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Abstract

We provide a comprehensive overview of many recent algorithms for approximate inference in
Gaussian process models for probabilistic binary classification. The relationships between several
approaches are elucidated theoretically, and the properties of the different algorithms are corrobo-
rated by experimental results. We examine both 1) the quality of the predictive distributions and
2) the suitability of the different marginal likelihood approximations for model selection (selecting
hyperparameters) and compare to a gold standard based on MCMC. Interestingly, some methods
produce good predictive distributions although their marginal likelihood approximations are poor.
Strong conclusions are drawn about the methods: The Expectation Propagation algorithm is almost
always the method of choice unless the computational budget is very tight. We also extend existing
methods in various ways, and provide unifying code implementing all approaches.

Keywords: Gaussian process priors, probabilistic classification, Laplaces’s approximation, ex-
pectation propagation, variational bounding, mean field methods, marginal likelihood evidence,
MCMC

1. Introduction

Gaussian processes (GPs) can conveniently be used to specify prior distributions for Bayesian infer-
ence. In the case of regression with Gaussian noise, inference can be done simply in closed form,
since the posterior is also a GP. For non-Gaussian likelihoods, such as e.g., in binary classification,
exact inference is analytically intractable.

One prolific line of attack is based on approximating the non-Gaussian posterior with a tractable
Gaussian distribution. One might think that finding such an approximating GP is a well-defined
problem with a largely unique solution. However, we find no less than three different types of solu-
tion in the recent literature: Laplace Approximation (LA) (Williams and Barber, 1998), Expectation
Propagation (EP) (Minka, 2001a) and Kullback-Leibler divergence (KL) minimization (Opper and
Archambeau, 2008) comprising Variational Bounding (VB) (Gibbs and MacKay, 2000) as a special
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case. Another approach is based on a factorial approximation, rather than a Gaussian (Csató et al.,
2000).

Practical applications reflect the richness of approximate inference methods: LA has been used
for sequence annotation (Altun et al., 2004) and prostate cancer prediction (Chu et al., 2005), EP for
affect recognition (Kapoor and Picard, 2005), VB for weld cracking prognosis (Gibbs and MacKay,
2000), Label Regression (LR) serves for object categorization (Kapoor et al., 2007) and MCMC
sampling is applied to rheuma diagnosis (Schwaighofer et al., 2002). Brain computer interfaces
(Zhong et al., 2008) even rely on several (LA, EP, VB) methods.

In this paper, we compare these different approximations and provide insights into the strengths
and weaknesses of each method, extending the work of Kuss and Rasmussen (2005) in several di-
rections: We cover many more approximation methods (VB,KL,FV,LR), put all of them in common
framework and provide generic implementations dealing with both the logistic and the cumula-
tive Gaussian likelihood functions and clarify the aspects of the problem causing difficulties for
each method. We derive Newton’s method for KL and VB. We show how to accelerate MCMC
simulations. We highlight numerical problems, comment on computational complexity and supply
runtime measurements based on experiments under a wide range of conditions, including different
likelihood and different covariance functions. We provide deeper insights into the methods behavior
by systematically linking them to each other. Finally, we review the tight connections to methods
from the literature on Statistical Physics, including the TAP approximation and TAPnaive.

The quantities of central importance are the quality of the probabilistic predictions and the suit-
ability of the approximate marginal likelihood for selecting parameters of the covariance function
(hyperparameters). The marginal likelihood for any Gaussian approximate posterior can be lower
bounded using Jensen’s inequality, but the specific approximation schemes also come with their
own marginal likelihood approximations.

We are able to draw clear conclusions. Whereas every method has good performance under
some circumstances, only a single method gives consistently good results. We are able to theoreti-
cally corroborate our experimental findings; together this provides solid evidence and guidelines for
choosing an approximation method in practice.

2. Gaussian Processes for Binary Classification

We describe probabilistic binary classification based on Gaussian processes in this section. For
a graphical model representation see Figure 1 and for a 1d pictorial description consult Figure 2.
Given data points xi from a domain X with corresponding class labels yi ∈ {−1,+1}, one would
like to predict the class membership probability for a test point x∗. This is achieved by using a
latent function f whose value is mapped into the unit interval by means of a sigmoid function
sig : R→ [0,1] such that the class membership probability P(y = +1|x) can be written as sig( f (x)).
The class membership probability must normalize ∑y P(y|x) = 1, which leads to P(y = +1|x) = 1−
P(y = −1|x). If the sigmoid function satisfies the point symmetry condition sig(t) = 1− sig(−t),
the likelihood can be compactly written as

P(y|x) = sig(y · f (x)) .
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In this paper, two point symmetric sigmoids are considered

siglogit(t) :=
1

1+ e−t

sigprobit(t) :=
Z t

−∞
N (τ|0,1)dτ.

The two functions are very similar at the origin (showing locally linear behavior around sig(0) =
1/2 with slope 1/4 for siglogit and 1/

√
2π for sigprobit) but differ in how fast they approach 0/1 when

t goes to infinity. For large negative values of t, we have the asymptotics

siglogit(t) ≈ exp(−t) and sigprobit(t) ≈ exp(−1

2
t2 +0.158t −1.78), for t ≪ 0.

Linear decay of ln(siglogit) corresponds to a weaker penalty for wrongly classified examples than
the quadratic decay of ln(sigprobit) .

For notational convenience, the following shorthands are used: The matrix X = [x1, . . . ,xn] of
size n× d collects the training points, the vector y = [y1, . . . ,yn]

⊤ of size n× 1 collects the target
values and latent function values are summarized by f = [ f1, . . . , fn]

⊤ with fi = f (xi). Observed data
is written as D = {(xi,yi) |i = 1, . . . ,n} = (X,y). Quantities carrying an asterisk refer to test points,
that is, f∗ contains the latent function values for test points [x∗,1, . . . ,x∗,m] = X∗ ⊂ X . Covariances
between latent values f and f∗ at data points x and x∗ follow the same notation, namely [K∗∗]i j =
k(x∗,i,x∗, j), [K∗]i j = k(xi,x∗, j), [k∗]i = k(xi,x∗) and k∗∗ = k(x∗,x∗), where [A]i j denotes the entry
Ai j of the matrix A.

Given the latent function f , the class labels are assumed to be Bernoulli distributed and inde-
pendent random variables, which gives rise to a factorial likelihood, factorizing over data points
(see Figure 1)

P(y| f ) = P(y|f) =
n

∏
i=1

P(yi| fi) =
n

∏
i=1

sig(yi fi) . (1)

A GP (Rasmussen and Williams, 2006) is a stochastic process fully specified by a mean function

m(x) = E [ f (x)] and a positive definite covariance function k(x,x′) = V [ f (x), f (x′)]. This means
that a random variable f (x) is associated to every x ∈ X , such that for any set of inputs X ⊂ X ,
the joint distribution P(f|X,θ) = N (f|m0,K) is Gaussian with mean vector m0 and covariance
matrix K. The mean function and covariance functions may depend on additional hyperparameters

θ. For notational convenience we will assume m(x) ≡ 0 throughout. Thus, the elements of K are
Ki j = k(xi,x j,θ).

By application of Bayes’ rule, one gets an expression for the posterior distribution over the
latent values f

P(f|y,X,θ) =
P(y|f)P(f|X,θ)

R

P(y|f)P(f|X,θ)df
=

N (f|0,K)

P(y|X,θ)

n

∏
i=1

sig(yi fi) , (2)

where Z = P(y|X,θ) =
R

P(y|f)P(f|X,θ)df denotes the marginal likelihood or evidence for the hy-
perparameter θ. The joint prior over training and test latent values f and f∗ given the corresponding
inputs is
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P(f∗, f|X∗,X,θ) = N

([
f

f∗

]∣
∣
∣
∣
0,

[
K K∗
K⊤

∗ K∗∗

])

.

When making predictions, we marginalize over the training set latent variables

P(f∗|X∗,y,X,θ) =
Z

P(f∗, f|X∗,y,X,θ)df =
Z

P(f∗|f,X∗,X,θ)P(f|y,X,θ)df, (3)

where the joint posterior is factored into the product of the posterior and the conditional prior

P(f∗|f,X∗,X,θ) = N
(

f∗|K⊤
∗ K−1f,K∗∗−K⊤

∗ K−1K∗
)

.

Finally, the predictive class membership probability p∗ := P(y∗ = 1|x∗,y,X,θ) is obtained by aver-
aging out the test set latent variables

P(y∗|x∗,y,X,θ) =
Z

P(y∗| f∗)P( f∗|x∗,y,X,θ)d f∗ =
Z

sig(y∗ f∗)P( f∗|x∗,y,X,θ)d f∗. (4)

The integral is analytically tractable for sigprobit (Rasmussen and Williams, 2006, Ch. 3.9) and can
be efficiently approximated for siglogit (Williams and Barber, 1998, App. A).

Figure 1: Graphical Model for binary Gaussian process classification: Circles represent unknown
quantities, squares refer to observed variables. The horizontal thick line means fully
connected latent variables. An observed label yi is conditionally independent of all other
nodes given the corresponding latent variable fi. Labels yi and latent function values
fi are connected through the sigmoid likelihood; all latent function values f i are fully
connected, since they are drawn from the same GP. The labels yi are binary, whereas the
prediction p∗ is a probability and can thus have values from the whole interval [0,1].

2.1 Stationary Covariance Functions

In preparation for the analysis of the approximation schemes described in this paper, we investigate
some simple properties of the posterior for stationary covariance functions in different regimes
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encountered in classification. Stationary covariances of the form k(x,x′,θ) = σ2
f g(|x−x′|/ℓ) with

g : R → R a monotonously decreasing function1 and θ = {σ f , ℓ} are widely used. The following
section supplies a geometric intuition of that specific prior in the classification scenario by analyzing
the limiting behavior of the covariance matrix K as a function of the length scale ℓ and the limiting
behavior of the likelihood as a function of the latent function scale σ f . A pictorial illustration of the
setting is given in Figure 3.

2.1.1 LENGTH SCALE

Two limiting cases of “ignorance with respect to the data” with marginal likelihood Z = 2−n can be
distinguished, where

�
= [1, . . .1]⊤ and I is the identity matrix (see Appendix B.1)

lim
ℓ→0

K = σ2
f I,

lim
ℓ→∞

K = σ2
f

�✁� ⊤.

For very small length scales (ℓ → 0), the prior is simply isotropic as all points are deemed to be
far away from each other and the whole model factorizes. Thus, the (identical) posterior moments
can be calculated dimension-wise. (See Figure 3, regimes 1, 4 and 7.)

For very long length scales (ℓ → ∞), the prior becomes degenerate as all datapoints are deemed
to be close to each other and takes the form of a cigar along the hyper-diagonal. (See Figure 3,
regimes 3, 6 and 9.) A 1d example of functions drawn from GP priors with different lengthscales ℓ
is shown in Figure 2 on the left. The lengthscale has to be suited to the data; if chosen too small, we
will overfit, if chosen too high underfitting will occur.

2.1.2 LATENT FUNCTION SCALE

The sigmoid likelihood function sig(yi fi) measures the agreement of the signs of the latent function
and the label in a smooth way, that is, values close to one if the signs of yi and fi are the same and | fi|
is large, and values close to zero if the signs are different and | fi| is large. The latent function scale
σ f of the data can be moved into the likelihood ˜sigσ f

(t) = sig(σ2
f t), thus σ f models the steepness of

the likelihood and finally the smoothness of the agreement by interpolation between the two limiting
cases “ignorant” and “hard cut”

lim
σ f →0

sig(t) ≡ 1

2
“ignorant",

lim
σ f→∞

sig(t) ≡ step(t) :=
{

0, t < 0; 1
2 , t = 0; 1, 0 < t “hard cut".

In the case of very small latent scales (σ f → 0), the likelihood is flat causing the posterior to
equal the prior. The marginal likelihood is again Z = 2−n. (See Figure 3, regimes 7, 8 and 9.)

In the case of large latent scales (σ f ≫ 1), the likelihood approaches the step function. (See
Figure 3, regimes 1, 2 and 3.) A further increase of the latent scale does not change the model
anymore. The model is effectively the same for all σ f above a threshold.

1. Furthermore, we require g(0) = 1 and limt→∞ g(t) = 0.
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Figure 2: Pictorial illustration of binary Gaussian process classification in 1d: Plot a) shows 3 sam-
ple functions drawn from GPs with different lengthscales ℓ. Then, three pairs of plots
show distributions over functions f : R → R and sig( f ) : R → [0,1] occurring in GP clas-
sification. b+c) the prior, d+e) a posterior with n = 7 observations and f+g) a posterior
with n = 20 observations along with the n observations with binary labels. The thick black
line is the mean, the gray background is the ± standard deviation and the thin lines are
sample functions. With more and more data points observed, the uncertainty is gradually
shrunk. At the decision boundary the uncertainty is smallest.

2.2 Gaussian Approximations

Unfortunately, the posterior over the latent values (Equation 2) is not Gaussian due to the non-
Gaussian likelihood (Equation 1). Therefore, the latent distribution (Equation 3), the predictive
distribution (Equation 4) and the marginal likelihood Z cannot be written as analytical expressions.
To obtain exact answers, one can resort to sampling algorithms (MCMC). However, if sig is con-
cave in the logarithmic domain, the posterior can be shown to be unimodal motivating Gaussian
approximations to the posterior. Five different Gaussian approximations corresponding to methods
explained later onwards in the paper are depicted in Figure 4.

A quadratic approximation to the log likelihood φ( fi) := lnP(yi| fi) at f̃i

φ( fi) ≈ φ( f̃i)+φ′( f̃i)( fi − f̃i)+
1

2
φ′′( f̃i)( fi − f̃i)

2 = −1

2
wi f 2

i +bi fi + const fi

motivates the following approximate posterior Q(f|y,X,θ)

lnP(f|y,X,θ)
(2)
= −1

2
f⊤K−1f+

n

∑
i=1

lnP(yi| fi)+ constf

quad. approx.
≈ −1

2
f⊤K−1f− 1

2
f⊤Wf+b⊤f+ constf

m:=(K−1+W)−1b
= −1

2
(f−m)⊤

(
K−1 +W

)
(f−m)+ constf

= lnN (f|m,V) =: lnQ(f|y,X,θ) , (5)
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Figure 3: Gaussian Process Classification: Prior, Likelihood and exact Posterior: Nine num-
bered quadrants show posterior obtained by multiplication of different priors and like-
lihoods. The leftmost column illustrates the likelihood function for three different
steepness parameters σ f and the upper row depicts the prior for three different length
scales ℓ. Here, we use σ f as a parameter of the likelihood. Alternatively, rows cor-
respond to “degree of Gaussianity” and columns stand for “degree of isotropy“. The
axes show the latent function values f1 = f (x1) and f2 = f (x2). A simple toy exam-
ple employing the cumulative Gaussian likelihood and a squared exponential covariance
k(x,x′) = σ2

f exp(−‖x−x′‖2 /2ℓ2) with length scales lnℓ = {0,1,2.5} and latent func-

tion scales lnσ f = {−1.5,0,1.5} is used. Two data points x1 =
√

2, x2 = −
√

2 with
corresponding labels y1 = 1, y2 = −1 form the data set.

where V−1 = K−1 +W and W denotes the precision of the effective likelihood (see Equation 7). It
turns out that the methods discussed in the following sections correspond to particular choices of m

and V.

Let us assume, we have found such a Gaussian approximation to the posterior with mean m

and (co)variance V. Consequently, the latent distribution for a test point becomes a tractable one-
dimensional Gaussian P( f∗|x∗,y,X,θ) = N ( f∗|µ∗,σ2

∗) with the following moments (Rasmussen
and Williams, 2006, p. 44 and 56):

µ∗ = k⊤
∗ K−1m = k⊤

∗ α, α = K−1m,

σ2
∗ = k∗∗−k⊤

∗
(
K−1 −K−1VK−1

)
k∗ = k∗∗−k⊤

∗
(
K+W−1

)−1
k∗.

(6)

Since Gaussians are closed under multiplication, one can—given the Gaussian prior P(f|X,θ)
and the Gaussian approximation to the posterior Q(f|y,X,θ)—deduce the Gaussian factor Q(y|f)
such that Q(f|y,X,θ) ∝ Q(y|f)P(f|X,θ). Consequently, this Gaussian factor can be thought of as
an effective likelihood. Five different effective likelihoods, corresponding to methods discussed sub-
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Figure 4: Five Gaussian Approximations to the Posterior (exact Posterior and mode in gray): Dif-
ferent Gaussian approximations to the exact posterior using the regime 2 setting of Figure
3 are shown. The exact posterior is represented in gray by a cross at the mode and a sin-
gle equiprobability contour line. From left to right: The best Gaussian approximation
(intractable) matches the moments of the true posterior, the Laplace approximation does
a Taylor expansion around the mode, the EP approximation iteratively matches marginal
moments, the variational method maximizes a lower bound on the marginal likelihood
and the KL method minimizes the Kullback-Leibler to the exact posterior. The axes show
the latent function values f1 = f (x1) and f2 = f (x2).

sequently in the paper, are depicted in Figure 5. By “dividing” the approximate Gaussian posterior
(see Appendix B.2) by the true Gaussian prior we find the contribution of the effective likelihood
Q(y|f):

Q(y|f) ∝
N (f|m,V)

N (f|0,K)
∝ N

(

f|(KW)−1
m+m,W−1

)

. (7)

We see (also from Equation 5) that W models the precision of the effective likelihood. In general, W

is a full matrix containing n2 parameters.2 However, all algorithms maintaining a Gaussian posterior
approximation work with a diagonal W to enforce the effective likelihood to factorize over examples
(as the true likelihood does, see Figure 1) in order to reduce the number of parameters. We are not
aware of work quantifying the error made by this assumption.

2.3 Log Marginal Likelihood

Prior knowledge over the latent function f is encoded in the choice of a covariance function k con-
taining hyperparameters θ. In principle, one can do inference jointly over f and θ e.g., by sampling
techniques. Another approach to model selection is maximum likelihood type II also known as
the evidence framework (MacKay, 1992), where the hyperparameters θ are chosen to maximize
the marginal likelihood or evidence P(y|X,θ). In other words, one maximizes the agreement be-
tween observed data and the model. Therefore, one has a strong motivation to estimate the marginal
likelihood.

Geometrically, the marginal likelihood measures the volume of the prior times the likelihood.
High volume implies a strong consensus between our initial belief and our observations. In GP clas-
sification, each data point xi gives rise to a dimension fi in latent space. The likelihood implements
a mechanism, for smoothly restricting the posterior along the axis of fi to the side corresponding

2. Numerical moment matching with K =

[

7 6
6 7

]

, y1 = y2 = 1 and sigprobit leads to W =

[

0.142 −0.017
−0.017 0.142

]

.
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Figure 5: Five Effective Likelihoods (exact Prior/Likelihood in gray): A Gaussian approximation
to the posterior induces a Gaussian effective likelihood (Equation 7). Different effective
likelihoods are shown; order and setting are the same as described in Figure 4. The axes
show the latent function values f1 = f (x1) and f2 = f (x2). The effective likelihood re-
places the non-Gaussian likelihood (indicated by three gray lines). A good replacement
behaves like the exact likelihood in regions of high prior density (indicated by gray el-
lipses). EP and KL yield a good coverage of that region. However LA and VB yield too
concentrated replacements.

to the sign of yi . Thus, the latent space Rn is softly cut down to the orthant given by the values in
y. The log marginal likelihood measures, what fraction of the prior lies in that orthant. Finally, the
value Z = 2−n corresponds to the case, where half of the prior lies on either side along each axis in
latent space. Consequently, successful inference is characterized by Z > 2−n.

Some posterior approximations (Sections 3 and 4) provide an approximation to the marginal
likelihood, other methods provide a lower bound (Sections 5 and 6). Any Gaussian approximation
Q(f|θ) = N (f|m,V) to the posterior P(f|y,X,θ) gives rise to a lower bound ZB to the marginal
likelihood Z by application of Jensen’s inequality. This bound has been used in the context of
sparse approximations (Seeger, 2003).

lnZ = lnP(y|X,θ) = ln

Z

P(y|f)P(f|X,θ)df = ln

Z

Q(f|θ)
P(y|f)P(f|X,θ)

Q(f|θ)
df

Jensen
≥

Z

Q(f|θ) ln
P(y|f)P(f|X,θ)

Q(f|θ)
df =: lnZB. (8)

Some algebra (Appendix B.3) leads to the following expression for lnZB:

n

∑
i=1

Z

N ( f |,0,1) lnsig
(
yi

{√
Vii f +mi

})
df

︸ ︷︷ ︸

1) data fit

+
1

2
[n−m⊤K−1m

︸ ︷︷ ︸

2) data fit

+ ln
∣
∣VK−1

∣
∣− tr

(
VK−1

)

︸ ︷︷ ︸

3) regularizer

]. (9)

Model selection means maximization of lnZB. Term 1) is a sum of one-dimensional Gaussian
integrals of sigmoid functions in the logarithmic domain with adjustable offset and steepness. The
integrals can be numerically computed in an efficient way using Gauss-Hermite quadrature (Press
et al., 1993, §4.5). As the sigmoid in the log domain takes only negative values, the first term will
be negative. That means, maximization of the first term is done by shifting the log-sigmoid such
that the high-density region of the Gaussian is multiplied by small values. Term 2) is the equivalent
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of the data-fit term in GP regression (Rasmussen and Williams, 2006, Ch. 5.4.1). Thus, the first
and the second term encourage fitting the data by favouring small variances Vii and large means mi

having the same sign as yi. The third term can be rewritten as − ln |I+KW|− tr
(
(I+KW)−1

)
and

yields −∑n
i=1 ln(1 + λi)+ 1

1+λi
with λi ≥ 0 being the eigenvalues of KW. Thus, term 3) keeps the

eigenvalues of KW small, thereby favouring a smaller class of functions—this can be seen as an
instance of Occam’s razor.

Furthermore, the bound

lnZB =
Z

Q(f|θ) ln
P(f|y,X,θ)P(y|X)

Q(f|θ)
df = lnZ −KL(Q(f|θ) ‖ P(f|y,X,θ)) (10)

can be decomposed into the exact marginal likelihood minus the Kullback-Leibler (KL) diver-
gence between the exact posterior and the approximate posterior. Thus by maximizing the lower
bound lnZB on lnZ, we effectively minimize the KL-divergence between P(f|y,X,θ) and Q(f|θ) =
N (f|m,V). The bound is tight if and only if Q(f|θ) = P(f|y,X,θ).

3. Laplace Approximation (LA)

A second order Taylor expansion around the posterior mode m leads to a natural way of constructing
a Gaussian approximation to the log-posterior Ψ(f) = lnP(f|y,X,θ) (Williams and Barber, 1998;
Rasmussen and Williams, 2006, Ch. 3). The mode m is taken as the mean of the approximate
Gaussian. Linear terms of Ψ vanish because the gradient at the mode is zero. The quadratic term of
Ψ is given by the negative Hessian W, which - due to the likelihood’s factorial structure - turns out
to be diagonal. The mode m is found by Newton’s method.

3.1 Posterior

P(f|y,X,θ) ≈ N (f|m,V) = N
(

f|m,
(
K−1 +W

)−1
)

,

m = argmax
f∈Rn

P(y|f)P(f|X,θ) ,

W = − ∂2 lnP(y|f)
∂f∂f⊤

∣
∣
∣
∣
f=m

= −
[

∂2 lnP(yi| fi)

∂ f 2
i

∣
∣
∣
∣

fi=mi

]

ii

.

3.2 Log Marginal Likelihood

The unnormalized posterior P(y|f)P(f|X,θ) has its maximum h = exp(Ψ(m)) at its mode m,
where the gradient vanishes. A Taylor expansion of Ψ is then given by Ψ(f)≈ h− 1

2(f−m)⊤(K−1 +
W)(f−m). Consequently, the log marginal likelihood can be approximated by plugging in the ap-
proximation of Ψ(f).

lnZ = lnP(y|X,θ) = ln

Z

P(y|f)P(f|X,θ)df = ln

Z

exp(Ψ(f))df

≈ lnh+ ln

Z

exp

(

−1

2
(f−m)⊤

(
K−1 +W

)
(f−m)

)

df

= lnP(y|m)− 1

2
m⊤K−1m+

1

2
ln |I+KW| .
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4. Expectation Propagation (EP)

EP (Minka, 2001b) is an iterative method to find approximations based on approximate marginal
moments, which can be applied to Gaussian processes. See (Rasmussen and Williams, 2006, Ch. 3)
for details. The individual likelihood terms are replaced by site functions ti( fi) being unnormalized
Gaussians

P(yi| fi) ≈ ti
(

fi,µi,σ2
i ,Zi

)
:= ZiN

(
fi|µi,σ2

i

)

such that the approximate marginal moments of Q( fi) :=
R

N (f|0,K)∏n
j=1 Z jN

(

f j|µ j,σ2
j

)

df¬i

agree with the marginals of
R

N (f|0,K)P(yi| fi)∏ j 6=i Z jN
(

f j|µ j,σ2
j

)

df¬i of the approximation

based on the exact likelihood term P(y j| f j). That means, there are 3n quantities µi, σ2
i and Zi

to be iteratively optimized. Convergence of EP is not generally guaranteed, but there always exists
a fixed-point for the EP updates in GP classification (Minka, 2001a). If the EP iterations converge,
the solution obtained is a saddle point of a special energy function (Minka, 2001a). However, an
EP update does not necessarily imply a decrease in energy. For our case of log-concave likelihood
functions, we always observed convergence, but we are not aware of a formal proof.

4.1 Posterior

Based on these local approximations, the approximate posterior can be written as:

P(f|y,X,θ) ≈ N (f|m,V) = N
(

f|m,
(
K−1 +W

)−1
)

,

W =
[
σ−2

i

]

ii
,

m = VWµ =
[

I−K
(
K+W−1

)−1
]

KWµ, µ = (µ1, . . . ,µn)
⊤ .

4.2 Log Marginal Likelihood

>From the likelihood approximations, one can directly obtain an expression for the approximate log
marginal likelihood

lnZ = lnP(y|X,θ) = ln

Z

P(y|f)P(f|X,θ)df

≈ ln

Z n

∏
i=1

t
(

fi,µi,σ2
i ,Zi

)
P(f|X,θ)df

=
n

∑
i=1

lnZi −
1

2
µ⊤ (K+W−1

)−1
µ− 1

2
ln
∣
∣K+W−1

∣
∣− n

2
ln2π

=
n

∑
i=1

ln
Zi√
2π

− 1

2
m⊤ (K−1 +K−1W−1K−1

)
m− 1

2
ln
∣
∣K+W−1

∣
∣=: lnZEP.

The lower bound provided by Jensen’s inequality ZB (Equation 9) is known to be below the approx-
imation ZEP obtained by EP (Opper and Winther, 2005, page 2183). From ZEP ≥ ZB and Z ≥ ZB it
is not clear, which value one should use. In principle, ZEP could be a bad approximation. However,
our experimental findings and extensive Monte Carlo simulations suggest that ZEP is very accurate.
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4.3 Thouless, Anderson & Palmer method (TAP)

Based on ideas rooted in Statistical Physics, one can approach the problem from a slightly different
angle (Opper and Winther, 2000). Individual Gaussian approximations N ( f i|µ¬i,σ2

¬i) are only made
to predictive distributions P

(
fi|xi,y\i,X\i,θ

)
for data points xi that have been previously removed

from the training set. Based on µ¬i and σ2
¬i one can derive explicit expressions for (α,W

1
2 ), our

parameters of interest.

αi ≈
R ∂

∂ fi
P(yi| fi)N ( fi|µ¬i,σ2

¬i)d fi
R

P(yi| fi)N ( fi|µ¬i,σ2
¬i)d fi

,

[
W−1

]

ii
≈ σ2

¬i

(
1

αi [Kα]i
−1

)

. (11)

In turn, the 2n parameters (µ¬i,σ2
¬i) can be expressed as a function of α, K and W

1
2 .

σ2
¬i = 1/

[(
K+W−1

)−1
]

ii
−
[
W−1

]

ii
,

µ¬i = [Kα]i −σ2
¬iαi. (12)

As a result, a system (Equations 11/12) of nonlinear equations in µ¬i and σ2
¬i has to be solved

by iteration. Each step involves a matrix inversion of cubic complexity. A faster “naïve” variant
updating only n parameters has also been proposed (Opper and Winther, 2000) but it does not lead
to the same fixed point. As in the FV algorithm (Section 7), a formal complex transformation leads
to a simplified version by fixing σ2

¬i = Kii, called (TAPnaive) in the sequel.

Finally, for prediction, the predictive posterior P( f∗|x∗,y,X,θ) is approximated by a Gaussian

N ( f∗|µ∗,σ2
∗) at a test point x∗ based on the parameters (α,W

1
2 ) and according to equation (6).

A fixed-point of the TAP mean-field equations is also a fixed-point of the EP algorithm (Minka,
2001a). This theoretical result was confirmed in our numerical simulations. However, the EP algo-
rithm is more practical and typically much faster. For this reason, we are not going to treat the TAP
method as an independent algorithm in this paper.

5. KL-Divergence Minimization (KL)

In principle, we simply want to minimize a dissimilarity measure between the approximate posterior
Q(f|θ) = N (f|m,V) and the exact posterior P(f|y,X,θ). One quantity to minimize is the KL-
divergence

KL(P(f|y,X,θ) ‖ Q(f|θ)) =
Z

P(f|y,X,θ) ln
P(f|y,X,θ)

Q(f|θ)
df.

Unfortunately, this expression is intractable. If instead, we measure the reverse KL-divergence, we
regain tractability

KL(Q(f|θ) ‖ P(f|y,X,θ)) =
Z

N (f|m,V) ln
N (f|m,V)

P(f|y,X,θ)
df =: KL(m,V).
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A similar approach has been followed for regression with Laplace or Cauchy noise (Opper and
Archambeau, 2008). Finally, we minimize the following objective (see Appendix B.3) with respect
to the variables m and V. Constant terms have been dropped from the expression:

KL(m,V)
c
= −

Z

N ( f )

[
n

∑
i=1

lnsig(
√

viiyi f +miyi)

]

d f − 1

2
ln |V|+ 1

2
m⊤K−1m+

1

2
tr
(
K−1V

)
.

We refer to the first term of KL(m,V) as a(m,V) to keep the expressions short. We calculate first
derivatives and equate them with zero to obtain necessary conditions that have to be fulfilled at a
local optimum (m∗,V∗)

∂KL

∂m
=

∂a

∂m
−K−1m = 0 ⇒ K−1m =

∂a

∂m
= α,

∂KL

∂V
=

∂a

∂V
+

1

2
V−1 − 1

2
K−1 = 0 ⇒ V =

(

K−1 −2
∂a

∂V

)−1

=
(
K−1 −2Λ

)−1

which defines Λ. If the approximate posterior is parametrized by (m,V), there are in principle in
the order of n2 parameters. But if the necessary conditions for a local minimum are fulfilled (i.e., the
derivatives ∂KL/∂m and ∂KL/∂V vanish), the problem can be re-parametrized in terms of (α,Λ).
Since Λ = ∂a/∂V is a diagonal matrix (see Equation 17), the optimum is characterized 2n free
parameters. This fact was already pointed out by Manfred Opper (personal communication) and
Matthias Seeger (Seeger, 1999, Ch. 5.21, Eq. 5.3). Thus, a minimization scheme based on Newton
iterations on the joint vector ξ := [α⊤,Λii]

⊤ takes O(8 ·n3) operations. Details about the derivatives
∂KL/∂ξ and ∂2KL/∂ξ∂ξ⊤ are provided in Appendix A.2.

5.1 Posterior

Based on these local approximations, the approximate posterior can be written as:

P(f|y,X,θ) ≈ N (f|m,V) = N
(

f|m,
(
K−1 +W

)−1
)

,

W = −2Λ,

m = Kα.

5.2 Log Marginal Likelihood

Since the method inherently maximizes a lower bound on the marginal likelihood, this bound (Equa-
tion 9) is used as approximation to the marginal likelihood.

6. Variational Bounds (VB)

The following variational bounding method (Gibbs and MacKay, 2000) is a special case of the KL
method. Instead of optimizing a bound on the joint (Eq. 8), they impose the bounding condition on
each likelihood term individually. Here, we treat parametrization based on quadratic lower bounds
on the individual likelihoods in the logarithmic domain. We first derive all calculations based on
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general likelihoods. Individual likelihood bounds

P(yi| fi) ≥ exp
(
ai f 2

i +biyi fi + ci

)
, ∀ fi ∈ R∀i

⇒ P(y|f) ≥ exp
(

f⊤Af+(b⊙y)⊤ f+ c⊤
�
)

=: Q(y|f,A,b,c) , ∀f ∈ R

are defined in terms of coefficients ai,bi and ci, where ⊙ denotes the element-wise product of two
vectors. This lower bound on the likelihood induces a lower bound on the marginal likelihood.

Z =
Z

P(f|X)P(y|f)df ≥
Z

P(f|X)Q(y|f,A,b,c)df = ZB.

Carrying out the Gaussian integral

ZB =
Z

N (f|0,K)exp
(

f⊤Af+(b⊙y)⊤ f+ c⊤
�
)

df

leads to (see Appendix B.4)

lnZB = c⊤
�
+

1

2
(b⊙y)⊤

(
K−1 −2A

)−1
(b⊙y)− 1

2
ln |I−2AK| (13)

which can now be maximized with respect to the coefficients ai,bi and ci. In order to get an efficient
algorithm, one has to calculate the first and second derivatives ∂ lnZB/∂ς , ∂2 lnZB/∂ς∂ς⊤ (as done
in Appendix A.1). Hyperparameters can be optimized using the gradient ∂ lnZB/∂θ.

6.1 Logit Bound

Optimizing the logistic likelihood function (Gibbs and MacKay, 2000), we obtain the necessary
conditions

Aς := −Λς,

bς :=
1

2

�
,

cς,i := ς2
i λ(ςi)−

1

2
ςi + lnsiglogit(ςi)

where we define λ(ςi) =
(
2siglogit(ςi)−1

)
/(4ςi) and Λς = [λ(ςi)]ii. This shows, that we only have

to optimize with respect to n parameters ς . We apply Newton’s method for this purpose. The bound
is symmetric and tight at f = ±ς .

6.2 Probit Bound

For reasons of completeness, we derive similar expressions (Appendix B.5) for the cumulative Gaus-
sian likelihood sigprobit( fi) with necessary conditions

aς := −1

2

�
, (14)

bς,i := ςi +
N (ςi)

sigprobit(ςi)
,

cς,i :=
(ςi

2
−bi

)

ςi + ln
(
sigprobit(ςi)

)

which again depend only on a single vector of parameters we optimize using Newton’s method. The
bound is tight for f = ς .
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6.3 Posterior

Based on these local approximations, the approximate posterior can be written as

P(f|y,X,θ) ≈ N (f|m,V) = N
(

f|m,
(
K−1 +W

)−1
)

,

W = −2Aς,

m = V(y⊙bς) =
(
K−1 −2Aς

)−1
(y⊙bς) ,

where we have expressed the posterior parameters directly as a function of the coefficients. Finally,
we deal with an approximate posterior Q(f|θ) = N (f|mς,Vς) only depending on a vector ς of
n variational parameters and a mapping ς 7→ (mς,Vς). In the KL method, every combination of
values m and W is allowed, in the VB method, mς and Vς cannot be chosen independently, since
the have to be compatible with the bounding requirements. Therefore, the variational posterior is
more constrained than the general Gaussian posterior and thus easier to optimize.

6.4 Log Marginal Likelihood

It turns out, that the approximation to the marginal likelihood (Equation 13) is often quite poor and
the more general Jensen bound approach (Equation 9) is much tighter. In practice, one would have
to evaluate both of them and keep the maximum value.

7. Factorial Variational Method (FV)

Instead of approximating the posterior P(f|y,X,θ) by the closest Gaussian distribution, one can use
the closest factorial distribution Q(f|y,X,θ) = ∏i Q( fi), also called ensemble learning (Csató et al.,
2000). Another kind of factorial approximation Q(f) = Q(f+)Q(f−)—a posterior factorizing over
classes—is used in multi-class classification (Girolami and Rogers, 2006).

7.1 Posterior

As a result of free-form minimization of the Kullback-Leibler divergence KL(Q(f|y,X,θ) ‖ P(f|y,X,θ))
by equating its functional derivative δKL/δQ( fi) with the zero function (Appendix B.6), one finds
the best approximation to be of the following form:

Q( fi) ∝ N
(

fi

∣
∣µi,σ2

i

)
P(yi| fi) ,

µi = mi −σ2
i

[
K−1m

]

i
= [Kα]i −σ2

i αi,

σ2
i =

[
K−1

]−1

ii
,

mi =
Z

fiQ( fi)d fi. (15)

In fact, the best product distribution consists of a factorial Gaussian times the original likelihood.
The Gaussian has the same moments as the Leave-One-Out prediction (Sundararajan and Keerthi,
2001). Since the posterior is factorial, the effective likelihood of the factorial approximation has an
odd shape. It effectively has to annihilate the correlations in the prior, and these correlations are
usually what allows learning to happen in the first place. However, the best fitting factorial is still
able to ensure that the latent means have the right signs. Even though all correlations are neglected,
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it is still possible that the model picks up the most important structure, since the expectations are
coupled. Of course, at test time, it is essential that correlations are taken into account again using
Equation 6, as it would otherwise be impossible to inject any knowledge into the predictive dis-
tribution. For predictions we use the Gaussian N (f|m,Dg(v)) instead of Q(f). This is a further
approximation, but it allows to stay inside the Gaussian framework.

Parameters µi and mi are found by the following algorithm. Starting from m = 0, iterate the
following until convergence; (1) compute µi, (2) update mi by taking a step in the direction towards
mi as given by Equation 15. Stepsizes are adapted.

7.2 Log Marginal Likelihood

Surprisingly, one can obtain a lower bound on the marginal likelihood (Csató et al., 2000):

lnZ ≥
n

∑
i=1

lnsig

(
yimi

σi

)

− 1

2
α⊤
(

K−Dg(
[
σ2

1, . . . ,σ
2
n

]⊤
)
)

α− 1

2
ln |K|+

n

∑
i=1

lnσi.

8. Label Regression Method (LR)

Classification has also been treated using label regression or least squares classification (Rifkin and
Klautau, 2004). In its simplest form, this method simply ignores the discreteness of the class labels
at the cost of not being able to provide proper probabilistic predictions. However, we treat LR
as a heuristic way of choosing α and W, which allows us to think of it as yet another Gaussian
approximation to the posterior allowing for valid predictions of class probabilities.

8.1 Posterior

After inference, according to Equation 6, the moments of the (Gaussian approximation to the) pos-

terior GP can be written as µ∗ = k⊤
∗ α and σ2

∗ = k∗∗−k⊤
∗
(
K+W−1

)−1
k∗. Fixing

W−1 = σ2
nI and α =

(
K+W−1

)−1 (
K+W−1

)
α =

(
K+W−1

)−1
y,

we obtain GP regression from data points xi ∈ X to real labels yi ∈ R with noise of variance σ2
n

as a special case. In regression, the posterior moments are given by µ∗ = k⊤
∗
(
K+σ2

nI
)−1

y and

σ2
∗ = k∗∗−k⊤

∗
(
K+σ2

nI
)−1

k∗ (Rasmussen and Williams, 2006). The arbitrary scale of the discrete
y can be absorbed by the hyperparameters. There is an additional parameter σn, describing the width
of the effective likelihood. In experiments, we selected σn ∈ [0.5,2] to maximise the log marginal
likelihood.

8.2 Log Marginal Likelihood

There are two ways of obtaining an estimate of the log marginal likelihood. One can simply ignore
the binary nature and use the regression marginal likelihood lnZreg as proxy for lnZ—an approach
we only mention but not use in the experiments

lnZreg = −1

2
α⊤ (K+σ2

nI
)
α− 1

2
ln
∣
∣K+σ2

nI
∣
∣− n

2
ln2π.

Alternatively, the Jensen bound (8) yields a lower bound lnZ ≥ lnZB—which seems more in line
with the classification scenario than lnZreg.
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9. Relations Between the Methods

All considered approximations can be separated into local and global methods. Local methods
exploit properties (such as derivatives) of the posterior at a special location only. Global methods
minimize the KL-divergence KL(Q||P) =

R

Q(f) lnQ(f)/P(f)df between the posterior P(f) and a
tractable family of distributions Q(f). Often this methodology is also referred to as a variational
algorithm.

assumption relation conditions approx. posterior Q(f) name

Q(f) = N (f|m,V) →
m = argmaxf P(f)

W = − ∂2 lnP(y|f)
∂f∂f⊤

N (f|m,(K−1+W)−1) LA

Q(f) = ∏i qi( fi) → δKL
δqi( fi)

≡ 0 ∏i N ( fi|µi,σ2
i )P(yi| fi) FV

ց
〈

f d
i

〉

qi( fi)
=
〈

f d
i

〉

Q( fi)
N
(
f|m,(K−1+W)−1

)
EP

ր
Q(f) = N (f|m,V) → ∂KL

∂V,m
= 0 N

(
f|m,(K−1+W)−1

)
KL

ց
P(yi| fi) ≥ N ( fi|µςi

,σ2
ςi
) → ∂KL

∂ς∗
= 0 N

(
f|mς∗ ,(K

−1+Wς∗)
−1
)

VB

P(yi| fi) := N ( fi|yi,σ2
n) → m = (I+σ2

nK−1)−1y N (f|m,(K−1+σ−2
n I)−1) LR

The only local method considered is the LA approximation matching curvature at the posterior
mode. Common tractable distributions for global methods include factorial and Gaussian distri-
butions. They have their direct correspondent in the FV method and the KL method. Individual
likelihood bounds make the VB method a more constrained and easier-to-optimize version of the
KL method. Interestingly, EP can be seen in some sense as a hybrid version of FV and KL, com-
bining the advantages of both methods. Within the Expectation Consistence framework (Opper and
Winther, 2005), EP can be thought of as an algorithm that implicitly works with two distributions—a
factorial and a Gaussian—having the same marginal moments

〈
f d
i

〉
. By means of iterative updates,

one keeps these expectations consistent and produces a posterior approximation.

In the divergence measure and message passing framework (Minka, 2005), EP is cast as a mes-
sage passing algorithm template: Iterative minimization of local divergences to a tractable family
of distributions yields a small global divergence. From that viewpoint, FV and KL are considered
as special cases with divergence measure KL(Q||P) combined with factorial and Gaussian distribu-
tions.

There is also a link between local and global methods, namely from the KL to the LA method.
The necessary conditions for the LA method do hold on average for the KL method (Opper and
Archambeau, 2008).

Finally, LR neither qualifies as local nor global—it is just a heuristic way of setting m and W.
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10. Markov Chain Monte Carlo (MCMC)

The only way of getting a handle on the ground truth for the moments Z, m and V is by applying
sampling techniques. In the limit of long runs, one is guaranteed to get the right answer. But in
practice, these methods can be very slow, compared to analytic approximations discussed previ-
ously. MCMC runs are rather supposed to provide a gold standard for the comparison of the other
methods.

It turns out to be most challenging to obtain reliable marginal likelihood estimates as it is equiv-
alent to solving the free energy problem in physics. We employ Annealed Importance Sampling
(AIS) and thermodynamic integration to yield the desired marginal likelihoods. Instead of starting
annealing from the prior distribution, we propose to directly start from an approximate posterior in
order to speed up the sampling process.

Accurate estimates of the first and second moments can be obtained by sampling directly from
the (unnormalized) posterior using Hybrid Monte Carlo methods (Neal, 1993).

10.1 Thermodynamic Integration

The goal is to calculate the marginal likelihood Z =
R

P(y|f)P(f|X)df. AIS (Neal, 1993, 2001)

works with intermediate quantities Zt :=
R

P(y|f)τ(t)
P(f|X)df. Here, τ : N ⊃ [0,T ] → [0,1] ⊂ R

denotes an inverse temperature schedule with the properties τ(0) = 0, τ(T ) = 1 and τ(t +1) ≥ τ(t)
leading to Z0 =

R

P(f|X)df = 1 and ZT = Z.
On the other hand, we have Z = ZT /Z0 = ∏T

t=1 Zt/Zt−1—an expanded fraction. Each factor
Zt/Zt−1 can be approximated by importance sampling with samples fs from the “intermediate pos-

terior” P(f|y,X, t −1) := P(y|f)τ(t−1)
P(f|X)/Zt−1 at time t.

Zt

Zt−1
=

R

P(y|f)τ(t)
P(f|X)df

Zt−1
=

Z

P(y|f)τ(t)

P(y|f)τ(t−1)

P(y|f)τ(t−1)
P(f|X)

Zt−1
df

=
Z

P(y|f)∆τ(t)
P(f|y,X, t −1)df

≈ 1

S

S

∑
s=1

P(y|fs)
∆τ(t) , fs ∼ P(f|y,X, t −1) .

This works fine for small temperature changes ∆τ(t) := τ(t)− τ(t − 1). In the limit, we smoothly
interpolate between P(y|f)0

P(f|X) and P(y|f)1
P(f|X), that is, we start by sampling from the prior

and finally approach the posterior. Note that sampling is algorithmically possible even though the
distribution is only known up to a constant factor.

10.2 Amelioration Using an Approximation to the Posterior

In practice, the posterior can be quite different from the prior. That means that individual fractions
Zt/Zt−1 may be difficult to estimate. One can make these fractions more similar by increasing the
number of steps T or by “starting” from a distribution close to the posterior rather than from the
prior. Let Q(f) = N (f|m,V) ≈ P(f|y,X,T ) = P(y|f)P(f|X)/ZT denote an approximation to the
posterior. Setting N (f|m,V) = Q(y|f)P(f|X), one can calculate the effective likelihood Q(y|f) by
division (see Appendix B.2).

For the integration we use Zt =
R

P(y|f)τ(t)
Q(y|f)1−τ(t)

P(f|X)df where Z0 =
R

Q(y|f)P(f|X)df

can be computed analytically. Again, each factor Zt

Zt−1
of the expanded fraction can be approximated
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by importance sampling from the modified intermediate posterior:

P(f|y,X, t −1) = P(y|f)τ(t−1)
Q(y|f)1−τ(t−1)

P(f|X)/Zt−1

=

[
P(y|f)
Q(y|f)

]τ(t−1)

Q(y|f)P(f|X)/Zt−1,

Zt

Zt−1
=

R

P(y|f)τ(t)
Q(y|f)1−τ(t)

P(f|X)df

Zt−1

=
Z

P(y|f)τ(t)
Q(y|f)1−τ(t)

P(y|f)τ(t−1)
Q(y|f)1−τ(t−1)

P(y|f)τ(t−1)
Q(y|f)1−τ(t−1)

P(f|X)

Zt−1
df

=
Z

[
P(y|f)
Q(y|f)

]∆τ(t)
P(f|y,X, t −1)df

≈ 1

S

S

∑
s=1

[
P(y|fs)

Q(y|fs)

]∆τ(t)
, fs ∼ P(f|y,X, t −1) .

The choice of Q(f) to be a good approximation to the true posterior makes the fraction P(y|f)/Q(y|f)
as constant as possible, which in turn reduces the error due to the finite step size in thermodynamical
integration.

10.3 Algorithm

If only one sample ft is used per temperature τ(t), the value of the entire fraction is obtained as

ln
Zt

Zt−1
= ∆τ(t) [lnP(y|ft)− lnQ(y|ft)]

which gives rise to the full estimate

lnZ ≈
T

∑
t=1

ln
Zt

Zt−1
= lnZQ +

T

∑
t=1

∆τ(t)
[

lnP(y|ft)+
1

2
(ft − m̃)⊤ W(ft − m̃)

]

for a single run r. The finite temperature change bias can be removed by combining results Zr from
R different runs by their arithmetic mean 1

R ∑r Zr (Neal, 2001)

lnZ = ln

Z

P(y|f)P(f|X)df ≈ ln

(

1

R

R

∑
r=1

Zr

)

.

Finally, the only primitive needed to obtain MCMC estimates of Z, m and V is an efficient
sampler for the “intermediate” posterior P(f|y,X, t −1). We use Hybrid Monte Carlo sampling
(Neal, 1993).

10.4 Results

If the posterior is very close to the prior (as in regimes 7-9 of Figure 3), it does not make a dif-
ference, which we start from. However, if the posterior can be well approximated by a Gaussian
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(regimes 4-6), but is sufficiently different from the prior, then the method decreases variance and
consequently improves runtimes of AIS. Different approximation methods lead also to differences
in the improvement. Namely, the Laplace approximation performs worse than the approximation
found by Expectation Propagation because Laplace’s method approximates around the mode which
can be far away from the mean.

For our evaluations of the approximations to the marginal likelihood, however we started the
algorithm from the prior. Otherwise, one might be worried of biasing the MCMC simulation towards
the initial distribution in cases where the chain fails to mix properly.

11. Implementation

Implementations of all methods discussed are provided at http://www.kyb.mpg.de/~hn/approxXX.
tar.gz. The code is designed as an extension to the Gaussian Processes for Machine Learning
(GPML) (Rasmussen and Williams, 2006) Matlab Code.3 Approximate inference for Gaussian
processes is done by the binaryGP.m function, which takes as arguments the covariance func-
tion, the likelihood function and the approximation method. The existing GPML package provides
approxLA.m for Laplace’s method and approxEP.m for Expectation Propagation. These implemen-
tations are generic to the likelihood function. We provide cumGauss.m and logistic.m that were
designed to avoid numerical problems. In the extension, approxKL.m, approxVB.m, approxFV.m
and approxTAP.m are included, among others not discussed here, for example sparse and online
methods outside the scope of the current investigation. The implementations are straight-forward,
although special care has been taken to avoid numerical problems e.g., situations where K is close
to singular. More concretely, we use the well-conditioned matrix4 B = W

1
2 KW

1
2 + I = LL⊤ and

its Cholesky decomposition to calculate V =
(
K−1 +W

)−1
or k⊤

∗
(
K+W−1

)−1
k∗. The posterior

mean is represented in terms of α to avoid multiplications with K−1 and facilitate predictions.

Especially LA and EP show a high level of robustness along the full spectrum of possible hyper-
parameters. KL uses Gauss-Hermite quadrature; we did not notice problems stemming therefrom.
The FV and TAP methods work very reliably, although, we had to add a small (10−6) ridge for FV
to regularize K. As a general statement, we did not observe any numerical problems for a wide
range of hyperparameters reaching from reasonable values to very extreme scales.

In addition to the code for the algorithms, we provide also a tarball containing all necessary
scripts to reproduce the figures of the paper. We offer two versions: The first version contains only
the code for running the experiments and drawing the figures.5 The second version additionally
includes the results of the experiments.6

12. Experiments

The purpose of the experiments is to illustrate the strengths and weaknesses of the different approxi-
mation methods. First of all, the quality of the approximation itself in terms of posterior moments Z,

3. The package is available at http://www.gaussianprocess.org/gpml/code.

4. All eigenvalues λ of B satisfy 1 ≤ λ ≤ 1+ n
4 maxi j Ki j , thus B−1 and |B| can be safely computed.

5. The code base (∼ 9Mb) can be obtained from http://www.kyb.mpg.de/~hn/supplement_code.tar.gz.
6. The complete code base (∼ 400Mb) including all simulation results and scripts to generate figures is stored at

http://www.kyb.mpg.de/~hn/supplement_all.tar.gz.
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m and V is studied. At a second level, building on the “low-level” features, we compare predictive
performance in terms of the predictive probability p∗ given by (Equations 4 and 6):

p∗ := P(y∗ = 1|x∗,y,X,θ) ≈
Z

sig( f∗)N
(

f∗|µ∗,σ2
∗
)

d f∗. (16)

On a third level, we assess higher order properties such as the information score, describing how
much information the model managed to extract about the target labels, and the error rate—a binary
measure of whether a test input is assigned the right class. Uncertainty predictions provided by the
model are not captured by the error rate.

Accurate marginal likelihood estimates Z are a key to hyperparameter learning. In that respect,
Z can be seen as a high-level feature and as the “zeroth” posterior moment at the same time.

A summary of the whole section is provided in Table 1.

12.1 Data Sets

One main idea of the paper is to study the general behavior of approximate GP classification. Our
results for the different approximation methods are not specific to a particular data set but apply to a
wide range of application domains. This is reflected by the choice of our reference data sets, widely
used in the machine learning literature. Due to limited space, we don’t include the full experiments
on all data sets in this paper. However, we have verified that the same qualitative conclusions hold
for all the data sets considered. The full results are available via the web.7

Data set ntrain ntest d Brief description of problem domain

Breast 300 383 9 Breast cancer8

Crabs 100 100 6 Sex of Leptograpsus crabs9

Ionosphere 200 151 34 Classification of radar returns from the ionosphere10

Pima 350 418 8 Diabetes in Pima Indians11

Sonar 108 100 60 Sonar signals bounced by a metal or rock cylinder12

USPS 3 vs. 5 767 773 256 Binary sub-problem of the USPS handwritten digit data set13

12.2 Results

In the following, we report our experimental results covering posterior moments and predictive per-
formance. Findings for all 5 methods are provided to make the methods as comparable as possible.

7. See links in Footnotes 5 and 6.
8. Data set at http://mlearn.ics.uci.edu/databases/breast-cancer-wisconsin/.
9. Data set at http://www.stats.ox.ac.uk/pub/PRNN/.

10. Data set at http://mlearn.ics.uci.edu/databases/ionosphere/.
11. Data set at http://mlearn.ics.uci.edu/databases/pima-indians-diabetes/.
12. Data set at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/undocumented/

connectionist-bench/sonar/.
13. Data set at http://www.gaussianprocess.org/gpml/data/.
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Figure 6: Marginals of USPS 3 vs. 5 for a highly non-Gaussian posterior: Each row consists of
five plots showing MCMC ground truth on the x-axis and LA, EP, VB, KL and FV on
the y-axis. Based on the logistic likelihood function and the squared exponential covari-
ance function with parameters lnℓ = 2.25 and lnσ f = 4.25 we plot the marginal means,
standard deviations and resulting predictive probabilities in rows 1-3. We are working
in regime 2 of Figure 3 that means the posterior is highly non-Gaussian. The upper part
shows marginals of training points and the lower part shows test point marginals.
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LA EP* VB
logit|probit

KL FV MCMC

idea quadratic

expansion

around the

mode

marginal

moment

matching

lower bound

on indiv.

likelihoods

KL minim.,

average w.r.t.

wrong Q(f)

best

free-form

factorial

sampling,

thermo-

dynamic

integration

algorithm Newton steps iterative

matching

Newton steps Newton steps fixed-point

iteration

Hybrid MC,

AIS

complexity O(n3) O(n3) O(n3) O(8n3) O(n3) O(n3)

speed very fast fast fast slow very fast very slow

running
time

1 10 8 150 4 >500

likelihood
properties

1st-3rd log.

derivative

N -integrals lower bound simple

evaluation

N -integrals 1st log

derivative

evidence Z – ≈ – – – – – – =

mean m – – ≈ ++| – – + – =

covariance
V

– ≈ – – – – – =

information
I

– ≈ ≈| – ≈ – =

PRO speed practical

accuracy

principled

method

speed theoretical

accuracy

CON mean6=mode,

low info I

speed strong over-

confidence

overconfidence factorizing

approxima-

tion

very slow

Table 1: Feature summary of the considered algorithms: For each of the six algorithms under con-
sideration, the major properties are listed in the above table. The basic idea of the method
along with its computational algorithm and complexity is summarized, the requirements to
the likelihood functions are given, the accuracy of evidence and moment estimates as well
as information is outlined and some striking advantages and drawbacks are compared. Six
relations characterize accuracy: – – – extreme underestimation, – – heavy underestimation,
– underestimation, = ground truth, ≈ good approximation, + overestimation and ++ heavy
overestimation. Running times were calculated by running each algorithm for 9 different
hyperparameter regimes and both likelihoods on all data sets. An average running time
per data set was calculated for each method and scaled to yield 1 for LA. In the table, the
average of these numbers are shown. We are well aware of the fact, that these numbers
also depend on our Matlab implementations and choices of convergence thresholds.

12.2.1 MEAN m AND (CO)VARIANCE V

The posterior process, or equivalently the posterior distribution over the latent values f, is deter-
mined by its location parameter m and its width parameter V. In that respect, these two low-level
quantities are the basis for all further calculations. In general, one can say that the methods show
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Figure 7: Marginals USPS 3 vs. 5 for digit #353 ≡ : Posterior marginals for one special training
point from Figure 6 is shown. Ground truth in terms of true marginal and best Gaus-
sian marginal (matching the moments of the true marginal) are plotted in gray, Gaussian
approximations are visualized as lines. For multivariate Gaussians N (m,V), the i-th
marginal is given by N ([m]i, [V]ii). Thus, the mode mi of marginal i coincides with the i-
th coordinate of the mode of the joint [m]i. This relation does not hold for general skewed
distribution. Therefore, the marginal given by the Laplace approximation is not centered
at the mode of the true marginal.

significant differences in the case of highly non-Gaussian posteriors (regimes 1-5 of Figure 3). Even
in the two-dimensional toy example of Figures 4 and 5, significant differences are apparent. The
means are inaccurate for LA and VB; whereas the variances are somewhat underestimated by LA
and KL and severely so by VB. Marginal means m and variances dg(V) for USPS 3 vs. 5 are
shown in Figure 6; an exemplary marginal is pictured in Figure 7 for all approximate methods and
the MCMC estimate. Along the same lines, a close-to-Gaussian posterior is illustrated in Figure 8.
We chose the hyperparameters for the non Gaussian case of Figure 6 to maximize the EP marginal
likelihood (see Figure 9), whereas the hyperparameters of Figure 8 were selected to yield a posterior
that is almost Gaussian but still has reasonable predictive performance.

The LA method has the principled weakness of expanding around the mode. In high-dimensional
spaces, the mode can be very far away from the mean (Kuss and Rasmussen, 2005). The absolute
value of the mean is strongly underestimated. Furthermore, the posterior is highly curved at its
mode which leads to an underestimated variance, too. These effects can be seen in the first column
of Figures 6 and 7, although in the close-to-Gaussian regime LA works well, Figure 8. For large
latent function scales σ2

f , in the limit σ2
f → ∞, the likelihood becomes a step function, the mode ap-

proaches the origin and the curvature at the mode becomes larger. Thus the approximate posterior
as found by LA becomes a zero-mean Gaussian which is much too narrow.

The EP method almost perfectly agrees with the MCMC estimates, second column of Figure
6. That means, iterative matching of approximate marginal moments leads to accurate marginal
moments of the posterior.

The KL method minimizes the KL-divergence KL(Q(f) ‖ P(f)) =
R

Q(f) ln Q(f)
P(f) df with the av-

erage taken to the approximate distribution Q(f). The method is zero-forcing i.e., in regions where
P(f) is very small, Q(f) has to be very small as well. In the limit that means P(f) = 0 ⇒ Q(f) = 0.
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Figure 8: Marginals of USPS 3 vs. 5 for a close-to-Gaussian posterior: Using the squared ex-
ponential covariance and the logistic likelihood function with parameters lnℓ = 3 and
lnσ f = 0.5, we plot the marginal means, standard deviations and resulting predictive
probabilities in rows 1-3. Only the quantities for the trainings set are shown, because the
test set results are very similar. We are working in regime 8 of Figure 3 that means the
posterior is of rather Gaussian shape. Each row consists of five plots showing MCMC
ground truth on the x-axis and LA, EP, VB, KL and FV on the y-axis.

Thus, the support of Q(f) is smaller than the support of P(f) and hence the variance is underesti-
mated. Typically, the posterior has a long tail away from zero as seen in Figure 3 regimes 1-5. The
zero forcing property shifts the mean of the approximation away from the origin, which results in a
slightly overestimated mean, fourth column of Figure 6.

Finally, the VB method can be seen as a more constrained version of the KL method with
deteriorated approximation properties. The variance underestimation and mean overestimation is
magnified, third column of Figure 6. Due to the required lower bounding property of each individual
likelihood term, the approximate posterior has to obey severe restrictions. Especially, the lower
bound to the cumulative Gaussian cannot adjust its width since the asymptotic behavior does not
depend on the variational parameter (Equation 14).

The FV method has a special rôle because it does not lead to a Gaussian approximation to
the posterior but to the closest (in terms of KL-divergence) factorial distribution. If the prior is
quite isotropic (regimes 1,4 and 7 of Figure 3), the factorial approximation provides a reasonable
approximation. If the latent function values are correlated, the approximation fails. Because of
the zero forcing property, mentioned in the discussion of the KL method, both the means and the
variances are underestimated. Since a factorial distribution cannot capture correlations, the effect
can be severe. It is worth mentioning that there is no difference whether the posterior is close to a
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Gaussian or not. In that respect, the FV method complements the LA method, which has difficulties
in regimes 1, 2 and 4 of Figure 3.

12.2.2 PREDICTIVE PROBABILITY p∗ AND INFORMATION SCORE I

Low-level features like posterior moments are not a goal per se, they are only needed for the purpose
of calculating predictive probabilities. Figures 4 and 6 show predictive probabilities in the last row.

In principle, a bad approximation in terms of posterior moments can still provide reasonable
predictions. Consider the predictive probability from Equation 16 using a cumulative Gaussian
likelihood

p∗ =
Z

sigprobit( f∗)N ( f∗|µ∗,σ2
∗)d f∗ = sigprobit(µ∗/

√

1+σ2∗).

It is easy to see that the predictive probability p∗ is constant if µ∗/
√

1+σ2∗ is constant. That
means, moving mean µ∗ and standard deviation σ∗ along the hyperbolic curve µ2

∗/C2 − σ2
∗ = 1,

while keeping the sign of µ∗ fixed, does not affect the probabilistic prediction. In the limit of large
µ∗ and large σ∗, rescaling does not change the prediction.

Summarizing all predictive probabilities pi we consider the scaled information score I. As a
baseline model we use the best model ignoring the inputs xi. This model simply returns predictions
matching the class frequencies of the training set

B = − ∑
y={+1,−1}

n
y
test

n+1
test +n−1

test

log2

n
y
train

n+1
train +n−1

train

≤ 1[bit].

We take the difference between the baseline B (entropy) and the average negative log predictive
probabilities log2 P(y∗|x∗,y,X) to obtain the information score

I = B+
1

2ntest

ntest

∑
i=1

(1+ yi) log2 (pi)+(1− yi) log2 (1− pi) ,

which is 1[bit] for perfect (and confident) prediction and 0[bits] for random guessing (for equiprob-
able classes). Figures 9(c), 10(middle) and 11(c) contain information scores for 5 different approx-
imation methods on two different data sets as a function of the hyperparameters of the covariance
function. According to the EP and KL plots (most prominently in Figure 11(c)), there are two
strategies for a model to achieve good predictive performance:

• Find a good length scale ℓ (e.g., lnℓ ≈ 2) and choose a latent function scale σ f above some
threshold (e.g., lnσ f > 3).

• Start from a good set of hyperparameters (e.g., lnℓ ≈ 2, lnσ f ≈ 2) and compensate a harder
cutting likelihood (σ2

f ↑) by making the data points more similar to each other (ℓ2 ↑).

The LA method heavily underestimates the marginal means in the non-Gaussian regime (regimes
1-5 of Figure 3). As a consequence, the predictive probabilities are strongly under-confident in the
non-Gaussian regime, first column of Figure 6. The information score’s value is too small in the
non-Gaussian regime, Figures 9(c) and 11(c).
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Figure 9: Evidence and classification performance for LA, EP, KL & VB on USPS 3 vs. 5: The
length scale ℓ and the latent scale σ f determine the working regime (1-9) of the Gaussian
Process as drafted in Figure 3. We use the logistic likelihood and the squared exponential
covariance function to classify handwritten digits. The four panels illustrate the model
performance in terms of evidence, information and classification errors over the space
of hyperparameters (ℓ,σ f ). For better visibility we choose a logarithmic scale of the
axes. Panel (a) shows the inherent evidence approximation of the four methods and panel
(b) contains the Jensen lower bound (Equation 9) on the evidence used in KL method.
Both panels share the same contour levels for all four methods. Note that for the VB
method, the general lower bound is a better evidence estimate than the bound provided
by the method itself. Panel (c) and (d) show the information score and the number of
misclassifications. One can read-off the divergence between posterior and approximation
by recalling KL(Q||P) = lnZ − lnZB from Equation 10 and assuming lnZEP ≈ lnZ. In
the figure this corresponds to subtracting Subplots (b, LA-VB) from Subplots (a, EP).
Obviously, the divergence vanishes for close-to-Gaussian posteriors (regimes 3,5-6,7-9).
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Figure 10: Evidence and classification performance for FV on USPS 3 vs. 5: The plots are a sup-
plement to Figure 9 in that they make the factorial variational method comparable, even
though we use the cumulative Gaussian likelihood. The levels of the contour lines for
the information score and the number of misclassifications are the same as in Figure 9.
For the marginal likelihood other contours are shown, since it has significantly different
values.

Since the EP algorithm yields marginal moments very close to the MCMC estimates (second
column of Figure 6), its predictive probabilities and information score is consequently also very
accurate, Figures 9(c) and 11(c). The plots corresponding to EP can be seen as the quasi gold
standard (Kuss and Rasmussen, 2005, Figures 4 and 5).

The KL method slightly underestimates the variance and slightly overestimates the mean which
leads to slightly overconfident predictions, fourth column of Figure 6. Overconfidence, in general,
leads to a degradation of the information score, however in this example, the information score is
very close to the EP values and at the peak it is even slightly (0.01[bits]) higher, Figures 9(c) and
11(c).

The VB method, again, has the same problems as the KL method only amplified. The predic-
tions are overconfident, third column of Figure 6. Consequently, the information measured score
in the non-Gaussian regime is too small. The logistic likelihood function (Figure 9(c)) yields much
better results than the cumulative Gaussian likelihood function (Figure 11(c)).

Finally, as the FV method is accurate if the prior is isotropic, predictive probabilities and in-
formation scores are very high in regimes 1, 4 and 7 of Figure 3. For correlated priors, the FV
method achieves only low information scores, Figure 10(middle). The method seems to benefit
from the “hyperbolic scaling invariance” of the predictive probabilities mentioned earlier in that
section because both the mean and the variance are strongly underestimated.

12.2.3 NUMBER OF ERRORS E

If one is only interested in the actual class and not in the associated confidence level, one can simply
measure the number of misclassifications. Results for 5 approximation methods and 2 data sets are
shown in Figures 9(d), 10(right) and 11(d).

Interestingly, all four Gaussian approximation have very similar error rates. The reason is
mainly due to the fact that all methods manage to compute the right sign of the marginal mean.
Only the FV method with cumulative Gaussian likelihood seems a bit problematic, even though the
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Figure 11: Evidence and classification performance for LA, EP, KL & VB on Sonar: We show the
same quantities as in Figure 9, only for the Sonar Mines versus Rocks data set and using
the cumulative Gaussian likelihood function.

difference is only very small. Small error rates do not imply high information scores, it is rather the
other way round. In Figure 9(d) at lnℓ = 2 and lnσ f = 4 only 16 errors are made by the LA method
while the information score (Figure 9(c)) is only of 0.25[bits].

Even the FV method yields very accurate classes, having only small error rates.
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12.2.4 MARGINAL LIKELIHOOD Z

Agreement of model and data is typically measured by the marginal likelihood Z. Hyperparameters
can conveniently be optimized using Z not least because the gradient ∂ lnZ

∂θ
can be analytically and

efficiently computed for all methods. Formally, the marginal likelihood is the volume of the product
of prior and likelihood. In classification, the likelihood is a product of sigmoid functions (Figure
3), so that only the orthant {f|f⊙y ≥ 0 ∈ Rn} contains values P(f|y) ≥ 1

2 . In principle, evidences
are bounded by lnZ ≤ 0 where lnZ = 0 corresponds to a perfect model. As pointed out in Section
2.1.1, the marginal likelihood for a model ignoring the data and having equiprobable targets has the
value lnZ = −n ln2, which serves as a baseline.

Evidences provided by LA, EP and VB for two data sets are shown in Figures 9(a), 10(left) and
11(a). As the Jensen bound can be applied to any Gaussian approximation of the posterior, we also
report it in Figures 9(b) and 11(b).

The LA method strongly underestimates the evidence in the non-Gaussian regime, because it is
forced to center its approximation at the mode, Figures 9(a) and 11(a). Nevertheless, there is a good
agreement between the value of the marginal likelihood and the corresponding information score.
The Jensen lower bound is not tight for the LA approximation, Figures 9(b) and 11(b).

The EP method yields the highest values among all other methods. As described in Section
2.1.2, for high latent function scales σ2

f , the model becomes effectively independent of σ2
f . This

behavior is only to be seen for the EP method, Figures 9(a) and 11(a). Again, the Jensen bound
is not tight for the EP method, Figures 9(b) and 11(b). The difference between EP and MCMC
marginal likelihood estimate is vanishingly small (Kuss and Rasmussen, 2005, Figures 4 and 5).

The KL method directly uses the Jensen bound (Equation 8) which can only be tight for Gaus-
sian posterior distributions. If the posterior is very skew, the bound inherently underestimates the
marginal likelihood. Therefore, Figures 9(a) and 9(b) and Figures 11(a) and 11(b) show the same
values. The disagreement between information score and marginal likelihood makes hyperparame-
ter selection based on the KL method problematic.

The VB method’s lower bound on the evidence turns out to be very loose, Figures 9(a) and
11(a). Theoretically, it cannot be better than the more general Jensen bound due to the additional
constraints imposed by the individual bound on each likelihood factor, Figures 9(b) and 11(b). In
practice, one uses the Jensen bound for hyperparameter selection. Again, the maximum of the
bound to the evidence is not very helpful for finding regions of high information score.

Finally, the FV method only yields a poor approximation to the marginal likelihood due to the
factorial approximation, Figure 10. The more isotropic the model becomes (small ℓ), the tighter
is the bound. For strongly correlated priors (large ℓ) the evidence drops even below the baseline
lnZ =−n ln2. Thus, the bound is not adequate to do hyperparameter selection as its maximum does
not lie in regions with high information score.

12.2.5 CHOICE OF LIKELIHOOD

In the experiments, we worked with two different likelihood functions, namely the logistic and
the cumulative Gaussian likelihood. The two functions differ in their slope at the origin and their
asymptotic behavior. We did not find empirical evidence supporting the use of either likelihood.
Theoretically, the cumulative Gaussian likelihood should be less robust against outliers due to the
quadratic asymptotics. Practically, the different slopes result in a shift of the latent function length
scale in the order of ln 1

4 − ln 1√
2π ≈ 0.46 on a log scale in that the logistic likelihood prefers a
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bigger latent scale. Only for the VB method, differences were significant because the logistic bound
is more concise. Numerically, however the cumulative Gaussian is preferable.

12.3 Results Across Data Sets

We conclude with a quantitative summary of experiments conducted on 6 data sets (breast, crabs,
ionosphere, diabetes, sonar, USPS 3 vs. 5), two different likelihoods (cumulative Gaussian, logistic)
and 8 covariance functions (linear, polynomial of degree 1-3, Matérn ν ∈ { 3

2 , 5
2}, squared exponen-

tial and neural network) resulting in 96 trials. All 7 approximate classification methods were trained
on a 16× 16 grid of hyperparameters to compare their behavior under a wide range of conditions.
We calculated the maximum (over the hyperparameter grid) amount of information, every algorithm
managed to extract from the data in each of the 96 trials. The table shows the number of trials, where
the respective algorithm had a maximum information score that was above the mean/median (over
the 7 methods).

Test \ Method LA EP KL VB FV LR TAPnaive

# trials, information below mean 31 0 0 6 34 92 31

# trials, information below median 54 0 0 15 48 96 51

13. Conclusions

In the present paper we provide a comprehensive overview of methods for approximate Gaussian
process classification. We present an exhaustive analysis of the considered algorithms using the-
oretical arguments. We deliver thorough empirical evidence supporting our insights revealing the
strengths and weaknesses of the algorithms. Finally, we make a unified and modular implementation
of all methods available to the research community.

We are able to conclude that the Expectation Propagation algorithm is, in terms of accuracy,
always the method of choice, except when you cannot afford the slightly longer running time com-
pared to the Laplace approximation.

Our comparisons include the Laplace approximation and the Expectation Propagation algorithm
(Kuss and Rasmussen, 2005). We extend the latter to the logistic likelihood. We apply Kullback-
Leibler divergence minimization to Gaussian process classification and derive an efficient Newton
algorithm. Although the principles behind this method have been known for some time, we are
unaware that this method has been previously implemented for GPs in practise. The existing varia-
tional method (Gibbs and MacKay, 2000) is extended by a lower bound on the cumulative Gaussian
likelihood and we provide an implementation based on Newton’s method. Furthermore, we give a
detailed analysis of the Factorial Variational method (Csató et al., 2000).

All methods are considered in a common framework, approximation quality is assessed, predic-
tive performance is measured and model selection is benchmarked.

In practice, an approximation method has to satisfy a wide range of requirements. If runtime

is the major concern or one is interested in error rate only, the Laplace approximation or label
regression should be considered. Only Expectation Propagation and—although a lot slower—the
KL-method deliver accurate marginals as well as reliable class probabilities and allow for faithful
model selection.

If an application demands a non-standard likelihood function, this also affects the choice of
the algorithm: The Laplace approximation requires derivatives, Expectation Propagation and the
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Factorial Variational method need integrability with respect to Gaussian measures. However, the
KL-method simply needs to evaluate the likelihood and known lower bounds naturally lead to the
VB algorithm.

Finally, if the classification problem contains a lot of label noise (σ f is small), the exact pos-
terior distribution is effectively close to Gaussian. In that case, the choice of the approximation
method is not crucial since in the Gaussian regime, they will give the same answer. For weakly
coupled training data, the Factorial Variational method can lead to quite reasonable approximations.

As a future goal remains an in-depth understanding of the properties of sparse and online ap-
proximations to the posterior and a coverage of a broader range of covariance functions. Also, the
approximation techniques discussed can be applied to other non-Gaussian inference problems be-
sides the narrow applications to binary GP classification discussed here, and there is hope that some
of the insights presented may be useful more generally.
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Appendix A. Derivatives

In the following, we provide the expressions for the derivatives needed to implement the VB and
the KL method.

A.1 Derivatives for VB

Some notational remarks. Partial derivatives w.r.t. one single parameter such as ∂Aς

∂ςi
or ∂bς

∂ςi
stay

matrices or vectors, respectively. Lowercase letters {a,b,c}ς indicate vectors, upper case letters
{A,B,C}ς stand for the corresponding diagonal matrices with the vector as diagonal. The dot
notation applies to both lower and uppercase letters and denote derivatives w.r.t. the variational
parameter vector ς

ȧς :=

[
∂aςi

∂ςi

]

i

=
∂aς

∂ς
, vector,

äς :=

[
∂2aςi

∂ς2
i

]

i

=
∂2aς

∂ς2
, vector,

Ȧς := Dg(ȧς) .

The operators Dg : Rn → Rn×n and dg : Rn×n → Rn manipulate matrix diagonals. The result of
Dg(x) is a diagonal matrix X containing x as diagonal, whereas dg(X) returns the diagonal of X as
a vector. Hence, we have Dg(dg(x)) = x, but in general dg(Dg(X)) = X does only hold true for
diagonal matrices.
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A.1.1 SOME SHORTCUTS USED LATER ONWARDS

K̃ς :=
(
K−1 −2Aς

)−1 condK small
= K−K

(

K− 1

2
A−1

ς

)−1

K,

b̃ς := Dg(y)bς = y⊙bς,

lς := K̃ςb̃ς =
(
K−1 −2Aς

)−1
(y⊙bς) ,

∂lς

∂ς j

= K̃ς

(

2
∂Aς

∂ς j

lς +y⊙ ∂bς

∂ς j

)

,

∂lς

∂θi

= K̃ςK−1 ∂K

∂θi

K−1K̃ς (y⊙bς) ,

L̇ς :=
∂lς

∂ς⊤
= K̃ς

(
2Dg(lς)Ȧς +Dg(y)Ḃς

)
,

rς := ḃς ⊙y⊙ lς +dg
(

lςl⊤ς Ȧς

)

= ḃς ⊙y⊙ lς + lς ⊙ lς ⊙ ȧς,

∂rς

∂ς j

= y⊙ lς ⊙
∂ḃς

∂ς j

+ ḃς ⊙y⊙ ∂lς

∂ς j

+2lς ⊙ ȧς ⊙
∂lς

∂ς j

+ lς ⊙ lς ⊙
∂ȧς

∂ς j

,

Ṙς :=
∂rς

∂ς⊤
= Dg

(
y⊙ ḃς +2lς ⊙ ȧς

)
L̇ς +Dg

(
lς ⊙

(
y⊙ b̈ς + lς ⊙ äς

))

= Dg
(
y⊙ ḃς +2lς ⊙ ȧς

)
K̃ςDg

(
y⊙ ḃς +2lς ⊙ ȧς

)
+Dg

(
lς ⊙

(
y⊙ b̈ς + lς ⊙ äς

))
.

A.1.2 FIRST DERIVATIVES W.R.T. VARIATIONAL PARAMETERS ςi YIELDING THE GRADIENT

lnZB = c⊤ς
�
+

1

2
b̃⊤

ς K̃ςb̃ς −
1

2
ln |I−2AςK| ,

∂ lnZB

∂ςi

=
∂ci

∂ςi

+ b̃⊤
ς K̃ς

[

y⊙ ∂bς

∂ςi

+
∂Aς

∂ςi

K̃ςb̃ς

]

+ tr

(

(I−2AςK)−⊤
K

∂Aς

∂ςi

)

lς ,K̃ς

=
∂ci

∂ςi

+ l⊤ς

[

y⊙ ∂bς

∂ςi

+
∂Aς

∂ςi

lς

]

+ tr

(

K̃ς

∂Aς

∂ςi

)

,

∂ lnZB

∂ς
=

[
∂ci

∂ςi

]

i

+ ḃς ⊙y⊙
(
K̃ςb̃ς

)
+dg

(

K̃ςb̃ςb̃⊤
ς K̃ςȦς

)

+dg
(
K̃ςȦς

)

lς
=

[
∂ci

∂ςi

]

i

+ ḃς ⊙y⊙ lς +dg
(

lςl⊤ς Ȧς

)

+dg
(
K̃ςȦς

)

rς

=

[
∂ci

∂ςi

]

i

+ rς +dg
(
K̃ςȦς

)

= ċς + lς ⊙
(
ḃς ⊙y+ lς ⊙ ȧς

)
+dg

(
K̃ς

)
⊙ ȧς.
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A.1.3 SECOND DERIVATIVES W.R.T. VARIATIONAL PARAMETERS ςi YIELDING THE HESSIAN

∂2 lnZB

∂ς j∂ςi

=
∂2ci

∂ς j∂ςi

+
∂rς,i

∂ς j

+ tr

(

2K̃ς

∂Aς

∂ς j

K̃ς

∂Aς

∂ςi

+ K̃ς

∂2Aς

∂ς j∂ςi

)

,

∂2 lnZB

∂ς∂ς⊤
=

[
∂2ci

∂ς2
i

]

ii

+
∂rς

∂ς⊤
+2
(
K̃ς Ȧς

)
⊙
(
K̃ς Ȧς

)⊤
+Dg

(
dg(K̃ς)⊙ äς

)

= C̈ς + Ṙς +2
(
K̃ςȦς

)
⊙
(
K̃ςȦς

)⊤
+Dg

(
dg(K̃ς)⊙ äς

)
.

A.1.4 MIXED DERIVATIVES W.R.T. HYPER- θi AND VARIATIONAL PARAMETERS ςi

∂2 lnZB

∂θi∂ς
= ȧς ⊙

∂
∂θi

(
lς ⊙ lς +dg

(
K̃ς

))
+ ḃς ⊙y⊙ ∂lς

∂θi

= ȧς ⊙
(

2lς ⊙
∂lς

∂θi

+dg

(

K̃ςK−1 ∂K

∂θi

K−1K̃ς

))

+ ḃς ⊙y⊙ ∂lς

∂θi

.

A.1.5 FIRST DERIVATIVES W.R.T. HYPERPARAMETERS θi:

For a gradient optimization with respect to θ, we need the gradient of the objective ∂ lnZB/∂θ.
Naïvely, the gradient is given by:

∂ lnZB

∂θi

=
1

2
b̃⊤

ς K̃ςK−1 ∂K

∂θi

K−1K̃ςb̃ς + tr

(

(I−2AςK)−⊤
Aς

∂K

∂θi

)

lς
=

1

2
l⊤ς K−1 ∂K

∂θi

K−1lς + tr

(

(I−2AςK)−⊤
Aς

∂K

∂θi

)

.

However, the optimal variational parameter ς∗ depends implicitly on the actual choice of θ and one
has to account for that in the derivative by adding an extra “implicit” term

∂ lnZB(θ,ς)

∂θi

∣
∣
∣
∣
ς=ς∗

=
∂ lnZB(θ,ς∗)

∂θi

+
n

∑
j=1

∂ lnZB(θ,ς∗)
∂ς∗j

∂ς∗j
∂θi

.

The question of how to find an expression for ∂ς∗

∂θ
can be solved by means of the implicit function

theorem for continuous and differentiable functions F:

F : Rp ×Rn → Rn, F(x,y) = 0 ⇒ ∂y

∂x
(x) = −

(
∂F

∂y
(x,y(x))

)−1 ∂F

∂x
(x,y(x)) if F(x,y(x)) = 0.

Setting F(x,y) ≡ ∂ lnZB

∂ς
(θ,ς) leads to

∂ς∗θ
∂θ⊤ = −

(
∂2 lnZB(θ,ς∗θ)

∂ς∂ς⊤

)−1 ∂2 lnZB(θ,ς∗θ)

∂θ⊤∂ς

and in turn combines to

∂ lnZB

∂θi

∣
∣
∣
∣
ς=ς∗

=
∂ lnZB

∂θi

−
(

∂ lnZB

∂ς

)⊤(∂2 lnZB

∂ς∂ς⊤

)−1 ∂2 lnZB

∂θi∂ς

where all terms are known.

2068



APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

A.2 Derivatives for KL

The lower bound lnZB to the log marginal likelihood lnZ is given by Equation 9 as

lnZ ≥ = lnZB(m,V) = a(y,m,V)+
1

2
ln
∣
∣VK−1

∣
∣+

n

2
− 1

2
m⊤K−1m− 1

2
tr
(
VK−1

)

where we used the shortcut a(y,m,V) = ∑n
i=1

R

N ( fi|mi,vii) lnsig(yi fi)d fi. As a first step, we calcu-
late the first derivatives of lnZB with respect to the posterior moments m and V to derive necessary
conditions for the optimum by equating them with zero:

∂ lnZB

∂V
=

∂a(y,m,V)

∂V
+

1

2
V−1 − 1

2
K−1 !

= 0 ⇒ V =

(

K−1 −2Dgdg
∂a

∂V

)−1

,

∂ lnZB

∂m
=

∂a(y,m,V)

∂m
−K−1m

!
= 0 ⇒ m = K

∂a

∂m
.

These two expressions are plugged in the original expression for lnZB using A = (I−2KΛ)−1 and
Λ = Dgdg ∂a

∂V
to yield:

lnZB(α,Λ) = a
(
y,Kα,(K−1 −2Λ)−1

)
+

1

2
ln |A|− 1

2
trA+

n

2
− 1

2
α⊤Kα.

Our algorithm uses the parameters α, Λ, so we calculate first and second derivatives to implement
Newton’s method.

A.2.1 FIRST DERIVATIVES W.R.T. PARAMETERS α, Λ YIELDING THE GRADIENT

∂ lnZB

∂λ
=

∂a

∂λ
+dg(V)−dg(VA⊤) and

∂ lnZB

∂α
=

∂a

∂α
−Kα.

Only the terms containing derivatives of a need further attention, namely

∂a

∂α
= K

∂a

∂m
and

d(dgV) = dg
[

d
(
K−1 −2Λ

)−1
]

= 2dg [V dΛV] = 2dg

[

∑
k

vkv⊤k dλk

]

= 2∑
k

(vk ⊙vk)dλk

= 2(V⊙V)dλ ⇒ ∂dgV

∂λ⊤ = 2V⊙V,

∂a

∂λ
= 2(V⊙V)

∂a(y,m,V)

∂dgV
.

As a last step, the derivatives w.r.t. m and the diagonal part of V yield
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∂a

∂mi

=
Z ∂N ( f |mi,vii)

∂mi

lnsig(yi f )d f =
Z

f −mi

vii

N ( f |mi,vii) lnsig(yi f )d f

=
1√
vii

Z

f ·N ( f ) lnsig(
√

viiyi f +miyi)d f ,

∂a

∂vii

=
Z ∂N ( f |mi,vii)

∂vii

lnsig(yi f )d f =
Z




( f −mi)

2

v
3
2
ii

− 1√
vii



N ( f |mi,vii) lnsig(yi f )d f

=
1

2vii

Z

(
f 2 −1

)
·N ( f ) lnsig(

√
viiyi f +miyi)d f .

A.2.2 SECOND DERIVATIVES W.R.T. PARAMETERS α, Λ YIELDING THE HESSIAN

Again, we proceed in two steps, calculating derivatives w.r.t. α and Λ and by the chain rule compute
those w.r.t. m and V.

∂2 lnZB

∂α∂α⊤ =
∂2a

∂α∂α⊤ +K =
∂

∂α

[
∂a

∂m⊤
∂m

∂α⊤

]

+K =
∂

∂α

[
∂a

∂m⊤ K

]

+K

=
∂

∂α

[
∂a

∂m⊤

]

K+K =
∂m⊤

∂α

∂
∂m

[
∂a

∂m⊤

]

K+K

= K
∂2a

∂m∂m⊤K+K,

∂2 lnZB

∂λ∂α⊤ =
∂2a

∂λ∂α⊤ =
∂

∂λ

[
∂a

∂m⊤

]

K =
∂(dgV)⊤

∂λ

∂
∂dgV

[
∂a

∂m⊤

]

K

= 2V⊙V
∂2a

∂dgV∂m⊤ K,

∂2 lnZB

∂λ∂λ⊤ =
∂2a

∂λ∂λ⊤ +R, R := 2V⊙ (V−AV⊤−VA⊤)

= 2
∂

∂λ

[

∂a

∂(dgV)⊤
V⊙V

]

+R

= 2
∂2a

∂λ∂(dgV)⊤
V⊙V+2

[

∂a

∂(dgV)⊤
∂V⊙V

∂λi

]

i

+R

= 2
∂(dgV)⊤

∂λ

∂2a

∂dgV∂(dgV)⊤
V⊙V+4

[

∂a

∂(dgV)⊤

(

V⊙ ∂V

∂λi

)]

i

+R

= 4V⊙V
∂2a

∂dgV∂(dgV)⊤
V⊙V+8

[

∂a

∂(dgV)⊤

(

V⊙
(

viv
⊤
i

))
]

i

+R.

In the following, we abbreviate N ( f |mi,vii) by Ni.
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∂2a

∂m2
i

=
Z ∂2Ni

∂m2
i

lnsig(yi f )d f =
Z

( f −mi)
2 − cii

v2
ii

Ni lnsig(yi f )d f

=
1

vii

Z

(
f 2 −1

)
·N ( f ) lnsig(

√
viiyi f +miyi)d f ,

∂2a

∂cii∂mi

=
Z ∂2Ni

∂vii∂mi

lnsig(yi f )d f =
Z

( f −mi)
3 −3( f −mi)vii

2v3
ii

Ni lnsig(yi f )d f

=
1

2v
3
2
ii

Z

(
f 3 −3 f

)
·N ( f ) lnsig(

√
viiyi f +miyi)d f ,

∂2a

∂v2
ii

=
Z ∂2Ni

∂v2
ii

lnsig(yi f )d f =
Z

( f −mi)
4 −6vii( f −mi)

2 +3v2
ii

4v4
ii

Ni lnsig(yi f )d f

=
1

4v2
ii

Z

(
f 4 −6 f 2 +3

)
·N ( f ) lnsig(

√
viiyi f +miyi)d f .

A.2.3 FIRST DERIVATIVES W.R.T. HYPERPARAMETERS θi:

The direct gradient is given by the following equation where we have marked the dependency of the
covariance K on θi by subscripts

∂ lnZB(α,Λ)

∂θi

= α⊤ ∂Kθ

∂θi

∂a(y,m,V)

∂m
+dg

(

A
∂Kθ

∂θi

A⊤
)⊤ ∂a(y,m,V)

∂dgV

+tr

(

A⊤
Λ

∂Kθ

∂θi

)

− tr

(

A
∂Kθ

∂θi

ΛA

)

− 1

2
α⊤ ∂Kθ

∂θi

α.

Again we have would have to add an implicit term to the gradient, but in our implementation, we
forbore from doing so.

Appendix B. Auxiliary Calculations

In the following, we enumerate some calculations we removed from the main text in order to im-
prove on readability.

B.1 Limits of the Covariance Matrix and Corresponding Marginal Likelihood

We investigate the behavior of the covariance matrix K for extreme lengthscales ℓ. The matrix is
given by [K]i j = σ2

f g(|xi − x j|/ℓ) where g : R → R is monotonously decreasing and continuous

with g(0) = 1 and limt→∞ g(t) = 0. >From this definition we have [K]ii = σ2
f . We define ∆i j :=

|xi −x j|/ℓ > 0 for i 6= j. From

lim
ℓ→0

[K]i j
i6= j
= lim

ℓ→0
σ2

f g(|xi −x j|/ℓ) = σ2
f lim

∆i j→∞
g(∆i j) = 0,

lim
ℓ→∞

[K]i j
i6= j
= lim

ℓ→∞
σ2

f g(|xi −x j|/ℓ) = σ2
f lim

∆i j→0
g(∆i j) = 1

we conclude
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lim
ℓ→0

K = σ2
f I,

lim
ℓ→∞

K = σ2
f

�✁� ⊤.

The sigmoids are normalized sig(− fi)+ sig( fi) = 1 and the Gaussian is symmetric N ( fi) =
N (− fi). Consequently, we have

Z

sig(yi fi)N ( fi|0,σ2
f )d fi =

Z

sig( fi)N ( fi|0,σ2
f )d fi

=
Z 0

−∞
sig( fi)N ( fi|0,σ2

f )d fi +
Z ∞

0
sig( fi)N ( fi|0,σ2

f )d fi

=
Z ∞

0
sig(− fi)N (− fi|0,σ2

f )d fi +
Z ∞

0
sig( fi)N ( fi|0,σ2

f )d fi

=
Z ∞

0
[sig(− fi)+ sig( fi)]N ( fi|0,σ2

f )d fi

=
Z ∞

0
1 ·N ( fi|0,σ2

f )d fi =
1

2
.

The marginal likelihood is given by

Z =
Z

P(y|f)P(f|X,θ)df

=
Z n

∏
i=1

sig(yi fi) |2πK|−
1
2 exp(−1

2
f⊤K−1f)df.

B.1.1 LENGTHSCALE TO ZERO

For K = σ2
f I the prior factorizes and we get

Zℓ→0 =
n

∏
i=1

Z

sig(yi fi)
1

√

2πσ2
f

exp(− f 2
i

2σ2
f

)d fi

(17)
=

n

∏
i=1

1

2
= 2−n.
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B.1.2 LENGTHSCALE TO INFINITY

To get K → σ2
f

�✁� ⊤ we write K = σ2
f 1 + ε2I with 1 =

�✁� ⊤ and let ε → 0. The eigenvalue decom-

position of K is written as K = ∑n
i=1 uiu

⊤
i λi with u1 = 1√

n

�
, λ1 = σ2

f + ε2 and all other λi = ε2

Z 1
ε

K=UΛU⊤

=
Z n

∏
i=1

sig(yi fi) |2πΛ|−
1
2 exp(−1

2
f⊤UΛ

−1U⊤f)df

t=Λ
−

1
2 U⊤f

=
Z n

∏
i=1

sig
(

yi

√

λi · t⊤ui

)

|2πΛ|−
1
2 exp(−1

2
t⊤t)

∣
∣
∣Λ

1
2

∣
∣
∣dt

=
Z n

∏
i=1

sig
(

yi

√

λi · t⊤ui

)

N (ti)dt

=
Z

sig





√

σ2
f + ε2

n
· t⊤ �



N (t1)
n

∏
i=2

[

sig
(

ε · t⊤ui

)]

N (ti)dt,

Zℓ→∞ = lim
ε→0

Z =
Z

sig

(
σ f√

n
· t⊤ �

)

N (t1)
n

∏
i=2

[
1

2

]

N (ti)dt

(17)
= 2−n+1

Z

sig

(
σ f√

n
· t⊤ �

)

N (t)dt

r=t⊤ �
= 2−n+1

Z

sig

(
σ f√

n
· r
)

N (r)dr

(17)
= 2−n.

B.1.3 LATENT SCALE TO ZERO

We define σ2
f K̃ = K and σ f f̃ = f and derive

Zσ f
=

Z n

∏
i=1

sig(yi fi) |2πK|−
1
2 exp(−1

2
f⊤K−1f)df

=
Z n

∏
i=1

sig
(
yiσ f f̃i

)
|2πK|−

1
2 exp(−

σ2
f

2
f̃⊤K−1f̃)σn

f df̃

=
Z n

∏
i=1

sig
(
yiσ f f̃i

)∣
∣2πσ2

f K̃
∣
∣
− 1

2 exp(−
σ2

f

2
f̃⊤σ−2

f K̃−1f̃)σn
f df̃

=
Z n

∏
i=1

[
sig
(
yiσ f f̃i

)]
N
(
f̃|0,K̃

)
df̃,

Zσ f→0 = lim
σ f→0

Z =
Z n

∏
i=1

[
1

2

]

N
(
f̃|0,K̃

)
df̃ = 2−n.

Note that the functions, we are using are all well-behaved, such that the limits do exist.
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B.2 Posterior Divided by Prior = Effective Likelihood

Q(y|f) =
N (f|m,V)

P(f|X)
=

N
(

f|m,
(
K−1 +W

)−1
)

N (f|0,K)

=
N
(
f|m̃,W−1

)

N (m̃|0,K+W−1)
, m̃ = (KW)−1

m+m

=
(2π)−

n
2
∣
∣W−1

∣
∣−

1
2 exp

(

− 1
2 (f− m̃)⊤ W(f− m̃)

)

(2π)−
n
2 |K+W−1|−

1
2 exp

(

− 1
2 m̃⊤ (K+W−1)−1

m̃
)

=
√

|KW+ I|
exp
(

− 1
2 (f− m̃)⊤ W(f− m̃)

)

exp
(

− 1
2 m̃⊤ (K+W−1)−1

m̃
)

=:
1

ZQ

exp

(

−1

2
(f− m̃)⊤ W(f− m̃)

)

,

lnZQ = −1

2
m̃⊤ (K+W−1

)−1
m̃− 1

2
ln |KW+ I|

B.3 Kullback-Leibler Divergence for KL method

We wish to calculate the divergence between the approximate posterior, a Gaussian, and the true
posterior

KL(Q(f|θ) ‖ P(f|y,X,θ)) =
Z

N (f|m,V) ln
N (f|m,V)

P(f|y,X,θ)
df

(2)
=

Z

N (f|m,V) ln
Z ·N (f|m,V)

N (f|m,V)∏n
i=1 P(yi| fi)

df

= lnZ +
Z

N (f|m,V) lnN (f|m,V)df

−
Z

N (f|m,V) ln
n

∏
i=1

P(yi| fi)df

−
Z

N (f|m,V) lnN (f|0,K)df.

There are three Gaussian integrals to evaluate; the entropy of the approximate posterior and two
other expectations

KL(Q(f|θ) ‖ P(f|y,X,θ)) = lnZ − 1

2
ln |V|− n

2
− n

2
ln2π

−
Z

N ( f )

[
n

∑
i=1

lnsig(
√

viiyi f +miyi)

]

d f (17)

+
n

2
ln2π+

1

2
ln |K|+ 1

2
m⊤K−1m+

1

2
tr
(
K−1V

)
.
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Summing up and dropping the constant (w.r.t. m and V) terms, we arrive at

KL(m,V)
c
= −

Z

N ( f )

[
n

∑
i=1

lnsig(
√

viiyi f +miyi)

]

d f − 1

2
ln |V|+ 1

2
m⊤K−1m+

1

2
tr
(
K−1V

)
.

B.4 Gaussian Integral for VB Lower Bound

ZB =
Z

P(f|X)Q(y|f,A,b,c)df =
Z

N (f|0,K)exp
(

f⊤Af+(b⊙y)⊤ f+ c⊤
�
)

df

=
exp
(
c⊤

� )

√

(2π)n |K|

Z

exp

(

−1

2
f⊤
(
K−1 −2A

)
f+(b⊙y)⊤ f

)

df

=
exp
(
c⊤

� )

√

(2π)n |K|

√

(2π)n

|K−1 −2A| exp

(
1

2
(b⊙y)⊤

(
K−1 −2A

)−1
(b⊙y)

)

=
exp
(
c⊤

� )

√

|I−2AK|
exp

(
1

2
(b⊙y)⊤

(
K−1 −2A

)−1
(b⊙y)

)

,

lnZB = c⊤
�
+

1

2
(b⊙y)⊤

(
K−1 −2A

)−1
(b⊙y)− 1

2
ln |I−2AK| .

B.5 Lower Bound for the Cumulative Gaussian Likelihood

A lower bound

sigprobit(yi fi) ≥ Q(yi| fi,ςi) = ai f 2
i +bi fi + ci

for the cumulative Gaussian likelihood function is derived by matching the function at one point ς

Q(yi = +1| fi,ςi) = sigprobit(ςi), ∀i

and by matching the first derivative

∂
∂ fi

lnQ(yi = +1| fi,ςi)

∣
∣
∣
∣
ςi

=
∂ lnsigprobit(yi fi)

∂ fi

=
N (ςi)

sigprobit(ςi)
, ∀i

at this point for a tight approximation. Solving for these constraints leads to the coefficients

asymptotic behavior ⇒ ai = −1

2
,

first derivative ⇒ bi = ςi +
N (ςi)

sigprobit(ςi)
,

point matching ⇒ ci =
(ςi

2
−bi

)

ςi + logsigprobit(ςi).
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B.6 Free Form Optimization for FV

We make a factorial approximation P(f|y,X) ≈ Q(f) := ∏i Q( fi) to the posterior by minimizing

KL[Q(f) ||P(f)] =
Z n

∏
i=1

Q( fi) ln
Z ·∏n

i=1 Q( fi)

N (f|m,V)∏n
i=1 P(yi| fi)

df

= ∑
i

Z

Q( fi) ln
Q( fi)

P(yi| fi)
d fi +

1

2

Z n

∏
i=1

Q( fi) f⊤K−1fdf+ constf.

Free-form optimization proceeds by equating the functional derivative with zero

δKL

δQ( fi)
= lnQ( fi)+1− lnP(yi| fi)+

1

2

δ
δQ( fi)

Z n

∏
i=1

Q( fi) f⊤K−1fdf. (18)

We abbreviate the integral in the last term with ξ and rewrite it in terms of simple one-dimensional
integrals ml =

R

flQ( fl)d fl and vl =
R

f 2
l Q( fl)d fl −m2

l

ξ =
Z

∏
i

Qi ∑
j,k

f j

[
K−1

]

jk
fkdf

=
Z

∏
i6=l

Qi

[
Z

Ql

(

f 2
l

[
K−1

]

ll
+2 fl ∑

j 6=l

f j

[
K−1

]

jl
+ ∑

j 6=l,k 6=l

f j

[
K−1

]

jk
fk

)

d fl

]

df¬l

=
Z

∏
i6=l

Qi








[
K−1

]

ll

Z

f 2
l Qld fl

︸ ︷︷ ︸

vl+m2
l

+2(∑
j 6=l

f j

[
K−1

]

jl
)

Z

flQld fl

︸ ︷︷ ︸

ml

+ ∑
j 6=l,k 6=l

f j

[
K−1

]

jk
fk








df¬l

=
[
K−1

]

ll
(vl +m2

l )+2 ∑
j 6=l

m j

[
K−1

]

jl
ml +

Z

∏
i6=l

Qi ∑
j 6=l,k 6=l

f j

[
K−1

]

jk
fkdf¬l

= induction over l

= ∑
l

[
K−1

]

ll
(vl +m2

l )+2 ∑
j<l

m j

[
K−1

]

jl
ml.

Plugging this into Equation 18 and using
δ

R

f
p
l Q( fl)d fl

δQ( fl)
= f

p
l , we find

δKL

δQ( fi)
= lnQ( fi)+1− lnP(yi| fi)+

1

2
fi

[
K−1

]

ii
fi + fi ∑

l

[
K−1

]

il
ml

!≡ 0

⇒ Q( fi) ∝ exp

(

−1

2
fi

[
K−1

]

ii
fi − fi ∑

l 6=i

[
K−1

]

il
ml

)

P(yi| fi)

⇒ Q( fi) ∝ N

(

fi

∣
∣
∣
∣
∣
mi −

[
K−1m

]

i

[K−1]ii
,
[
K−1

]−1

ii

)

P(yi| fi)

as the functional form of the best possible factorial approximation, namely a product of the true
likelihood times a Gaussian with the same precision as the prior marginal.
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