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APPROXIMATIONS AND ERROR BOUNDS IN STOCHASTIC PROGRAMMING

BY JOHN R. BIRGE and ROGER J.-B. WETS1

University of Michigan and University of Kentucky

We review and complete the approximation results for stochastic programs with re-
course. Since this note is to serve as a preamble to the development of software for stochas-
tic programming problelms, we also address the question of how to easily find a (starting)
solution.

We consider the stochastic program with (fixed) recourse (Wets, 1983))

(0.1) find x e CR+* such that AJC = b and z = ex + Q(x) is minimized

whereAismj x n^beJ^^and

(0.2) Q(x) = E{Q(x,Q} = fQ(x,Q P(dξ)

with P a probability measure defined on Ξ C ^/12> and

(03) Q(x,ξ) = infy&riqy | Wy = ξ-Tx},

W is m2 x n2, T is m2 x nu q € J?2 and ξ e J?12. We think of Ξ as the set of possible
values of a random vector. Technically this means that Ξ is the support of the probability
measure P. We shall assume that ξ~= E{ξ} exists.

Many properties are known about problems of this type (Wets (1983)). For our purposes,
the most important ones are

(0.4) ξ f* Q(x,ξ) is aconvex piecewise linear function for all feasible x, i.e.

where

K1=

K2 = {x\ for every ξ e Ξ, there exists a y ^ 0 such that Wy = ξ - Tx},

and

(0.5) j φ Q(x, ξ) is a convex piecewise linear function which imples that

(0.6) x |+ 2(x) is a convex function, finite on K2 (as follows from the integrability condi-
tion on Ξ).

It is also useful to consider an equivalent formulation of (0.1) that stresses the fact that
choosing x corresponds to generating a tender \ = Tx to be bid by the decision maker
against the outcomes ξ of the random events, viz.

(0.7) find* € J?p, x € JT12 such that AJC = b, Tx = χ9 and z = ex + ψ(χ) is minimized,

where

(0.8) Ψ(χ) = E{ψ(χ,ξ)} = /ψ(χ,ξ) P(Jξ),

and

(0-9) ψ(χ,ξ) = inf^-, {qy\Wy = ξ- X } .

1 Supported in part by a grant of the National Science Foundation.
AMS1980 subject classifications. 90C15.
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STOCHASTIC PROGRAM APPROXIMATIONS 179

The functions ψ and Ψ have basically the same properties as Q and 2, replacing naturally

AΓ2 by the set

Z.2 = {x I for every ξ e Ξ, there exists ay ̂  0 such that Wy = ξ — χ}.

Let z* denote the optimal value of (0.1) or equivalently (0.7). We are interested in find-

ing bounds on z* by approximating 9. or Ψ.

1. Lower Bounds. A lower bound for z* can be obtained by solving the linear program

(1.1) find x ̂  0, y ̂  0 such that Ax = b, Tx + Wy = ξ, and ex + qy = z is minimized.

To see this note that (1.1) can also be expressed as

(1.2) find x € CR+' such that Ax — b and z = ex + Q(x, ξ) is minimized,

and with z denoting the optimal value of (1.2). We certainly have that z ̂  z* if we show

that

(1.3) Q( ,ξ)^2( ).

But this follows from (0.4) and Jensens' inequality:

(1.4) Q(x,EQ^V{Q(x,Q}

for every xeK2. There is another way to obtain this inequality, relying on the dual solution

to(l.l):

(1.5) find σ € J^11, IT e J^12 such that σA + πT ̂  c, πW ^q,σb + πζ= w is maximized.

Let (σ,7f) be an optimal solution to this linear program. Since πW ̂  q, it follows again

from the duality theory of linear programming that

Q{x£) = sup^Mξ-Γx) \ττW^q}^ ττ(ξ-Tx)

and also that, for x e K,

ex + 2(x) ^cχ-\- TT-Eξ - TTTX = πξ + (c- πT)x

= ΪTξ + σAx = ττξ~ + σ& = wopt = z.

Hence

(1.6) z ̂  infxe* ex + 2(JC) = z*.

Madansky (1960) was the first to point out that this type of reasoning provided error bounds

for stochastic programs. We can refine this lower bound in a number of ways.

The first one is to use a sharper version of Jensens' inequality. Let c5v = {Ξ/, / =

1, ... , v} be a partition of Ξ and let us denote by ^the conditional expectation of ξ given

that its values are in Ξ/, i .e., ! 7 = £{ξ|4eHy}. Also, l e t ^ = P(Ξ/), i.e.,//is the probability

that ξ e Ξ/. The convexity of Q(x, •) yields

(1.7) Q(x, ξ) ^ X/v= ,//β(x, ξ>) ̂  £{β(*f ξ)} = 2(x)

as follows from a generalization of Jensens' inequality (Perlman (1974)). Denote by zv the

optimal value of the linear program:

(1.8) find x ^ 0 such thatΛ c = b, Tx + Wy/ = ξ7, / = 1, ... , v, and ex + V,sssίf/qy'

= z is minimized,

which can also be written in the form

(1.9) findjce^V11 suchthatAx = £andz = ex + Σ/=i f/Q(x,ξ/) is minimized.

In view of (1.7), it follows that

(1.10) z^zv^z*.
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The same reasoning shows that if c5v' = {H*, k= 1, ... , v'} is a finer partition of Ξ, i.e.,
for all k = 1, ... , v', Ξ * C Ξ/, for some Ξ/€ c5v, and if zv is the optimal value of the
linear program of type (1.8) that corresponds to this partition, then

(1.11) z^zv^zv'^z*.

In fact the zv converge to z* provided that the partitions c5v are such that the probability
measures they generate, viz.

PV(A) = X{A-^}P(B/),
converge in distribution to P, as follows from Theorem (3.9) of Wets (1983). The sugges-
tion to rely on conditional expectations to refine (1.6) is due to Kail (1974) and to Huang,
Ziemba and Ben-Tal (1977) who give a detailed analysis of these bounds when Ψ is separa-
ble.

Another method is to proceed as follows: For every ξ € Ξ, and some ξ e co Ξ (the convex
hull of Ξ), we define
(1.12) φ(ξ,ξ) = inf ex + pqy + (l-p)qyξ such that AJC = b, Tx + Wy = ξ,

Tx + Wvξ = ξ, x ̂  0, y ̂  0, y ξ ^ 0

withp e [0,1 ] . If (0.1) is solvable, so is (1.12) for all ξ e Ξ as follows directly from Walkup
and Wets (1967). Let x° solve (0.1) and for all ξ

y°(ξ) e a r g m i n ^ {qy\ Wy = ξ - Tx°}.

It is well known that the y°(ξ) can be chosen so that as a function of ξ, y°( ) is measurable,
cf. Walkup and Wets (1967). Now let ξ = ξ~and f = £{y°(ξ)}. The triple (JC°, f, y°(ξ))
is a feasible solution of the linear program (1.12) when ξ = ξ. However in general it is
not an optimal solution.

Whence

(1.13) Φ(ξ ξ) ^ cx° + pqf + (l-p)qf(ξ)

and integrating this on both sides with respect to P we obtain

(1.14) £{φ(ξ;ξ)} ̂  cx° + Q(x°) = z*

which gives us a new lower bound for z*. This bound can be refined in many ways: first
instead of using just one point ξ~we can use a collection of points obtained as conditional
expectations of a partition of Ξ. Second we can increase the number of points that are taken
to build (1.12) as an approximation to (0.1). A detailed discussion appears in Birge (1982).

A lower bound of a somewhat different nature still using the convexity of Q, but not
based on Jensens' inequality per se, can be obtained as follows. Let {ξ7, / = 1, ... , v} be
a collection of points in Ξ and let

-π'e argmax [ττ(ξ/- Tx) \ πW ^ q].

Then τr'6 dξQOcξO, i.e. the subgradient of Q with respect to ξ at ξf (for given JC). We have
that β(jc, ξθ = TΓ'ίξ'- Tx) and

(1.15) ρ(jc,ξ)^τr'(ξ-7jc)forallξ€H.

The last inequality follows from the simple observation that

Q(x, ξ) = sup [iτ(ξ - Tx) \>πW^q]

and that IT' is a feasible, but not necessarily optimal, solution for the sup-problem defining
Q. Since (1.15) holds for every /, we have

Q(x,ξ)

Integrating on both sides yields
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(1.16) Ω(x)^E{maxι^v>πf(ξ-Tx)}.

In general finding the maximum for each ξ may be difficult. But we may assign each rt

to a subregion of Ξ; this bound is not as tight as (1.16) but we can refine it by taking succes-

sively finer and finer partitions. However one should not forget that (1.16) involves a rather

simple integral and the expression to the right could be evaluated numerically (to an accept-

able degree of accuracy) without major difficultiies. Note that the calculation of this lower

bound does not require the ξ7 to be conditional expectations or chosen in any specific man-

ner, however it should be obvious that a well chosen spread of the {ξ7, / = 1, ... , v} will

give us sharper bounds. Also, the use of larger samples, i.e. by increasing v, will also yield

a better lower bound.

2. Upper Bounds. If 2(JC) is easily computable, a simple upper bound is given by z*

^ ex + 2(x) for any feasible x in K. In particular, if JC solves (1.1) and it turns out that

x e K, then we have that

(2.1) z = ex + Q(x,ξ) ^z*^cx + Ω(x).

In general we cannot infer that x e K simply from knowing that x solves (1.1), unless we

know that we are dealing with a stochastic program with complete recourse, or more gener-

ally with relatively complete recourse, Wets (1983), i.e., when K = {x\Ax = b, x ^ 0}.

Refinements of this bound, relying on different values of JC may be found in Kail (1979)

and Birge (1980) but they always involve the evaluation of Q(x).

Without evaluating Q, we may find upper bounds for Q by considering the extreme points

of coΞ. Let us assume in what follows that Ξ is compact, then so is its convex hull and

3 = co(ext Ξ) where ext Ξ are the extreme points of Ξ. Since Q(jc,ξ) is convex in ξ, we

havethatforallξeΞ

= Q(x, eω), for some e(x) e ext Ξ.

Now e{x) may depend on JC, but we always have that

(2.2) Q(x) *Ξ maxe€ext s Q(x,e) = Q(x,e(x))9

and hence

(2.3) z* ̂  i n W c x + (max^ext s βfo*))]-

If there are only a finite number of extreme points of Ξ, as is usually the case in practice,

the function appearing on the right hand side of the inequality can be minimized without

major difficulties. Let {e*,j= 1, ... , J) = ext Ξ be this finite collection of extreme points.

We have to solve the mathematical program

(2.4) find JC e ^ +

n i and θ e 3? such that ΛJC = b, Q(x,e>) ̂  θ for; = 1, ... , J and

CJC + θ is minimized.

The last condition can also be expressed as

Q^qy,Wy = e>-Tx,y^0 for/=l, ... ,/.

Thus (2.4) becomes equivalent to the linear program

(2.5) find x e 3?ϊ\ θ e /? and (/ e J??\ j = 1, ... , J) such that ΛJC = by Tx + Wy>

= ei,Q^qy>forj= I, ... , /and CJC + θ is minimized.

The optimal value yields the upper bound for z*.
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This is a very crude bound. We can improve on this, as follows: every ξ e Ξ also belongs

to co(ext Ξ). We can thus find {λ/Q, j= 1, ... ,7} such that λ/ξ) ^ 0, Σ/=iλ/ξ) = 1,

and Xf=\λj(ξ) e* = ξ. We write λ/ξ) to indicate the dependence of the λ, on ξ. By convexity

ofβ(*, ),

Taking the expectation on both sides yields

where G is the distribution function induced by P on Λ = {λ e J^\X/= x\j = 1, λy ^ 0}.

If coH is a simplex, then each ξ e Ξ is obtained by a unique convex combination of the

extreme points. It is not difficult to actually derive G, calculate the last integral and then

minimize the resulting function to obtain an upper bound for z*. In general Ξ is not a

simplex. We shall see later what to do in the general case, but there is an important class

of problems that reduces to the case where Ξ is a simplex.

Suppose the random variables (of the m2 vector) are independent. Then the distribution

function (or the probability measure) is separable and (2.6) can be written as

(2.7) ^ pm2(dξm).

where

β W λ l , ^ -.. ,ξ*,2)) = (l-λl)β(*>(<*l,ξ2, ... Λm2))

and for each ί, E, = [α^βj and Ξ = xϊΞiE/. Since ξ, = (1 - \x) α, + λβ! we get the

following expression for λ^ (ξO:

λi = (ξi-αiV(βi-αi), and 1-λ, = (β,-ξi)/(β,-αi)

Hence, with μ} = ̂ ξ j},

(2.8) /ί)β1(JC,(λ1,ξ2, ... , e J ) G , ( ^ , ) =

((βi-μi)/(βi-αi))β(^(αi,ξ2, ••• , km)) + ((μi^ i )/(β i^ i ) )G(^ (βi.fc, •• ,W>

which we can substitute in (2.7) for the integral with respect to \λ. We can repeat this pro-

cess for each ξ, to obtain a bound on Q involving only the evaluation of the function Q(x, •)

at the vertices of the retangular region Ξ.

The whole argument really boils down to the use of the simple inequality for real-valued

convex functions φ of a random variable ξ, with distribution P on [α,β] and expectation

μ
(2.9) J g φ ( ξ W ξ ) *S ((β-μ)/(β-α))φ(α) + ((μ-α)/(β-α))φ(β)

This inequality is due to Edmundson. Madansky (1960) used it in the context of stochastic

programs (with simple recourse) to obtain a simple version of (2.7). A much refined version

of this upper bound can be obtained by partitioning the interval [α,β] and using (2.9) for

each interval in the partition, substituting the end points of the subinterval for α and β,

and the conditional expectation (with respect to this subinterval) for μ. In the case of

stochastic programs with simple recourse this was carried out by Huang, Ziemba and Ben-

Tal (1977) and by Kail and Stoyan (1982) who also consider stochastic problems of a more

general nature.

Also, when P is not separable we can improve somewhat on (2.3) by observing that we

can use (2.9) with respect to one random variable, say ξi. We have
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= s u P { ( < π , ... ,

+ (( μ i (*0 - αO/ίβi-α,))Q(x, (β,, */)]

where μi(eθ is the conditional expectation of ξ, given e7 (the last (m2-l) coordinates of

ef). From this it follows that

(2.10) Q{x) ^ min^^ m 2 s u p ^ ^ H j K ί β , - ^ ) / ^ , ^ , ) ) β(x, (αif e^))

+ ( ( μ M " <*/)/(βr^)β(*, (β,, #0)L

where it must be understood that & consists of the (m2-l) components of e7 that are not

indexed by i. Further refinements through the partitioning of Ξ and the use of the corres-

ponding conditional means, tighten up this inequality.

Another refinement of (2.3), in the case of nonseparable measure P, can be obtained

by considering simplicial decompositions of Ξ, assuming naturally that Ξ admits such a

decomposition (which means that Ξ should be polyhedral). Let c5 = {ĉ , / = 1, ... , L}

be such a decomposition (technically c5 is a complex whose cells c5/ are simplices). Let

W, ••• , tί) be the vertices of the simplex Sf, assuming that dim Ξ = m2. Then each ξ

e ό/determines a unique vector of barycentric coordinates (λ ,̂ ... , λ^2) such that

On δ/ , we are thus given a simple formula for the relationship between the distribution

of ξ and the induced distribution for the y s. We have

fs<2(χ,Q P(dξ) ^ /A ϊ"!2=o\Q{χ,ή GAd\) = <2Λ*,c5')

where Λ = {λ e ̂ " 2 + ] \^L0\
/= 1, λ/> 0} and G, is the measure induced by the preceding

transformation. If we assume that the measure P is absolutely continuous (with respect to

the Lebesgue measure on J?"2), then P assigns zero measure to every face (of dimension

less than m2) of the simplices c5/ and hence

(2.11) Q{x) = ΣJcyβ(jc,ξ)P(dξ)

This new upper bound can again be refined in two ways, first by considering finer simplicial

decompositions, and second by considering for every ξ the smallest upper bound given by

a number of possible simplicial representations. We sketch this out.

Suppose Ξ is a convex poly tope (of dimension m2) and {v1, ... , v7} is a finite collection

of points in Ξ that includes the extreme points of Ξ. Let CP be the set of all (m2 + 1) subsets

of{v\ ... , V7} such that c o ^ 0 , ... , v>V) is a m2-simplex. The convexity ofβCv) yields

where

i.e. ξ e coίv^0, ... , v>W) With T^ξ) denoting the elements of ^that have ξ in their convex

hull,

Q(x, ξ) ^ inf{(vA, . _ j m 2 ) e m i X72(Λyy, = $Σ?ίoh Q(x> v*).

Each element of 7{ξ) induces a measure on Λ, we can integrate on both sides to obtain

an upper bound on Q and thus also on z*.

3. Getting a Starting Solution. The inequalities, and thus the resulting error bounds,

presented above depend upon the chosen sample points of Ξ or the partitioning scheme

used. Choices for initial samples can be based on the solutions of simplified problems in
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which the constraints have been relaxed. It is convenient to use here the version (0.7)-

(0.8)-(0.9) of the original problem. We shall assume that we are dealing with stochastic

programs with relatively complete recourse (K = Kλ). In terms of (0.7) this means that

ifjceAΊ andx = Tx, thenx = L2, cf. the expression forL2 following (0.9).

Suppose χ° is a guess at the optimal tender, i.e. as part of a pair (jc°, χ°) solving (0.7).

Cost considerations might lead us to such a choice, but there is no guarantee that χ° is actu-

ally part of a feasible pair for problem (0.7), that we repeat here for convenience sake:

(0.7) find*e9?+2, x e ^ 1 2 such that A c = b,Tx = χ, andz = ex + Ψ(χ) is minimized.

To obtain a feasible solution we might solve the linear program (with h+ ^ 0, h~ ̂  0)

(3.1) find x e J?£\ u+ e J?^\ UΓ e JC2 such that Ax = b, Tx + u+ + UΓ = χ°, and z

= ex + h+u+ — h~u~ is minimized.

We can use the resulting solution to start the optimization algorithm. In the case of simple

recourse, a suitable choice of h+ and h~ may be the vectors q+ and q~ that determine the

recourse costs. Recall that for stochastic programs with simple recourse, the function ψ

as defined by (0.9) is given byψ(χ,ξ) = Σr=iΨ/(X/,ξi)and

Ψ, (X, , &) = inf {qΐyΐ + qjyj \ yΐ -yj= & - X, , yΐ^09yJ^0}9

In this situation, we could proceed as follows: for every i = 1, ... , m2, solve the single

constraint stochastic program

(3.2) find* e K£x, χ, e 5esuch that Tpc = χit and z, = ex + Ψ^x,) is minimized.

Here Tt is the ί-th row of T and

This problem is equivalent to

(3.3) find *€#+ ' , x/ e # such that χ, = 7>, and

with Fι denoting the marginal distribution function of ξf . The optimal solution of (3.2) is
the pair (jc°,χ?) such that

= 1, ... , n,

θ € - aψXx?) = [qt -qiFΪ{χ% qt-

foτj=\, ... ,n,

where qt = qt + qj, Ffc) = P[ξt < z], and FΓ(z) = P[& ^ z].

In order to simplify the presentation, we make the following assumptions:

(i) Ft is strictly continuously increasing on its support,

(ϋ) Ti&O,

(Hi) infjCjtfel-qJ.qf].

The last assumption is only introduced to render the problem nontrivial. Without such a

condition the problem is either unbounded or of a type that has no practical interest. With

this, we have
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θ = inf/cj/tij) = csltisi

Xi = Fj\(qT-cs/tis)/qi).

This method gives us a starting vector χ°, which we can then use to generate a feasible

pair (i,χ), as indicated at the beginning of this section. Some justification for this choice

comes from the fact that we are solving for each i the problem "optimally". This boils down

to finding the solution to a newsboy problem (having more than one supply source). For

a detailed study of this class of problems, when viewed as simple stochastic programs, con-

sult Wets (1974).

If we are not dealing with simple recourse we may still proceed in a very similar manner.

For each i, the problem to be solved is

(3.4) find x e J?ϊ\ Xi e 9? such that 7> = X l and ex + J Ξ , \nϊ{qy\Wiy = ξ, - xάdPfo)

is minimized.

Here again P, is the marginal distribution of ξi and Ξ, C J? its support. We note that the

integrand above is

h < xk^πήn&i-XΰdPiQ + /ξ/ ̂  ^qj/wX^

assuming here that

and the coefficients wtj appearing in (qjlwφmm and (<7//H>/:/ ) m a x are negative and positive re-

spectively. The infimum in (3.4) then occurs at a point such that

0 = (d(cx)/dXι) - ((qj/Wij)^ + ((^/w l 7)m i n)F(X l ) 4- (^/wί7)max

If we restrict χ, to χ, = tijXj for fixed;,

χ?eargmin,[(c/ίι7)χ,7 + ί^i

where

Again this leads us to a vector χ°. The intuitive justification for the use of this vector is

the same as in the case of stochastic programs with simple recourse.

After the intial choice of χ°, other values of x may be chosen by minimizing the expected

error in approximating the function Ψ(χ), by using an a priori distribution on χ As new

X values are found in an optimization procedure, this distribution may be changed using

Bayesian updates; in the case of simple recourse the expected error is easily measurable

since ψ(χ) can be evaluated precisely on each subregion.
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