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We study approximations of billiard systems by lattice graphs. It is

demonstrated that under natural assumptions the graph wave functions ap-

proximate solutions of the Schrödinger equation with energy rescaled by the

billiard dimension. As an example, we analyze a Sinai billiard with attached

leads. The results illustrate emergence of global structures in large quantum

graphs and offer interesting comparisons with patterns observed in complex

networks of a different nature.
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1. Introduction

The notion of a quantum graph is known for more than half a century [1],

however, an intense investigation of these structures started less than two decades

ago [2, 3] as a response to progress in fabrication technologies which allowed one

to prepare microscopic graph-like structures. Nowadays, there is an extensive

literature devoted to the subject; for recent reviews see [4, 5] and also [6].

An attention to quantum graphs comes from the fact that motion on their

edges is easy to describe, and at the same time the graph structure leads to a

nontrivial behavior. It was shown, in particular, that even a graph with a small

number of vertices is capable of developing an internal dynamics rich enough to

display universality features that are typical of the wave-chaotic behavior [7–9].

It is not only a theory, the results can be checked experimentally in a microwave

graph model [10].

On the contrary, properties of nontrivial large-scale graphs have been re-

garded as less interesting due to the expected localization of the corresponding

wave functions. An indication that this belief is wrong may be seen from the

(23)
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fact that complex graph-like structures, such as systems of interconnected neu-

rons, display surprising patterns observed, for instance, in the visual cortex of

mammals [11]. It was shown in [12] that these patterns can be understood as a

manifestation of a Gaussian random field, and are in this sense analogous to pat-

terns emerging in two-dimensional quantum chaotic systems, for instance, nodal

domains in a chaotic quantum billiard [13].

A thorough investigation of such structures on graphs is by no means easy.

To follow the mentioned example, a nodal domain is a connected component of the

maximal induced subgraph of a graph Γ on which a function does not change a

sign; it relates the pattern formation on Γ to nontrivial algebraic questions about

graph partition, etc. This is probably the reason why only few mathematical

results of this type are available at present, cf. [14, 15].

In this paper we are going to show that extended graphs support structures

similar to those known from two-dimensional wave chaos and Gaussian random-

field models. Our approach is based on graph embedding into an Euclidean space

and a convergence argument; we will demonstrate that wave functions on the

graph can approximate solutions of the respective “continuous” billiard problem.

The embedding assumption is naturally a nontrivial restriction because not every

graph can be regarded as a subset of an Euclidean space from which it inherits its

metric. It applies, however, to wide enough class of systems and allows us at the

same time to circumvent difficulties of a pure algebraic treatment.

The technical tool to derive the approximation result is a graph duality

adopted from [16]. To make the paper self-contained we review this theory in the

next section in a simplified form suitable for the present purpose. Then we will

show how solutions to the Schrödinger equation can be approximated by those of

a Schrödinger equation on lattice graphs with the energy properly rescaled.

To illustrate the result we will analyze an example of a lattice graph which

approximates a Sinai billiard. Since we want to go beyond the nodal structure

and to analyze also the phase behavior of the wave functions we will study the

graph also from the transport point of view, attaching to it a pair of semiinfinite

leads; the result will be compared to the “true” Sinai billiard with a pair of leads

attached. We will compare, in particular, the probability currents and show they

are similar to each other provided the current on the graph is properly defined as

a vector sum of currents at graphs links.

2. Theory: a graph duality

By Γ we denote in the following a connected graph consisting of at most

countable families of vertices V = {Xj : j ∈ I} and edges L = {Ljn : (j, 0) ∈

IL ⊂ I × I}. We suppose that each pair of vertices is connected by not more

than one link, otherwise we can simply add vertices to any “multiple” edge. The

set N (Xj) = {Xn : n ∈ ν(j) ⊂ I \ {j}} consists of the neighbors of Xj , i.e. the

vertices connected with Xj by a single edge is nonempty by assumption. The
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graph boundary B consists of vertices having a single neighbor; it may be empty.

We denote by IB and II the index subsets in I corresponding to B and the graph

interior I := V \ B, respectively.

We suppose that Γ is a metric graph, i.e. that it has a local metric struc-

ture, every edge Ljn being isometric with a line segment [0, ℓjn]. Of course, the

graph can be also equipped with a global metric, for instance, by identifying it

with a subset of Rν . In general the metrics may not coincide, however, in the next

section we will identify them. Using the local metric, we introduce the Hilbert

space L2(Γ ) :=
⊕

(j,n)∈IL
L2(0, ℓjn) whose elements are ψ = {ψjn : (j, n) ∈ IL}

or simply {ψjn}; in the same way we define Sobolev spaces on Γ . Given a

family of potentials U := {Ujn} with Vjn ∈ L∞(0, ℓjn) and coupling constants

α := {αj ∈ R : j ∈ I}, we define the Schrödinger operator Hα ≡ Hα(Γ , U) by

Hα{ψjn} := {−ψ′′
jn + Ujnψjn : (j, n) ∈ IL} (2.1)

on the domain consisting of all ψ with ψjn ∈ W 2,2(0, ℓjn) satisfying suitable bound-

ary conditions at the vertices linking the boundary values

ψjn(j) := lim
x→0+

ψjn(x), ψ′
jn(j) := lim

x→0+
ψ′

jn(x), (2.2)

where the point x = 0 is identified with Xj . Specifically, we will work here with

the so-called δ coupling: at any Xj ∈ V we have ψjn(j) = ψjm(j) := ψj for all

n,m ∈ ν(j), and
∑

n∈ν(j)

ψ′
jn(j) = αjψj ; (2.3)

it is known that among all (nontrivial) boundary conditions which make the op-

erator (2.1) self-adjoint there are no other with wave functions continuous at the

vertices [3]. The particular case α = 0 represents the most simple boundary condi-

tions, called usually Kirchhoff [4], which we will employ in the example of Sect. 4,

however, for the moment it is useful to consider the more general situation (2.3).

Furthermore, if the boundary B 6= ∅ we assume Dirichlet boundary conditions

there,

ψj = 0, j ∈ IB. (2.4)

If Γ is infinite one can look not only for bound states of Hα but also for solutions

of the equation

Hαψ = k2ψ (2.5)

referring to the continuous spectrum. To describe the generalized eigenfunc-

tions we consider in such a case the class Dloc(Hα) which is the subset in
∨

(j,n)∈IL
L2(0, ℓjn) (the direct sum) consisting of the functions which satisfy all

the requirements imposed at ψ ∈ D(Hα) except the global square integrability.

The conditions (2.3) define self-adjoint operators also if the αj ’s are formally put

equal to infinity. We exclude this possibility, which corresponds to Dirichlet de-

coupling of the operator at Xj turning the vertex effectively into Nj points of the

boundary.
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We need the decoupling, however, to state the result. Let HD
α be the op-

erators obtained from Hα by changing the conditions (2.3) at the points of I

to Dirichlet and denote K := {k : k2 ∈ σ(HD
α )}. In the particular case when

the particle is free at graph edges, Ujn = 0, this set is given explicitly as

K := {πnℓ−1
jn : (j, n) ∈ IL, n ∈ N+}. We will adopt several assumptions, namely

(i) all the potentials of the family {Ujn} are uniformly bounded for (j, n) ∈ IL,

(ii) ℓ0 := inf{ℓjn : (j, n) ∈ IL} > 0,

(iii) L0 := sup{ℓjn : (j, n) ∈ IL} < ∞,

(iv) N0 := max{#ν(j) : j ∈ I} < ∞.

To formulate the result, we need a few more notions. On Lnj ≡ [0, ℓjn],

where the right end point identified with the vertex Xj , we denote as ujn and vjn

the solutions to −f ′′ + Ujnf = k2f which satisfy the normalized Dirichlet bound-

ary conditions

ujn(ℓjn) = 1 − (ujn)′(ℓjn) = 0, vjn(0) = 1 − (vjn)′(0) = 0;

their Wronskian is naturally equal to Wjn = −vjn(ℓjn) = ujn(0). After this pre-

liminary we can specify the result of [16] to the present situation.

Theorem : (a) Let assumptions (i)−(iv) be satisfied and suppose that

ψ ∈ Dloc(Hα) solves (2.5) for some k 6∈ Kα with k2 ∈ R, Imk ≥ 0. Then the

corresponding boundary values (2.2) satisfy the equation

∑

n∈ν(j)∩II

ψn

Wjn

−





∑

n∈ν(j)

(vjn)′(ℓjn)

Wjn

− αj



ψj = 0. (2.6)

Conversely, any solution {ψj : j ∈ II} of the system (2.6) determines a solution of

(2.5) by

ψjn(x) =
ψn

Wjn

ujn(x) −
ψj

Wjn

vjn(x) if n ∈ ν(j) ∩ II ,

ψjn(x) = −
ψj

Wjn

vjn(x) if n ∈ ν(j) ∩ IB.

(b) Under (i), (ii), ψ ∈ L2(Γ ) implies that the solution {ψj} of the system (2.6)

belongs to ℓ2(II).

(c) The opposite implication is valid provided (iii), (iv) also hold, and k has a

positive distance from K.

3. Approximation by lattice graphs

As the next step, let us inspect how the above duality looks under simplifying

assumption: we will suppose that (a) all the graph edges have the same length

ℓ > 0 and (b) all the potentials Ujn vanish. Then the “elementary” solutions can

be made explicit

ujn(x) =
1

k
sin k(x − ℓ), vjn(x) =

1

k
sin kx
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with the Wronskian Wjn = − 1
k

sin kℓ, and the dual system of equations (2.6)

becomes

−
∑

n∈ν(j)

ψn − ψj cos kℓ

k−1 sin kℓ
+ αjψj = 0, j ∈ I; (3.1)

let us notice that this is true even if some of the ν(j) correspond to points of the

boundary, because we assume Dirichlet condition (2.4) there, so the corresponding

ψn’s are zero.

So far we worked with the local metric on Γ , now we will regard the graph

as a subset in Rν and assume that the local metric coincides with the global one

obtained by this embedding. We will not strive for a most general result and

concentrate on an important particular case of a cubic lattice graph Cν ≡ Cν(ℓ) ⊂

Rν whose vertices are points {xj(ℓ) = (j1ℓ, . . . , jνℓ) : ji ∈ Z} while the edges are

segments connecting pairs of vertices in which values of a single index ji differ by

one, and its subgraphs.

Theorem : Let V : Rν → R be a smooth function with ∇V bounded. Put

αj(ℓ) := V (xj)ℓ and consider the family of operators Hα(Cν(ℓ), 0) with ℓ > 0.

Suppose that for any fixed ℓ and k with k2 ∈ R, Imk ≥ 0, the family {ψℓ
j} solves

the equation (3.1), and defines a step function ψℓ : Rν → C by

ψℓ(x) := ψℓ
j if −

1

2
ℓ ≤ (x − xj)i <

1

2
ℓ.

Suppose that the family {ψℓ} converges to a function ψ : Rν → C as ℓ → 0 in the

sense that the quantities εj(ℓ) := ψ(xj) − ψℓ(xj) behave as
∑

n∈ν(j)

(εn(ℓ) − εj(ℓ)) = o(ℓ2), (3.2)

then the limiting function solves the equation

−∆ψ(x) + V (x)ψ(x) = νk2ψ(x). (3.3)

Proof : Let f be a C2-smooth function, using its Taylor expansion to the second

order we find
f(x + ℓ) − f(x − ℓ) − 2f(x) cos kℓ

ℓk−1 sin kℓ
=

2k

ℓ
f(x) tan

kℓ

2
+ f ′′(x)

kℓ

sin kℓ
+ o(ℓ),

so the right-hand side tends to f ′′(x)+ k2f(x) as ℓ → 0; in fact, the error is O(ℓ2)

provided f ∈ C3. Applying this result to the function ψ with respect to each of

the ν variables and combining it with the fact that the family {ψℓ(xj)} solves the

equation (3.1) we find

∆ψ(xj) + νk2ψ(xj) − V (xj)ψ(xj)

=

(

ℓ

k
sin kℓ

)−1
∑

n∈ν(j)

(εn(ℓ) − εj(ℓ)) + o(ℓ)

and the right-hand side tends to zero by assumption.
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Let us add a few comments:

(a) The requirement k 6∈ K means no restriction here, because for a fixed k

it is satisfied if ℓ is small enough.

(b) Notice that the limiting energy has to be rescaled to νk2, where ν is

the dimension, roughly speaking because all “local” momentum components are

equal. This does not mean that the particle cannot move through such lattice in

any possible angle in a zig-zag way.

(c) To illustrate the last claim recall how Fermi surface looks like on a 2D

square lattice in the free case, αj = 0 for any j ∈ I. By [17] it is described by the

equation

cos θ1ℓ + cos θ2ℓ = 2 cos kℓ,

where θi are the quasimomentum components, thus for small ℓ we have at the

bottom of the spectrum

2k2 = θ2
1 + θ2

2 + O(ℓ2),

which looks like the free “continuous” motion, apart of the factor 2 multiplying

the energy.

A similar result can be derived if the lattice graphs do not cover the

whole Rν . Consider an open set Ω ⊂ Rν and call Cν
Ω

≡ Cν
Ω

(ℓ) the subgraph

of Cν(ℓ) whose vertices are all points xj contained in Ω . Let Pν
Ω

(ℓ) denote the

union of all closed hypercubes of Cν
Ω

(ℓ), i.e. the “volume”of such a lattice in Rν .

If an edge of Cν
Ω

(ℓ) belongs to the boundary of Pν
Ω

(ℓ) we delete it. It may also

happen that Pν
Ω

is non-convex, i.e. there is an axis along which a boundary point

has neighbors in Cν
Ω

(ℓ) in both directions, then we regard the corresponding vertex

as a family of disconnected vertices belonging to the boundary of Cν
Ω

(ℓ); we call

the lattice modified in this way C̃ν
Ω

(ℓ). Mimicking the above argument, we arrive

at the following conclusion:

Theorem : Suppose that the potential V : Ω → R is smooth with ∇V bounded

and set αj(ℓ) := V (xj)ℓ. Let us consider the dual system associated with the

family {Hα(C̃ν
Ω

(ℓ), 0) : ℓ > 0} and its solutions {ψℓ
j}. Under the same convergence

assumption as above, the limiting function ψ solves the equation

−∆ψ(x) + V (x)ψ(x) = νk2ψ(x) (3.4)

with Dirichlet condition, ψ(x) = 0 for x ∈ ∂Ω .

Let us stress an important feature, namely that the described result has a

local character. It is especially important from the viewpoint of the example dis-

cussed below, where we will violate regularity of the solution at a fixed points by

attaching leads to Ω . This means that the solution has a singularity at such a junc-

tion, a logarithmic one for ν = 2, which enters the coupling between the billiard

and the lead. Outside the connection points, however, the graph approximants do

still converge to solution of the appropriate Schrödinger equation.



Approximations by Graphs and Emergence of Global Structures 29

4. Example: Sinai billiard graphs

We will consider a rectangular N × N lattice graph with a circular part

removed reminiscent of a Sinai billiard which according to the above result such a

structure can approximate, cf. Fig. 1. For practical calculations we choose N = 97

and αj = 0, Ujn = 0; at the graph boundary we impose Dirichlet conditions. The

lattice graph spacing is set to be ℓ = 0.15. From the numerical point of view it

is more simple to evaluate a transport system since there are no problems related

to the eigenvalue finding. The point is that to get the eigenvalues is numerically

uneasy. We will therefore compare the transport properties in a situation when

we attach a pair of leads to the graph (at the points (14,40) and (59,80)) and to

the billiards at the corresponding places. Adding a lead to a graph, represents no

problems: the five edges at such a vertex are again coupled by Kirchhoff conditions,

(2.3) with αj = 0. On the other hand, coupling a billiard to leads needs an

explanation.

Fig. 1. Sinai billiard graph.

If we relax the regularity requirement to solution φ to a two-dimensional

Helmholtz equation at a fixed point, it can have a logarithmic singularity there.

It allows us to define generalized boundary values there,

L0(φ) := lim
r→0

φ(x)

ln r
, L1(φ) := lim

r→0
[φ(x) − L0(φ) ln r] ,

where r denotes the distance from the singularity. Let further φ± be the wave

functions at the leads, naturally identified with the halflines R±. They are cou-

pled by the boundary conditions [18]

±φ′
∓(0∓) = Aφ∓(0∓) + BL0(φ), L1(φ) = Cφ∓(0∓) + DL0(φ), (4.1)

which define a self-adjoint Hamiltonian, i.e. ensure that the probability current is

conserved at the junctions, if

A, D ∈ R and B = 2πC̄.
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This allows one to describe transport through the billiard and similar more com-

plicated structures; a general scattering theory for such systems was worked out

in [19].

In our particular case, suppose that the leads are attached at points

x1, x2 ∈ Ω . The construction of the generalized eigenfunctions means to cou-

ple plane-wave solution at leads with

φ(x) = c1G(x, x1; k) + c2G(x, x2; k), (4.2)

where G(·, ·; k) is Green’s function of the Dirichlet Laplacian −∆Ω

D in the bil-

liard. The latter has a logarithmic singularity so Lj(φ) express in terms of

g := G(x1, x2; k) and

ξj ≡ ξ(xj ; k) := lim
x→xj

[

G(x, xj ; k) +
ln |x−xj |

2π

]

;

the matching conditions then determine the scattering, i.e. transmission and re-

flection amplitudes, as well as the coefficients c1, c2 in (4.2), similarly as in [20].

The question is, of course, what is the proper choice of the parameters in

the boundary conditions (4.1). A possible way to answer it is to compare a low-

energy scattering in the system of a plane-plus-halfline to that of a similar system

in which the halfline is replaced by a thin tube of radius a. In [21] it was shown

that the two systems coincide in the leading order if we put

A :=
1

2a
, D := − ln a, B = 2πC =

√

2π

a
; (4.3)

thus the “natural” coupling depends on a single parameter, namely radius of the

“thin” component. This is chosen in the calculations to be one-tenth of the lattice

graph spacing.

Fig. 2. Eigenfunction comparison. In the left picture the graph eigenfunction corre-

sponds to the energy E referring to the momentum k = 1.65. The right picture shows

the billiard eigenfunction of energy 2E.
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To demonstrate the validity of the theorems we have evaluated the solution

for the graph with energy E = (1.65)2 and compared it with a solution of the

two-dimensional Sinai billiard with a doubled energy. The result is displayed in

Fig. 2.
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E 69, 056205 (2004).

[11] G.G. Blasdel, J. Neuroscience 12, 3139 (1992).

[12] F. Wolf, H.-U. Bauer, K. Pawelzik, T. Geisel, Nature 382, 306 (1996).

[13] G. Blum, S. Gnutzmann, U. Smilansky, Phys. Rev. Lett. 88, 114101 (2002).

[14] T. Biyikoglu, W. Hordijk, J. Leydold, T. Pisanski, P.F. Stadler, Lin. Alg. Appl.

390, 155 (2004).

[15] T. Biyikoglu, Lin. Alg. Appl. 360, 197 (2003).

[16] P. Exner, Ann. Inst. H. Poincaré: Phys. Théor. 66, 359 (1997).
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