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Abstrat

Ordered binary deision diagrams (OBDDs) and their variants are moti-

vated by the need to represent Boolean funtions in appliations. Researh
onerning these appliations leads also to problems and results interesting

from theoretial point of view. In this paper, methods from ommuniation

omplexity and information theory are ombined to prove that the diret stor-
age aess funtion and the inner produt funtion have the following property.

They have linear �-OBDD size for some variable ordering � and, for most vari-

able orderings �0, all funtions whih approximate them on onsiderably more
than half of the inputs, need exponential �0-OBDD size. These results have

impliations for the use of OBDDs in geneti programming.

1 INTRODUCTION

Branhing programs (BPs) or binary deision diagrams (BDDs), whih is just an-

other name, are representations of Boolean funtions f 2 Bn, i.e., f : f0; 1gn !
f0; 1g. They are ompat but not useful for manipulations of Boolean funtions,

sine operations like satis�ability test, equivalene test or minimization lead to hard

problems. Bryant [6℄ has introdued �-OBDDs (ordered BDDs), sine they an be

manipulated eÆiently (see [7℄ and [19℄ for surveys on the areas of appliation).

De�nition 1.1 A permutation � on f1; : : : ; ng desribes the variable ordering

x�(1); : : : ; x�(n). A �-OBDD is a direted ayli graph G = (V;E) with one soure.

Eah sink is labelled by a Boolean onstant and eah inner node by a Boolean vari-

able. Inner nodes have two outgoing edges one labelled by 0 and the other by 1. If

an edge leads from an xi-node to an xj-node, then ��1(i) has to be smaller than

��1(j), i.e., the edges have to respet the variable ordering. The �-OBDD repre-

sents the funtion f 2 Bn de�ned in the following way. The input a ativates, for

xi-nodes, the outgoing ai-edge. Then f(a) is equal to the label of the sink reahed

by the unique ativated path starting at the soure. The size of G is measured by

the number of its nodes. An OBDD is a �-OBDD for an arbitrary �.

One-way ommuniation omplexity (see e.g. [11℄, [14℄) leads to lower bounds for

OBDDs. This method is almost the same as ounting the number of subfuntions of

f if the �rst variables aording to the variable ordering are replaed by onstants.

There are funtions, for whih the OBDD size is very sensitive to the hosen variable
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ordering. Moreover, given a �-OBDD for a funtion f , it is NP-hard to �nd an

optimal variable ordering for f , see [5℄, or even to approximate the optimal variable

ordering, see [16℄.

We will need the following two funtions.

De�nition 1.2 i) For n = 2k, the diret storage aess funtion (or multiplexer)

on k + n variables is the funtion DSAn(a0; : : : ; ak�1; x0; : : : ; xn�1) = xjaj, where

jaj is the number whose binary representation is (a0; : : : ; ak�1).

ii) For any even n, the inner produt funtion on n variables is the funtion

IPn(x1; : : : ; xn) = x1x2 � x3x4 � : : :� xn�1xn.

Clearly, these two funtions have �-OBDD of size O(n) for the ordering of the

varibles used in the de�nition of the funtions. On the other hand, they need

exponential �-OBDD size for most of the variable orderings (a fration of 1� n�"

for DSAn and even a fration of 1� 2�"n for IPn, see [20℄). Another example of a

funtion with a similar property, so-alled disjoint quadrati form, may be obtained

by replaing � by disjuntion in the expression desribing IP.

These results are stated for error-free representations of f and, up to now, to

the best of our knowledge, nobody has looked at representations of approximations

of f from a theoretial point of view. In this paper, we investigate the inuene

of the variable ordering for approximate representations of funtions. If not stated

otherwise, by a random input ~x we mean an input ~x hosen from the uniform

distribution on f0; 1gn.

De�nition 1.3 A funtion g 2 Bn is a -approximation of f 2 Bn if Pr(f(~x) =

g(~x)) �  for a random input ~x.

One of the two onstant funtions 0 and 1 always is a 1=2-approximation. Hene,

we onsider -approximations for  > 1=2.

We prove the following strengthenings of the previously mentioned lower bounds

on the �-OBDD omplexity of DSAn and IPn for a random ordering. For most of

the orderings �, every funtion that is a (1=2 + ")-approximation of DSAn or IPn,

where ", 0 < " < 1=2 is any onstant, requires a �-OBDD of exponential size. In

the ase of IPn, the result remains true even if " tends to zero in a ontrolled way.

For exat formulations see Theorems 2.1 and 3.1.

The result for the inner produt funtion is stronger, sine it an be proved

for better parameters. On the other hand, the result for DSAn is of partiular

interest for geneti programming, sine, reently, DSAn is frequently used in exper-

iments. The proof ombines methods from one-way ommuniation omplexity and

information theory.

The problems are motivated by experiments in geneti programming using OB-

DDs, where one searhes for a good approximation of an unknown funtion given

by examples. Our results have onsequenes for the situation that the unknown

funtion has a small OBDD for some ordering, but this ordering is not known. For

more details see Setion 4.

For ompleteness, we present also an example of a funtion that is hard to

approximate for any ordering.

2 THEDIRECT STORAGE ACCESS FUNCTION

First, we state the result informally. There are only a few variable orderings �

whih allow an approximation gn of DSAn whih is essentially better than the

trivial approximations by the onstants 0 and 1 (whih are 1=2-approximations)

and whih, moreover, has a �-OBDD size growing not exponential.
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Theorem 2.1 Let 0 < Æ < ". For every large enough n, the following property

holds for a fration of at least 1� n�2"2= ln 2 of the variable orderings � for DSAn.

Eah funtion whih is a (12+"+n�("�Æ)=2)-approximation of DSAn has a �-OBDD

size whih is bounded below by en
Æ

.

The proof of this theorem is splitted into Lemmas 2.2 and 2.3. Reall that an

ordering � for DSAn is a permutation of n+ k variables, where k = logn. In order

to simplify the terminology, we assume that the �rst n0 =def b(1 � 2")n variables
aording to � are given to Alie and the other ones to Bob. First, we derive a

property of random variable orderings �.

Lemma 2.2 With probability at least 1�n�2"2= ln 2, Alie obtains at most (1� ")k

address variables, i.e., a-variables.

Proof. The random variable ordering an be produed as follows. We take the k

address variables and randomly hoose for them one after another a free position

among the n + k possible positions. Then we ontinue in the same way with the n

data variables, i.e., the x-variables. During the �rst k steps of this proess, there

are always at most (1�2")n free positions among the �rst n0 = b(1�2")n positions
and at least n open positions at all. Hene, the probability of eah address variable

to be given to Alie, is at most 1 � 2". We an upper bound the probability that

Alie gets more than (1�")k address variables by the probability of at least (1�")k

suesses in k independent Bernoulli trials with suess probability 1� 2".

The expeted number of suesses E[Z℄ equals (1� 2")k. By Cherno�'s bound,

we obtain

Pr(Z � (1� ")k) = Pr(Z � E[Z℄ + "k) � e�2"2k = n�2"2= ln 2:

2

In the following, we �x a variable ordering � where Alie gets at most (1 � ")k

address variables. She also gets at least (1 � 2")n � k data variables. If Alie's

address variables are �xed, there are at least n" data variables left whih may

desribe the output. On the average, at least (1 � 2")n" � o(1) of these variables

are given to Alie. In order to enable Bob to ompute the output exatly, Alie

has to send him the value of her address variables and those data variables whih

an desribe the output. If the information given from Alie is muh smaller than

this, Bob an ompute the value of DSAn only with probability lose to 1=2. The

information given from Alie to Bob is measured by the logarithm of the size of a

�-OBDD omputing the funtion DSAn.

For a rigorous argument, let � be an ordering and let A (resp. B) be the set

of address variables given in � to Alie (resp. Bob) and let X (resp. Y ) be the set

of data variables given in � to Alie (resp. Bob). Clearly, jA [Xj = n0 and every

omputation in any �-OBDD reads �rst (some of) the variables in A [X and then

(some of) the variables in B [ Y . Let g be a funtion represented by a �-OBDD G

of size s. Beause of the de�nition of -approximations, we onsider random inputs

(~a;~b; ~x; ~y) where ~a is a random setting of variables in A, et. In this situation, the

following holds.

Lemma 2.3 Pr(DSAn(~a;~b; ~x; ~y) = g(~a;~b; ~x; ~y)) � 1� jXj
2n + 1

2n

�
2 � 2jAjjXj ln s

�1=2
.

Before proving Lemma 2.3, let us demonstrate its appliation by proving Theo-

rem 2.1.

Proof of Theorem 2.1. Reall that k = logn and let s < en
Æ

. For every ordering

�, we have (1 � 2")n � k � 1 � jXj � n. Moreover, Lemma 2.2 implies that with
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probability at least 1�n�2"2 , we have jAj � (1�")k. By substituting these estimates

into the bound from Lemma 2.3, we obtain that the probability that DSAn and g

have the same value is at most 1
2 + " + 1p

2
n�("�Æ)=2 + logn

2n < 1
2 + " + n�("�Æ)=2.

This implies the theorem. 2

For proving Lemma 2.3, we need some more notation. Let H(U ) be the entropy

of a random variable U and H(U jE) resp. H(U jV ) the entropy of U given an event

E or a random variable V resp. Moreover, let H�(x) = �x logx� (1�x) log(1�x)

for x 2 (0; 1).

For eah (a; b; y), let

q(a; b; y) = Pr(DSAn(a; b; ~x; y) = g(a; b; ~x; y))

for random assignments ~x to the variables in X. The probability, we are interested

in, is the average of all q(a; b; y). Let q(a; b) denote the average of q(a; b; y) over all

possible y and, similarly, let q(a) denote the average of q(a; b; y) over all possible b

and y. Moreover, for eah partial input a, let Ia be the set of partial inputs b suh

that the variable xj(a;b)j or xa;b, for simpliity, is given to Alie. Note that H�(x)

is maximal for x = 1=2 and the maximum is equal to 1. Hene, if jIaj � log s, the

next lemma implies that for most of b 2 Ia, q(a; b) is lose to 1=2.

Lemma 2.4 For every a, we haveX
b2Ia

H�(q(a; b)) � jIaj � log s:

Proof. Consider the �-OBDD omputing the funtion g desribed before Lemma

2.3. For any settings a; x, let h(a; x) be the �rst node, where the omputation for

a; x reahes a node testing a variable in B [ Y or a sink. Note that a omputation

for a; b; x; y depends on a; x only via h(a; x). This means, there is a funtion �b;y

suh that g(a; b; x; y) = �b;y(h(a; x)). Note that the size of the range of h is at most

s.

Besides well-known information theoretial inequalities we use the following one

whose proof is postponed to the end of the setion.

Claim 1 Let U and V be random variables taking values in f0; 1g. Then H�(Pr(U =

V )) � H(U jV ).

If (a; b; y) is �xed and b 2 Ia, DSAn outputs xa;b. Using the laim and the fat

that H(U j f(V )) � H(U jV ) for eah funtion f , we onlude

H�(q(a; b; y)) = H�(Pr(~xa;b = �b;y(h(a; ~x)))

� H(~xa;b j�b;y(h(a; ~x))) � H(~xa;b jh(a; ~x)):

Now we use the fat H(U1 jV ) + : : : + H(Ur jV ) � H((U1; : : : ; Ur) jV ) for ~xa;b,

b 2 Ia, and the vetor ~xa of these random variables. This impliesX
b2Ia

H(~xa;b jh(a; ~x)) � H(~xajh(a; ~x)):

In the next step we apply the equalitiesH(U jV ) = H(U; V )�H(V ) andH(U; f(U )) =

H(U ) to obtain

H(~xa jh(a; ~x)) = H(~xa; h(a; ~x))�H(h(a; ~x)) = H(~xa)�H(h(a; ~x)):
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We have H(h(a; ~x)) � log s, sine there are only s di�erent possibilities for h(a; ~x).

The random variables ~xa;b, b 2 Ia, are independent and take values in f0; 1g, i.e.,
~xa is uniformly distributed over f0; 1gjIaj and H(~xa) = jIaj. This implies

H(~xa jh(a; ~x)) � jIaj � log s:

Putting all our onsiderations together, we obtainX
b2Ia

H�(q(a; b; y)) � jIaj � log s:

The funtion H� is onave. Hene, this inequality implies Lemma 2.4. 2

Proof of Lemma 2.3. Let �(a; b) = q(a; b) � 1
2 . Then we apply the inequality

H�(12+t) � 1�(2= ln 2)t2 (estimate Taylor's expansion using the seond derivative)

to obtainX
b2Ia

H�(q(a; b)) =
X
b2Ia

H�
�
1

2
+ �(a; b)

�
� jIaj � (2= ln 2)

X
b2Ia

�(a; b)2:

Together with Lemma 2.4, we get

1

2
ln s �

X
b2Ia

�(a; b)2:

Using Cauhy's inequality, we obtain

X
b2Ia

j�(a; b)j �

 
jIaj

X
b2Ia

�(a; b)2

!1=2

�
�
1

2
jIaj ln s

�1=2

:

Reall that q(a) is the average of all q(a; b). Sine b may take 2jBj values, we get

q(a) =
1

2jBj

0
�X

b62Ia

q(a; b) +
X
b2Ia

q(a; b)

1
A

�
1

2jBj

 
2jBj �

1

2
jIaj+

X
b2Ia

�(a; b)

!

� 1� 2�jBj�1(jIaj � (2jIaj ln s)1=2) =  (jIaj);

where  (t) =def 1 � 2�jBj�1(t � (2t ln s)1=2). The funtion  is onave. Let

a1; : : : ; am, m = 2jAj, be the possible values of a. Then

1

m

X
1�i�m

q(ai) �
1

m

X
1�i�m

 (jIai j) �  

0
� 1

m

X
1�i�m

jIai j

1
A =  (jXj=2jAj):

The last equality follows, sine, by de�nition, the sum of all jIai j equals jXj. The
left-hand side of the above inequality is the average of all q(a) and this is the average

of all Pr(DSA(a; b; ~x; y) = g(a; b; ~x; y)) and, therefore, equal to Pr(DSA(~a;~b; ~x; ~y) =

g(~a;~b; ~x; ~y)). We have proved that this probability is bounded above by

 (jXj=2jAj) = 1�
jXj

2 � 2jAj+jBj
+

1

2 � 2jAj+jBj
(2 � 2jAjjXj ln s)1=2:

Sine A and B are a partition of the logn address variables, we have 2jAj+jBj = n

and Lemma 2.3 follows. 2
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Proof of the laim. Sine U and V take values in f0; 1g,

Pr(U = V ) =
X

�2f0;1g

Pr(U = � jV = �) Pr(V = �):

The onavity of H� implies

H�(Pr(U = V )) �
X

�2f0;1g

H�(Pr(U = � jV = �)) Pr(V = �):

Sine H�(x) = H�(1� x), we obtain

H�(Pr(U = 0 jV = �)) = H�(Pr(U = 1 jV = �)) = H(U jV = �)

and

H�(Pr(U = V )) �
X

�2f0;1g

H(U jV = �) Pr(V = �) = H(U jV ):

2

Let us add some omments to this result. A random variable ordering for DSAn

is with a probability of at least n� logn optimal, i.e., all address variables are tested

before eah data variable. If we onsider uts as in our proof, Alie gets all address

variables with a probability whih is approximately nlog(1�2"). Therefore, we need

another approah to improve the result with respet to the fration of variable

orderings but one annot obtain a result for an exponentially small fration. Bob

gets at least 2"n data variables. He an output the orret value, if Alie tells

him her address variables and the deisive data variable is among Bob's variables.

Otherwise, he an guess the right output with probability 1=2 (atually, he may

hoose always 0 as output). Then his suess probability equals 2"+1
2 (1�2") =

1
2+".

Hene, our approah annot lead to substantially better results.

3 THE INNER PRODUCT FUNCTION

In this setion, we prove results on the inner produt funtion whih are of the

same avor as the results on the diret storage aess funtion in Setion 2. The

di�erene is that we an prove better bounds on the quality of approximation even

for a larger fration of variable orderings and larger OBDDs.

Theorem 3.1 Let 0 < Æ. The following property holds for a fration of at least

1 � e�4Æ2n of the variable orderings � for IPn. Eah funtion whih is at least a

(12 + 2�
1

16
(1�9Æ)n�1

2 )-approximation of IPn has a �-OBDD size whih is bounded

below by 2Æn.

Proof. First, we derive a property of random variable orderings �. It is onvenient

to rename the variables suh that IPn(x; y) = x1y1 � : : :� xn=2yn=2. We give the

�rst n=2 variables aording to � to Alie and the other ones to Bob. An index i is

alled a singleton if xi is given to Alie and yi to Bob or vie versa.

Lemma 3.2 With probability at least 1� e�4Æ2n, a random variable ordering leads

to at least (1� Æ)n=8 singletons.

Proof. The random variable ordering an be produed as follows. First, we draw

n=2 balls out of an urn with n=2 white balls (x-variables) and n=2 blak balls (y-

variables). Let w be the number of drawn white balls. Beause of symmetry, we
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assume w.l.o.g. that w � n=4. Also w.l.o.g. we assume that Alie gets the x-

variables x1; : : : ; xw. Then we draw n=2�w balls out of an urn with w white balls

(the y-variables y1; : : : ; yw) and n=2 � w blak balls (the remaining y-variables).

The number of drawn blak balls is a lower bound for the number of singletons.

Our hane of getting many singletons is minimal for the maximal value w = n=4.

Then we have a hypergeometri distribution with mean n=8. It is well-known that

the deviation from the mean is larger for the binomial distribution with the same

suess probability whih is 1=2 in our ase. Hene, we an bound the probability

of getting at most (1� Æ)n=8 singletons by the probability of (1 � Æ)n=8 suesses

in n=4 Bernoulli trials with suess probability 1=2. Now the result follows by an

appliation of Cherno�'s bound. 2

We only remark that it is even possible to obtain a lower bound of (1 � Æ)n=4

singletons if we inrease the error probability a little bit.

In the following, we �x a variable ordering � where Alie gets among her n=2

variables exatly t singletons. Let g be a funtion represented by a �-OBDD G of

size s. We try to estimate the probability that IP(~x) = g(~x) on a random input ~x.

Lemma 3.3 Pr(IP(~x) = g(~x)) � 1
2 + s1=22�t=2�1=2:

First we show how this laim implies the theorem. We set s = 2Æn and t =
1
8 (1� Æ)n. Then

s1=22�t=2 = 2Æn=2 � 2(1�Æ)n=16 = 2�
1

16
(1�9Æ)n:

and the theorem follows from Lemmas 3.2 and 3.3. 2

Proof of Lemma 3.3. We onsider the ommuniation matrix for IPn with respet

to the partition of the variables between Alie and Bob, i.e., we have 2n=2 rows

orresponding to the di�erent input vetors for the variables of Alie and similarly

2n=2 olumns. Eah matrix entry is the value of IP on the input of the row input

and the olumn input. If we �x all variables xj and yj where j is not a singleton, we

obtain IP2t or its negation as subfuntion. Hene, the ommuniation matrix an

be partitioned to 2t� 2t-submatries whih are ommuniation matries for IP2t or

its negation. For eah of these submatries M = (Mij), w.l.o.g. Alie is the owner

of all x-variables and Bob the owner of all y-variables. It is known from Lindsey's

Lemma (see, e.g., Babai, Frank, and Simon (1986)) that for eah subset A of a rows

of M and eah subset B of b olumns of M it holds that�� X
i2A; j2B

(�1)Mij
�� � 2t=2a1=2b1=2

i.e., eah not too small submatrix is not onstant. More preisely, we have to negate

at least 1
2 (ab�2t=2a1=2b1=2) entries of an a� b submatrix ofM to obtain a onstant

submatrix. It follows by an averaging argument that there is an assignment to

the variables xj and yj where j is not a singleton suh that Pr(IP�(~x) = g�(~x)) �
Pr(IP(~x) = g(~x)) for the resulting subfuntions IP� and g� of IP and g resp. By the

above arguments, we an assume w.l.o.g. that IP� = IP2t. It is suÆient to prove

Pr(IP�(~x) = g�(~x)) �
1

2
+ s1=22�t=2�1=2:

Let M� be the ommuniation matrix of g�, D = M �M�, and jjDjj the number

of 1-entries of D. Then

Pr(IP�(~x) = g�(~x)) = 1� jjDjj=22t:
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We will prove that

jjDjj �
1

2
22t � s1=223t=2�1=2

whih implies the laim.

Sine g� an be represented by a �-OBDD whose size is bounded by s, it follows

from the well-known relations between one-way ommuniation omplexity and �-

OBDD size that the ommuniation matrix of g� has at most s di�erent rows. Let

r1; : : : ; rs ontain the di�erent rows of M�. We partition M� to a small number of

onstant submatries whih intuitively implies that M and M� are quite di�erent.

We permutate the rows (i.e., renumber the input vetors of Alie) suh that we

have at �rst a1 rows equal to r1, then a2 rows equal to r2 and so on. The blok

of ak equal rows an be partitioned for some bk to an ak � bk-matrix onsisting of

zeros only and an ak � (2t� bk)-matrix onsisting of ones only. Altogether we have

partitioned M� to at most 2s onstant submatries whose sizes are ak � bk and

ak � (2t � bk), 1 � k � s.

Now we onsider the orresponding submatries of M . By the onlusion from

Lindsey's Lemma, it follows that we have to negate at least

d =
X

1�k�s

1

2
(akbk � 2t=2a

1=2
k

b
1=2
k

+ ak(2
t � bk) � 2t=2a

1=2
k

(2t � bk)
1=2)

entries in order to onvert eah submatrix into a onstant one. Hene,

jjDjj � d =
X

1�k�s

1

2
(ak2

t � 2t=2a
1=2
k

(b
1=2
k

+ (2t � bk)
1=2)):

The sum of all ak is equal to 2t. Hene,

d+ :=
X

1�k�s

1

2
ak2

t =
1

2
22t:

The term b
1=2
k

+ (2t � bk)
1=2 is maximized for bk = 2t�1 and

d� :=
X

1�k�s

1

2
2t=2a

1=2
k

(b
1=2
k

+ (2t � bk)
1=2)) �

X
1�k�s

2t�1=2a
1=2
k

:

Sine x1=2 is onave, we obtain the maximal value for ak = 2t=s and

d� =
X

1�k�s

2t�1=22t=2s�1=2 = s1=223t=2�1=2:

Sine jjDjj � d = d+ � d�, we have proved the proposed bound on jjDjj. 2

It is now easy to obtain a funtion whih is hard to approximate by �-OBDDs

and arbitrary variable orderings. We de�ne the funtion permuted inner produt

PIPn on dlog(n!)e+ n variables. The �rst dlog(n!)e = �(n logn) variables desribe

a permutation � on f1; : : : ; ng, more preisely, for eah permutation, the number

of ode words is one or two. The funtion PIPn realizes IPn on the remaining n

variables whih are permuted aording to �. For eah variable ordering �, we have

to represent (for the di�erent assignments to the permutation variables) IPn for all

variable orderings one or twie. Hene, the result of Theorem 5 whih holds for

many variable orderings and IPn implies a similar result for PIPn and all variable

orderings.

Corollary 3.4 The funtion PIPn annot be approximated well by �-OBDDs and

arbitrary variable orderings.
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4 THE MOTIVATION FROM AND CONCLU-

SION FOR GENETIC PROGRAMMING

Geneti programming was introdued by Koza [12℄ as a heuristi approah to on-

strut a program (in the form of an S-expression) omputing a funtion given by

examples. Let us onsider geneti programming restrited to Boolean onepts like

Boolean formulas, binary deision diagrams, iruits et. This restrited form of

geneti programming is losely related to the following type of minimization prob-

lems.

Assume, a model for representing Boolean funtions is given. It may be a model

from the list above, but also some weaker model like OBDDs, DNF formulas, dei-

sion trees et. Moreover, a omplexity measure for the given model is spei�ed. An

instane of the minimization problem is desribed by a set S � f0; 1gn of inputs of a
funtion f of n variables and the values f(x) for all inputs x 2 S. The problem is to

�nd a funtion g together with its representation in the given model of omplexity

as small as possible and suh that g(x) = f(x) for all x in S.

Geneti programming is a very general type of heuristis appliable to this kind

of problems whih is expeted to allow further progress in this area. Let us point out

that in geneti programming, the usual formulation of the minimization requirement

is that we look for a representation of g of omplexity below a bound spei�ed among

the parameters of the run.

In the present paper, we are mostly interested in the situation, where f is a

total funtion, whih is unknown, and we only have the values of f on a set of

inputs S, whih is not omplete, i.e. S 6= f0; 1gn. In this ase, the goal is to �nd

a total funtion g whih agrees with f on examples from S and, moreover, yields a

justi�able predition of the values of the unknown funtion f on the inputs not in

S. The pairs hx; f(x)i for all x 2 S are alled training examples and the required

funtion g is alled a generalization of the training examples.

In order to get provable justi�ation, we assume that the examples are ho-

sen at random, independently and from the same distribution. This allows to use

known results onerning the PAC-learning model, whih imply that under ertain

assumptions, the generalization problem an be redued to the minimization prob-

lem. More exatly, it is proved in [3℄ (see also [4℄) that under natural assumptions,

it is possible to speify a omplexity bound s and a number m, whih is typially

larger than s, so that any funtion g of omplexity at most s, whih agrees with f

on m randomly hosen independent examples, is likely to be a good approximaion

of f on all inputs.

In experiments with S-expressions, for a long time, only tree representations

are used. Already Koza [13℄ has reognized the value of graph representations and

has introdued ADFs (automatially de�ned funtions), i.e., subprograms whih

an be used at several plaes. Droste [8℄, [9℄ suggested to use OBDDs and geneti

programming in order to generalize a given set of training examples. In the ase of

�-OBDDs for a �xed ordering, subprograms used at several plaes are automatially

identi�ed and merged by the redution algorithm. If the unknown funtion has a

small OBDD representation, then this signi�antly helps to �nd the representation.

Suessful experiments together with a theoretial bakground may be found in

[8℄, [9℄, [10℄, [17℄. A possibility to adopt an existing learning algorithm for OBDD

using membership and equivalene queries to a heuristi minimization proedure

for inompletely spei�ed Boolean funtions is desribed in [2℄.

Experiments with minimization for total funtions using �-OBDDs for a �xed

ordering � were also performed, see [21℄, [15℄.

Let us reall Oam's razor theorem from [3℄.
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Theorem 4.1 ([3℄) Let H be a set of funtions and f any funtion on the same

domain. Assume, ~S is a olletion of m examples hosen independently from a

distribution D on the domain. Then, the probability that there exists a funtion

g 2 H, whih agrees with f on all examples in ~S, but Pr(g(~x) = f(~x)) < 1=2 + ",

where ~x is hosen from D, is at most jHj
�
1
2 + "

�m
.

It is possible to strengthen this theorem using the VC dimension of H, see [4℄.

However, sine we have no nontrivial upper bound on the VC dimension of lasses

orresponding to OBDDs, we use the weaker form. This is almost the same as if

we use the formulation using the VC dimension and estimate the VC dimension by

log jHj, whih is a general upper bound on the VC dimension of H.

In a typial appliation of this theorem following [3℄, the set H is the set of

all funtions of omplexity at most s in some model. In order to apply Oam's

razor theorem to OBDDs, we need an upper bound on the number of nonequivalent

OBDDs of a given size s. Droste [9℄ used a good upper bound on this number based

on a system of reurrene relations. In order to ahieve a losed formula for this

upper bound, we use a slightly di�erent model, namely omplete OBDDs, whih test

every variable in every omputation. For omplete OBDDs, the following bound is

easy to obtain using the method of ounting iruits, see e.g. [18℄.

Lemma 4.2 The number of nonequivalent omplete �-OBDDs of size s for a given

� is at most (s + 2)2s=s! � (es)s.

Combining Lemma 4.2 with Theorem 4.1, it is possible to justify the quality of

the predition of the unknown funtion f , obtained by any heuristi minimization

proedure for OBDDs. We leave the exat formulation to the full paper.

The general situation is that in order to get a good approximation, it is neessary

that the heuristi minimization proedure sueeds to �nd a small OBDD that

agrees with all the training examples. Let us all the situation that we �nd suh an

OBDD a ompression of the set of training examples, sine the size bound required

to ahieve a good predition is almost exatly the bound whih guarantees that the

number of bits needed to represent g is less than m.

The results of the previous setions imply that DSAn and IPn are hard to approx-

imate by any �-OBDD for a random �. In the next theorem, we prove, moreover,

that any funtion f that is hard to approximate in this sense has also the following

property. If we have a set of training examples for funtion f� , whih is obtained

from the funtion f by an unknown permutation � of the variables, then a reason-

able ompression of the examples requires also to optimize the ordering of variables

used to represent g. More exatly, if we hoose an ordering of the variables for solv-

ing the minimization problem at random before we start the minimization proess

and the ordering is not modi�ed during the proess, then, with high probability,

almost no ompression is possible.

Theorem 4.3 Let f , , " and a distribution D on f0; 1gn be suh that the following

is true: if an ordering � is hosen from the uniform distribution on all orderings,

then with probability at least 1 � , every �-OBDD h of size at most s satis�es

Pr(f(~x) = h(~x)) < 1
2 + ", where ~x is hosen from the distribution D. Let ~S be

a set of m independent random examples hosen from D. Then, with probability

1�  � (es)s
�
1
2 + "

�m
, there is no �-OBDD g of size at most s that agrees with f

on all training examples in ~S.

Proof. Let us all an ordering bad, if it has the property mentioned in the theorem.

A random ordering is bad with probability at least 1� . Sine the examples are

hosen independently on the ordering, the distribution of the examples does not

hange, if we ondition aording to the ordering. Let us estimate the onditional
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probability that the m examples may be expressed using a funtion g of �-OBDD

size at most s under the ondition that the ordering � is bad. Every �-OBDD

of size at most s mathes all the examples with probability at most
�
1
2 + "

�m
.

Multiplying this by the number of �-OBDDs of size at most s yields an upper bound

on the required onditional probability. Hene, the onditional probability that the

examples may not be expressed in omplexity at most s is at least 1�(es)s
�
1
2 + "

�m
.

It follows that the probability that the ordering is bad and, moreover, the examples

may not be expressed in size at most s is at least (1�)
�
1� (es)s

�
1
2 + "

�m�
. This

implies the theorem. 2

This general result may be ombined with the results of Setions 2 and 3 to

obtain the following.

Corollary 4.4 For every large enough n, if we take m = n�(1) examples for DSAn

from the uniform distribution and hoose a random ordering � of the variables, then

with probability at least 1�n�1=2, there is no �-OBDD of size 1
10m= logm mathing

the given m training examples.

Proof. Let "; "0 be suh that
p
ln 2=2 < " < "0 < 1=21=10�1=2. Moreover, let Æ < "

be any small positive number and let s = 1
10m= logm. Using Theorem 2.1, we obtain

for every large enough n that a random ordering � satis�es the following. With

probability at least 1�n�2"2= ln 2, there is no (12+"
0)-approximation among funtions

of �-OBDD omplexity at most s � en
Æ

. Note that in our situation, (es)s � 2m=10.

Using also Theorem 4.3, with probability at least 1�n�2"2= ln 2�2m=10
�
1
2 + "0

�m �
1 � n�1=2, there is no �-OBDD of size at most s mathing the given m training

examples for DSAn. 2

Corollary 4.5 Let 0 < � < 1 be a onstant. For every large enough n, if we take

m = nO(1), m � n, examples for IPn from the uniform distribution and hoose a

random ordering � of the variables, then with probability at least 1�e�
(n), there is

no �-OBDD of size at most (1��)m= logm mathing the given m training examples.

Proof. Let Æ and " be positive numbers suh that Æ < 1
9 and 1

2 + " <
�
1
2

�1��
.

Moreover, let s = (1 � �)m= logm. By Theorem 3.1, for every large enough n,

a random ordering � satis�es the following. With probability at least 1 � e�4Æ2n,

there is no (12 + ")-approximation of IPn among funtions of �-OBDD omplexity

at most s � 2Æn. Note that (es)s � 2(1��)m. Together with Theorem 4.3, we obtain

that with probability at least 1� e�4Æ2n � 2(1��)m
�
1
2 + "

�m
= 1� e�
(n), there is

no �-OBDD of size at most s mathing the given m random training examples for

IPn. 2

On the other hand, for the funtions DSAn and IPn, there are orderings, for

whih a good ompression is possible. This suggests that inluding the optimization

of the variable ordering into the minimization proedure often is neessary to get a

good quality of the omputed generalization.
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