admit an (n — 2)-plane inverse, which is seen to be false by a
Stiefel-Whitney class argument.

Theorem 5.12. T(Ln ffi L„) contains a 2-regular subspace of dimension
2n + 2, but not one of dimension 2n + 1.

Proof. The existence part follows from Theorem 5.11 and Proposition 4.1.
For the nonexistence part it suffices to show, by Corollary 3.3 and Remark
3.2, that w2n_2(2<Sf(L„, 2)/'Z2) =£ 0. Following the notation of [5], let SZ„+U2
denote the subspace of F(RP", 2)/22 consisting of the unordered pairs of
points {[x], [y]} with x orthogonal to y. Let E be the restriction of
$(L„, 2)/22 to SZn+i2. It suffices to show that w2n_2(2E) ^ 0. Consider the
dihedral group

-ig :m: :)hh-
G acts freely on the Stiefel manifold Vn+l2 of orthonormal 2-frames in Rn+1
as in [5], and SZn+12 is precisely the orbit space of this action. E can be
identified with F„+12 Xc R2 where G acts on R2 as a subgroup of 0(2). In
the notation of [5], the composition

SZn+,/-XBG^BO(2)
is a classifying map for E, where p2 classifies the principal G-bundle Vn+lj-^>
SZn+x2 and /, is induced by the inclusion G c 0(2). In the notation of [5],
w(E) = 1 + y, + y2. Let Z„+12 denote the subspace of F(RP", 2) consisting
of all ([x], [y]) with x orthogonal to y, and let wt: Zn+l;2 —* SZn+l2 denote the
projection. Zn+12 is the projective bundle associated to the tangent bundle of
RP". Writing t> for the first Stiefel-Whitney class of the canonical line bundle
over Zn+l2, H*(Zn+l:2; Zj) is the free H*(RP"; Z^-module with basis 1, v,
v2, . . . , v"~\ Write z for the generator of H\RP"; Z^. In [5] it is proved
that wf(y,) = v, wfiyj) = z2 + zv. A rather long, but straightforward, com-
putation using [5, 3.1] shows that wf w2n_2(2E) = z"~lv"~x + terms of lower
degree in v, proving w2n_2(2E) ¥= 0.
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