Approximations for Steiner Trees with Minimum Number of Steiner Points

DONGHUI CHEN ${ }^{1, *}$, DING-ZHU DU ${ }^{1,2, *, *}$, XIAO-DONG HU ${ }^{2,3, *}$, GUO-HUI LIN ${ }^{4,8}$, LUSHENG WANG ${ }^{2}$ and GUOLIANG XUE ${ }^{4,8}$
${ }^{1}$ Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA (E-mail: dzd@cs.umn.edu)
${ }^{2}$ Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China
${ }^{3}$ Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China
${ }^{4}$ Department of Computer Science, The University of Vermont, Burlington, VT 05405, USA

(Accepted in original form 19 January 2000)

Abstract

Given n terminals in the Euclidean plane and a positive constant, find a Steiner tree interconnecting all terminals with the minimum number of Steiner points such that the Euclidean length of each edge is no more than the given positive constant. This problem is NP-hard with applications in VLSI design, WDM optical networks and wireless communications. In this paper, we show that (a) the Steiner ratio is $1 / 4$, that is, the minimum spanning tree yields a polynomial-time approximation with performance ratio exactly 4 , (b) there exists a polynomialtime approximation with performance ratio 3, and (c) there exists a polynomial-time approximation scheme under certain conditions.

Key words: Steiner trees; Approximation algorithms; VLSI design; WDM optical networks

1. Introduction

Given a set of n terminals $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in the Euclidean plane \mathscr{R}^{2}, and a positive constant R, the Steiner tree problem with minimum number of Steiner points, denoted by $S T P-M S P$ for short, asks for a tree T spanning a superset of X such that each edge in the tree has a length no more than R and the number $C(T)$ of points other than those in X, called Steiner points [3, 6, 8, 9], is minimized.

In the classical Euclidean Steiner tree problem (which asks for a tree spanning a superset of X such that the total length of the tree, that is the sum of lengths of edges in the tree, is minimized), a Steiner point always has a degree of 3. In the STP-MSP problem, however, degree-2 Steiner points are possible. For example, when $n=2$ and $\left|p_{1} p_{2}\right|$, the Euclidean distance between p_{1} and p_{2}, is larger than R, then the

[^0]optimal tree is a path containing $\left\lceil\left|p_{1} p_{2}\right| / R\right\rceil-1$ Steiner points, each of which has a degree of 2 .

The STP-MSP problem has an important application in wavelength-division multiplexing (WDM) optical network design [11, 14]. Suppose we need to connect n sites located at $p_{1}, p_{2}, \ldots, p_{n}$ with WDM optical network. Due to the limit in transmission power, signals can only travel a limited distance (say R) for guaranteed correct transmission. If some of the inter-site distances are greater than R, we need to provide some amplifiers or receivers/transmitters at some locations in order to break it into shorter pieces. The STP-MSP problem also finds applications in VLSI design [2, 7, 15], and the evolutionary/phylogenetic tree constructions in computational biology [9].

Recently, Lin and Xue [12] showed that the STP-MSP problem is NP-hard. They also showed that the approximation obtained from the minimum spanning tree by simply breaking each edge into small pieces within the upper bound has a worst-case performance ratio at most 5 . In this paper, we show that this approximation has a performance ratio exactly 4 . We also present a new polynomial-time approximation with a performance ratio at most 3 and a polynomial-time approximation scheme under certain conditions.

2. Preliminary

Any shortest optimal solution T for the problem STP-MSP must have the following properties.
(a1) No two edges cross each other.
(a2) Two edges meeting at a vertex form an angle of at least 60°.
(a3) If two edges form an angle of exactly 60°, then they have the same length.
To see (a1), consider two edges $a c$ and $b d$ in T. By contradiction, suppose $a c$ and $b d$ cross at e. Note that quadrangle $a b c d$ must have an inner angle of at least 90°. Without loss of generality, assume $\angle a b c \geqslant 90^{\circ}$. Then $\angle b c a<90^{\circ}$ and $\angle c a b<90^{\circ}$. Hence $|a b|<|a c|$ and $|b c|<|a c|$, where $|a b|$ denotes the length of edge $a b$. When edge $a c$ is removed from T, T would be broken into two parts containing vertices a and c, respectively. One of the parts, say the one containing a, contains vertex b. Adding edge $b c$ results in a shorter tree still optimal for STP-MSP. This contradicts the length-minimality of T. Therefore, (a1) holds.

To see (a2), consider two edges $a b$ and $b c$ in T. By contradiction, suppose $\angle a b c<60^{\circ}$. Then either $\angle c a b>60^{\circ}$ or $\angle b c a>60^{\circ}$ and hence either $|b c|>|a c|$ or $|a b|>|a c|$. Using $a c$ to replace either $b c$ or $a b$ would reduce the total length of the tree preserving the vertex set, contradicting the length-minimality of T among optimal solutions for STP-MSP. Therefore, (a2) holds. (a3) can be proved by a similar argument.

The following lemma follows from (a2) and (a3).
LEMMA 1. There exists a shortest optimal Steiner tree T^{*} for STP-MSP such that every vertex in T^{*} has degree at most five.

Proof. It follows immediately from (a2) that every vertex in a shortest optimal tree T for STP-MSP has degree at most six. Consider a vertex u with degree six in T. By (a2), every angle at u equals 60°. By (a3), all edges incident to u have the equal length.

Next, consider any vertex V with degree d in T. We claim that if V is adjacent to k vertices with degree six, then $d \leqslant 6-2 k$. In fact, suppose u is adjacent to V with degree six. Then u has two degrees $u w$ and $u x$ such that $\angle w u \mathrm{~V}=\angle \mathrm{V} u x=60^{\circ}$ and $|u \mathrm{~V}|=|u w|=|u x|$. Thus, $|\mathrm{V} w|=|u w|$ and $|\vee x|=|u x|$. Replacing $u w$ and $u x$ by $\mathrm{V} w$ and $\mathrm{V} x$ results in still a shortest optimal tree for STP-MSP. But, v gets two more edges. For all vertices with degree six and adjacent to V , perform the same operation. We will obtain a shortest optimal tree for STP-MSP such that V has degree $d+2 k$. Hence, $d+2 k \leqslant 6$.

Now, for each vertex u with degree six, we move only one edge from u to its adjacent vertex. Then every vertex will have degree at most five and the resulting tree is still a shortest optimal tree for STP-MSP.

Usually, a spanning tree is a tree interconnecting the given terminals with edges between given terminals. The shortest spanning tree is called the minimum spanning tree. Spanning trees may not be feasible solutions for the problem STP-MSP since some edges may be too long. To make it feasible, we add $\lceil|a b| / R\rceil$ Steiner points to break each edge $a b$ into small pieces of lengths at most R. The resulting tree will be called a steinerized spanning tree. The following is an interesting fact.

LEMMA 2. Every steinerized minimum spanning tree has the minimum number of Steiner points among steinerized spanning trees.

Proof. Every minimum spanning tree can be obtained from a spanning tree by a sequence of operations that each replaces an edge by another shorter edge. Since the shorter edge needs Steiner points no more than the longer edge needs when we steinerize them. Therefore, the lemma holds.

It follows easily from the above two lemmas that the steinerized minimum spanning tree is an approximation with performance ratio 5 (see [12]).

3. Steinerized minimum spanning tree

We show the following tight result in this section.

THEOREM 1. The steinerized minimum spanning tree is a polynomial-time approximation with performance ratio exactly 4.

The lower bound can be shown by presenting an example as follows. Consider five vertices $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{5}$ of a regular pentagon with each edge of length $1+\varepsilon$ where ε is a small positive real number such that the distance from the center to

Figure 1.
each vertex is within R (Figure 1). The steinerized minimum spanning tree on $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{5}$ contains four Steiner points. However, every optimal tree for STPMSP on $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{5}$ contains only one Steiner point. Therefore, the performance ratio of steinerized minimum spanning tree is at least four.

To show the tight upper bound, we need first to study a property of convex path in any shortest optimal tree T for STP-MSP. A path $q_{1} q_{2} \ldots q_{m}$ in T is called a convex path if for every $i=1,2, \ldots, m-3, q_{i} q_{i+2}$ intersects $q_{i+1} q_{i+3}$.

An angle of degree more than 120° will play an important role in the proof of Theorem 1. For simplicity, we call such angles big angles.

LEMMA 3. Let $q_{1} q_{1} \cdots q_{m}$ be a convex path and $m \geqslant 2$. Suppose there are t big angles among the $m-2$ angles $\angle q_{1} q_{2} q_{3}, \angle q_{2} q_{3} q_{4}, \ldots, \angle q_{m-2} q_{m-1} q_{m}$. Then $\left|q_{1} q_{m}\right| \leqslant(t+2) R$.

Proof. We prove it by induction on m. For $m \leqslant 3$, it is trivial that $\left|q_{1} q_{3}\right| \leqslant$ $\left|q_{1} q_{2}\right|+\left|q_{2} q_{3}\right| \leqslant 2 R \leqslant(t+2) R$. Now, suppose $m \geqslant 4$. Consider the convex hull H of points $q_{1}, q_{2}, \ldots, q_{m}$. If at least one of q_{1} and q_{2} does not lie on the boundary of H, then by the induction hypothesis, any distance between two vertices of the convex hull H is at most $(t+2) R$ and hence any two points lying in H have distance at most $(t+2) R$. Therefore, $\left|q_{1} q_{m}\right| \leqslant(t+2) R$.

Next, we may assume that both q_{1} and q_{m} lie on the boundary of H. It follows immediately that whole path $q_{1} q_{1} \cdots q_{m}$ lies on the boundary of H (Figure 2(a)). If $\angle q_{1} q_{m} q_{m-1} \geqslant 90^{\circ}$, then $\left|q_{1} q_{m}\right| \leqslant\left|q_{1} q_{m-1}\right|$ and by the induction hypothesis $\left|q_{1} q_{m-1}\right| \leqslant(t+2) R$. Hence, $\left|q_{1} q_{m}\right|(t+2) R$. Similarly, if $\angle q_{2} q_{1} q_{m} \geqslant 90^{\circ}$, then $\left|q_{1} q_{m-1}\right| \leqslant(t+2) R$. Therefore, we may assume $\angle q_{1} q_{m} q_{m-1}<90^{\circ}$ and $\angle q_{2} q_{1} q_{m}<$ 90°. It follows that $(m-2) \cdot 180^{\circ} \leqslant 2 \cdot 90^{\circ}+(m-t-2) \cdot 120^{\circ}+t \cdot 180^{\circ}$. Hence, $m-t-2<3$. This means that the path $q_{1} q_{1} \cdots q_{m}$ has at most two angles of degrees not more than 120°.

If $\angle q_{m-2} q_{m-1} q_{m}$ is a big angle, then by the induction hypothesis, $\left|q_{1} q_{m-1}\right| \leqslant$ $((t-1)+2) R$. Therefore, $\left|q_{1} q_{m}\right| \leqslant\left|q_{1} q_{m-1}\right|+\left|q_{m-1} q_{m}\right| \leqslant(t+2) R$. Similarly, if $\angle q_{1} q_{2} q_{3}$ is a big angle, then $\left|q_{1} q_{m}\right| \leqslant(t+2) R$. Therefore, we may assume $\angle q_{m-2} q_{m-1} q_{m} \leqslant 120^{\circ}$ and $\angle q_{1} q_{2} q_{3} \leqslant 120^{\circ}$. They are the only two angles not big

Figure 2.
on the path $q_{1} q_{1} \cdots q_{m}$. Now, draw a parallelogram $q_{1} q_{2} q_{m-1} p$ as shown in Figure 2(b). Since $\angle q_{1} q_{2} q_{m-1} \leqslant q_{1} q_{2} q_{3} \leqslant 120^{\circ}$, we have $\angle q_{2} q_{m-1} p \geqslant 60^{\circ}$. Moreover, $\angle q_{2} q_{m-1} q_{m} \leqslant \angle q_{m-2} q_{m-1} q_{m} \leqslant 120^{\circ}$. Thus, $\angle p q_{m-1} q_{m} \leqslant 60^{\circ}$. It follows that

$$
\left|p q_{m}\right| \leqslant \max \left(\left|p q_{m-1}\right|,\left|q_{m-1} q_{m}\right|\right)=\max \left(\left|q_{1} q_{2}\right|,\left|q_{m-1} q_{m}\right|\right) \leqslant R .
$$

Therefore,

$$
\left|q_{1} q_{m}\right| \leqslant\left|q_{1} p\right|+\left|p q_{m}\right|=\left|q_{2} q_{m-1}\right|+\left|p q_{m}\right| \leqslant(t+1) R+R=(t+2) R .
$$

LEMMA 4. In a shortest optimal tree T for STP-MSP, there are at most two big angles at a vertex with degree three, there is at most one big angle at a vertex with degree four, and there is no big angle with degree five

Proof. Suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}$ are all angles at a vertex with degree d and k (>0) of them are big angles. Since each angle is of at least 60°, we have $360^{\circ}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{d}>(d-k) \cdot 60^{\circ}+k \cdot 120^{\circ}$. Thus, $6>(d-k)+2 k=d+k$, i.e., $5 \geqslant d+k$. The lemma follows immediately from this inequality.

Note that every leaf in a Steiner tree is a terminal. A Steiner tree is full if every terminal is a leaf. If a Steiner tree is not full, then we can always find a terminal with degree more than one which enable us to break the tree at this terminal. In this way, every Steiner tree can be broken into several small full Steiner trees. Those small full Steiner trees are called full components of a Steiner tree.

LEMMA 5. Consider a shortest optimal tree T for STP-MSP. Suppose T is a full Steiner tree. Let s_{i} denote the number of Steiner points with degree i in T. Then

$$
3 s_{5}+2 s_{4}+s_{3}=n-2
$$

where n is the number of terminals.
Proof. Since T has totally $s_{5}+s_{4}+s_{3}+s_{2}+n-1$ edges, we have $5 s_{5}+4 s_{4}+$ $3 s_{3}+2 s_{2}+n=2\left(s_{5}+s_{4}+s_{3}+s_{2}+n-1\right)$. Hence, $3 s_{5}+2 s_{4}+s_{3}=n-2$.

Consider a shortest optimal tree T for STP-MSP. Suppose T is a full Steiner tree on n terminals. The following fact is easily seen.
(b1) T has exactly n convex paths; each connects two terminals,
(b2) each terminal appears in exactly two convex paths in T, and
(b3) each angle at a Steiner point appears in those n convex paths exactly once.
Now, we are ready to show Theorem 1.
Proof of Theorem 1. By Lemma 1, there exists a shortest optimal tree T^{*} for STP-MSP in which every vertex has degree at most five.

First, we assume that T^{*} is a full Steiner tree. Let s_{i} denote the number of Steiner points with degree i in T^{*}. By Lemma $5, n=3 s_{5}+2 s_{4}+s_{3}+2$. Consider a spanning tree T_{S} consisting of $n-1$ edges each connecting two terminals at endpoints of a convex path in T^{*} (Figure 3). By Lemma 3, each edge $a b$ in T_{S} has length upper-bounded by $(t+2) R$ where t is the number of big angles on the convex path connecting a and b. Hence, we need at most $(t+1)$ Steiner points to steinerize edge $a b$. By Lemma 4, the spanning tree T_{S} can be steinerized by at most $s_{4}+2 s_{3}+2 s_{2}+n-1$ Steiner points. By Lemma 2, any steinerized minimum spanning tree contains at most $s_{4}+2 s_{3}+2 s_{2}+n-1$ Steiner points. Clearly,

$$
\begin{aligned}
s_{4}+2 s_{3}+2 s_{2}+n-1 & =3 s_{5}+3 s_{4}+3 s_{3}+2 s_{2}+1 \\
& \leqslant 3\left(s_{5}+s_{4}+s_{3}+s_{2}\right)+1
\end{aligned}
$$

If $s_{5}+s_{4}+s_{3}+s_{2}>0$, then $s_{4}+2 s_{3}+2 s_{2}+n-1 \leqslant 4\left(s_{5}+s_{4}+s_{3}+s_{2}\right)$. If $s_{5}+$ $s_{4}+s_{3}+s_{2}=0$, then $T_{S}=T^{*}$. Therefore, in either case, every steinerized minimum spanning tree contains at most $4\left(s_{5}+s_{4}+s_{3}+s_{2}\right)\left(=4 \cdot C\left(T^{*}\right)\right)$ Steiner points.

Now, suppose T^{*} is not a full Steiner tree. Then T^{*} can be decomposed into several full components $T_{1}, T_{2}, \ldots, T_{k}$. For each full component T_{j}, by the above argument, we know that the steinerized minimum spanning tree on terminals in T_{j} contains at most $4 \cdot C\left(T_{j}\right)$ Steiner points. Note that the union of steinerized minimum spanning trees each for terminals in a full component is a steinerized spanning tree

Figure 3.
for all terminals. By Lemma 2, the number of Steiner points in T^{*} is at most $4 \sum_{j=1}^{k} C\left(T_{j}\right)=4 \cdot C\left(T^{*}\right)$.

4. 3-Approximation

Let T^{*} be a shortest optimal tree for STP-MSP with Steiner points of degrees at most five. Suppose $T_{1}, T_{2}, \ldots, T_{k}$ are all full components of T^{*}. In the proof of Theorem 1, we showed that the steinerized minimum spanning tree on terminals in T_{j} contains at most $3 \cdot C\left(T_{j}\right)+1$ Steiner points. Now, we study when this upper bound can be improved.

LEMMA 6. Let T^{*} be a shortest optimal tree for STP-MSP with property that every Steiner point has degree at most five. Let T_{j} be a full component of T^{*}. Then the following hold:
(c1) The steinerized minimum spanning tree on terminals in T_{j} contains at most $3 \cdot C\left(T_{j}\right)+1$ Steiner points.
(c2) If T_{j} contains a Steiner point with degree at most four, then the steinerized minimum spanning tree on terminals in T_{j} contains at most $3 \cdot C\left(T_{j}\right)$ Steiner points.
(c3) If the steinerized minimum spanning tree on terminals in T_{j} contains an edge between two terminals, then it contains at most $3 \cdot C\left(T_{j}\right)$ Steiner points.

Proof. (c1) and (c3) follow immediately from the proof of Theorem 1. Next, we show (c2). Let s_{i} be the number of Steiner points with degree i in T_{j}. Let n_{j} be the number of terminals in T_{j}. Note that there are exactly n_{j} convex paths in T_{j}. Choose any $n_{j}-1$ of them and connect two endpoints of each path. We will obtain a spanning tree. Its steinerization is denoted by T_{S}. Now, assume u is the Steiner point with degree at most four. If there is a big angle at u, then we choose $n_{j}-1$ convex paths not containing the big angle. If there is no big angle at u, then we can choose any $n_{j}-1$ convex path. With this choice, we would have $C\left(T_{S}\right) \leqslant s_{4}+2 s_{3}+2 s_{2}-$ $1+\left(n_{j}-1\right) \leqslant 3\left(s_{4}+s_{3}+s_{2}\right)=3 C\left(T_{j}\right)$.

To design a new approximation, we need to study how to find whether three or four terminals can be connected to a common Steiner point.

Note that an angle of less than 90° is acute and an angle of more than 90° is obtuse. A triangle is acute if its three angles are all acute. A triangle is obtuse if it has one obtuse angle. A triangle is right if it has one right angle.

LEMMA 7. If a triangle abc is acute or right, then the minimum disk (i.e., the disk of minimum radius) for covering the triangle abc is the one bounded by the circle circumscribing abc. If a triangle abc is obtuse or right, then the minimum disk for covering the triangle abc is the one whose diameter is the longest edge of triangle $a b c$.

Proof. Suppose $a b$ is the longest edge of the triangle $a b c$. When a disk covers
$a b c$, we can always arrange the boundary of the disk passing through a and b. If $a b$ is not a diameter of the disk and c is not on its boundary, then we can shrink the disk still covering $a b c$.

LEMMA 8. Four terminals a, b, c, d can be covered by a disk of radius R if and only if each of four triangles abc, bcd, cda, dab can be covered by a disk of radius R.

Proof. The 'only if' part is trivial. It suffices to show the 'if' part. Without loss of generality, we may assume that $a b c d$ form a convex quadrilateral. In fact, if $a b c d$ does not form a convex quadrilateral, then one of them must lie in the triangle of other three, which can be covered by a disk of radius R.

Consider the longest edge of complete quadrilateral $a b c d$. (Note: A complete quadrilateral has six edges.) If this longest edge is not a diagonal, say $a b$, then compare $\angle a c b$ with $\angle a d b$. Without loss of generality assume $\angle a c b \leqslant \angle a d b$. Then, the minimum disk covering triangle $a b c$ also covers point d (Figure 4(a)). Next, we may assume that the longest edge of complete quadrilateral $a b c d$ is a diagonal, say $a c$, and consider following cases.

Case 1. Triangles $a b c$ and $a c d$ are obtuse or right. In this case, $\angle a b c$ and $\angle c d a$ are obtuse or right. Therefore, the disk with a diameter $a c$ covers a, b, c, d (Figure 4(b)).

Case 2. Either triangle $a b c$ or $a c d$ is acute, say triangle $a b c$. If triangle $a b d$ is also acute, then compare $\angle a c b$ with $\angle a d b$. Without loss of generality assume $\angle a c b \leqslant \angle a d b$. Then, the minimum disk covering triangle $a b c$ also covers point d (Figure 4(a)). Similar argument may apply to the subcases that triangle $b c d$ is acute and that $\angle b d c \geqslant 90^{\circ}$ or $\angle a d b \geqslant 90^{\circ}$. Moreover, $\angle c b d \leqslant \angle c b a<90^{\circ}$ and $\angle d b a \leqslant$ $\angle c b a<90^{\circ}$. Therefore, the remainder is that $\angle b a d \geqslant 90^{\circ}$ and $\angle d c b \geqslant 90^{\circ}$. In this subcase, the disk with a diameter $b d$ covers a, b, c, d.

The proof of Lemma 8 is constructive. We can actually use the proof to find the Steiner point to connect the four terminals when it exists.

Now, we present the following approximation algorithm.

Figure 4.

ALGORITHM A. For input set X of n terminals, sort all $n(n-1) / 2$ possible edges between the n terminals in length increasing order $e_{1}, e_{2}, \ldots, e_{n(n-1) / 2}$. Initially, set $T_{A}=(X, \emptyset)$ and $i=1$. Then do the following:

Step 1 while $\left|e_{i}\right| \leqslant R$ do begin
if e_{i} connects two different connected components of T_{A}
then put e_{i} into T_{A};
$i:=i+1$;
end-while
Step 2 for each subset of four terminals b, b, c, d respectively in four connected components of T_{A} do if there exists a point s within distance R from a, b, c and d then put the 4 -star, consisting of four edges $s a, s b, s c, s d$, into T_{A};
Step 3 while $i \leqslant n(n-1) / 2$ do begin if e_{i} connects two different connected components of T_{A} then put e_{i} into T_{A}; $i:=i+1$;
end-while
return T_{A}
Clearly, this algorithm runs in $O\left(n^{4}\right)$ time.

THEOREM 2. Let T^{*} be optimal tree for $S T P-M S P$ and T_{A} an approximation produced by Algorithm A. Then $C\left(T_{A}\right) \leqslant 3 C\left(T^{*}\right)$.

Proof. Denote by $T^{(i)}$ the T_{A} at the beginning of Step i in the algorithm A. Suppose $T^{(3)}-T^{(2)}$ contains $k 4$-stars. Then

$$
C\left(T_{A}\right) \leqslant C\left(T_{S}\right)-2 k
$$

where T_{S} is a steinerized minimum spanning tree on all given terminals. Let T^{*} be a shortest optimal tree for STP-MSP with Steiner points of degrees at most five. Suppose T^{*} has g full components $T_{1}, T_{2}, \ldots, T_{g}$. We construct a steinerized spanning tree T as follows: Initially, put $T^{(2)}$ into $\stackrel{g}{T}$. For each full component T_{j} $(1 \leqslant j \leqslant g)$, add to T the steinerized minimum spanning tree H_{j} for terminals in T_{j}. If T has a cycle, then destroy the cycle by deleting some edges and Steiner points of H_{j}. An important observation is that if H_{j} does not contain an edge between two terminals, then a Steiner point must be deleted for destroying a cycle in $H_{j} \cup T^{(2)}$. From this observation and by Lemma 6, we have

$$
C\left(T_{S}\right) \leqslant 3 C\left(T^{*}\right)+h
$$

where h is the number of full components T_{j} 's with properties that every Steiner point in T_{j} has degree five and $T_{j} \cup T^{(2)}$ has no cycle. Hence,

$$
C\left(T_{A}\right) \leqslant 3 C\left(T^{*}\right)+h-2 k
$$

Figure 5.

It suffices to show $h \leqslant 2 k$.
Suppose $T^{(2)}$ has p connected components. Then, $T^{(3)}$ has $p-3 k$ connected components $C_{1}, C_{2}, \ldots, C_{p-3 k}$. Now, we construct a graph H with vertex set X and the following edges: First, we put all edges of $T^{(2)}$ into H. Then consider every full component $T_{j}(1 \leqslant j \leqslant h)$ with properties that every Steiner point in T_{j} has degree five and $T_{j} \cup T^{(2)}$ has no cycle. If T_{j} has only one Steiner point, then this Steiner point connects to five terminals which must lie in at most three C_{i} 's. Hence, among them there are two pairs of terminals; each pair lie in the same C_{i}. Connect the two pairs with two edges and put the two edges into H. If T_{j} has at least two Steiner points, then there must exist at least two Steiner points each connecting to four terminals. We can also find two pairs of terminals among them such that each pair lies in the same C_{i}. Connect the two pairs with two edges and put the two edges into H. Clearly, H has at most $p-2 h$ connected components. Since every connected component of H is contained by a C_{i}, we have $p-3 k \leqslant p-2 h$. Therefore, $h \leqslant 3 k / 2$.

What is the exact value of the performance ratio of Algorithm A? It is still open. What we know is that this value is between 2.5 and 3 . The lower bound 2.5 can be shown by the instance in Figure 5.

5. Polynomial-time approximation scheme

In this section, we consider a variation of STP-MSP. The input and the constraint are the same. Instead of minimizing the number of Steiner points in the tree, we minimize the number of total points (both Steiner points and given terminals) in the tree. Obviously, the decision versions of the two problems are identical. The new version is called the Steiner tree problem with minimum number of total points (STP-MTP). We construct a polynomial time approximation scheme when the given set of terminals satisfies certain conditions.

Figure 6. The rectangle with partition $P_{i, j}$ of size k.

A set X of terminals is c-local if in the minimum spanning tree of X the length of the longest edge is at most c times of the length of the shortest edge. Without loss of generality, we assume that the distance between any pair of terminals in X is at least 1 and $c \geqslant 1$. We are interested in the case where $R<c$.

5.1. THE BASIC IDEA

The basic idea of our algorithm is to combine the shifting technique in [4] with a local optimization method. We design a set of partitions, each of them partitions the whole area enclosing all terminals into many rectangular cells (mostly squares) of some constant size. (See Figure 6.) Each cell is further divided into interior and boundary areas as in Figure 7. Then, with respect to each partition, we organize the terminals contained in the interior area of each cell into several groups such that the

Figure 7. The interior and boundary areas. The width of the boundary areas is $l=(2+3$ $\log k) c$.
distance between any two groups is greater than c, and construct an optimal solution (a local Steiner tree) for each group. The collection of all the local Steiner trees in a cell form a local Steiner forest for the cell. After that, we connect all the local Steiner forests and the terminals contained in the boundary areas using the spanning tree approach. Finally, we select a partition which yields an optimal global solution among all the partitions.

5.2. PARTITION STRATEGY

First, we focus on the partitions. Without loss of generality, assume that the set of terminals X is contained in a rectangle Rec with corners $(0,0)(s, 0),(0, t)$, and (s, t), as shown in Figure 6. For any positive integer k, a partition of size k is a grid in which adjacent horizontal/vertical lines are separated by a distance k. Clearly, there are k^{2} different partitions of size k, depending on the positions of the top horizontal line and the leftmost vertical line. We use $P_{i, j}$, where $0 \leqslant i, j<k$, to denote the partition in which the top horizontal line and the leftmost vertical line are $y=i$ and $x=j$, respectively. The grid partitions the rectangle Rec into many cells, most of which are squares of size $k \times k$. Thus, each cell contains at most k^{2} terminals in X. Each cell is divided into an interior area and a boundary area, with a boundary of width $l=(2+3 \log k) c$. (See Figure 7.)

5.3. THE APPROXIMATION SCHEME

Let X be the set of terminals in the plane, P be a partition, and $X_{P} \subseteq X$ be the set of terminals in the interior areas. An edge is a crossing edge if it is not completely contained in any interior area of a cell. A stem in a Steiner tree T is a path in T such that every vertex in the path is degree-2 Steiner points except that the two vertices at the ends are terminals. A stem is a crossing stem if at least one of the terminals is in the boundary area. Let T^{P} be an optimal solution of STP-MTP for $X_{P} . T^{\text {min }}$ denotes an optimal solution of STP-MTP for X and $\bar{C}(T)$ denotes the total number of points in the tree T, i.e. $\bar{C}(T)=C(T)+n$ when T contains n terminals. Since X_{P} is a subset of X, we have

$$
\begin{equation*}
\bar{C}\left(T^{p}\right) \leqslant \bar{C}\left(T^{m i n}\right) \tag{1}
\end{equation*}
$$

In our algorithm, we deal with one cell at a time. Recall that the terminals in the interior area of a cell are divided into several groups and an optimal solution is constructed for each group. In order to show how to correctly group the terminals in an interior area, let us consider an optimal solution of STP-MTP T^{P} for X_{P}. We need to modify T^{P} into a forest F^{P} such that each tree in F^{P} is completely included in the interior areas of some cell. Note that each interior area of a cell may contain more than one tree in F^{P}. Define the distance between two trees to be the shortest distance between any pair of terminals in the two trees. We further require that the distance between any pair of trees in F^{P} is greater than c.

LEMMA 9. Let P be a partition and T^{P} be an optimal solution of STP-MTP for X_{P}. T^{P} can be modified into a forest F^{P} such that each tree in F^{P} is completely in an interior area of a cell for P and the distance between any pair of trees in F^{P} is at least c. Moreover, the total $\operatorname{cost} \bar{C}\left(F^{P}\right)$, which is the sum of the costs of all the trees in F^{P}, is at most $\bar{C}\left(T^{P}\right)$. Thus,

$$
\bar{C}\left(F^{P}\right) \leqslant \bar{C}\left(T^{P}\right) \leqslant \bar{C}\left(T^{\min }\right)
$$

Proof. First, we eliminate the stems with length greater than c from T^{P}. The distance between any pair of resulting trees is greater than c since T^{P} is optimal. For each tree T_{i} in the forest obtained above, we reconstruct an optimal tree connecting the terminals in T_{i}. Without loss of generality, we can assume that each stem in the reconstructed trees has length at most c. (Otherwise, we can repeat the procedure and further decompose the forest.)

Now we prove that each tree in the forest obtained above is completely in an interior area of a cell. It suffices to show that there is no Steiner point in the boundary area.

Suppose there are Steiner points in the boundary area. Call a Steiner point with degree greater than 2 a real Steiner point. Note that the distance between two cells is $(2+3 \log k) c$. It is easy to see that no terminals in distinct cells are connected in the above resulting forest. Otherwise, there must be a Steiner point s which is at least $1.5 \cdot c \cdot \log k$ away from any boundary line. To reach any boundary line, s has to create at least $2^{1.5 \log k}=k^{1.5}$ real Steiner points and $k^{1.5}(\lceil c / R\rceil-1)$ degree-2 Steiner points. Now, we remove all those $k^{1.5} \cdot\lceil c / R\rceil$ Steiner points in the boundary areas and use them to connect the disconnected subtrees with distance less than c in the corresponding 4 neighbor cells. (See Figure 8. s is in the shadowed area. At most $k \cdot\lceil 1 / r\rceil$ Steiner points are required to be added in each of the eight boundary segments of the four cells.)

Figure 8. The eight boundary segments.

Since no two cells are connected, we can move the Steiner points in the boundary areas back to the interior areas. In this way, all Steiner points in the boundary area can be eliminated.

It is difficult to compute the forest F^{P}, since T^{P} is unknown. Nevertheless, we can construct a forest which is similar to F^{P}. Consider the terminals in the interior area of some fixed cell. By Lemma 9, if the distance between two terminals is at most c, then they must belong to the same tree of F^{P}. Thus, we can group the terminals by forming a minimum-cost spanning tree of these terminals and then deleting the edges longer than c. Therefore, we get a set of (spanning) trees $\left\{S_{1}, \ldots, S_{m}\right\}$, consisting of degrees of length at most c. We call these trees the c-spanning trees. Let $Y_{i}, i=1, \ldots, m$, be the set of terminals contained in the c-spanning tree S_{i}. Clearly, the terminals in the same group Y_{i} belong to the same tree of the forest F^{P}. The converse is not necessarily true. Namely, terminals in different groups Y_{i} 's may also belong to the same tree of F^{P}. In other words, to find the best way of grouping the terminals, we have to consider all possible ways merging the groups Y_{1}, \ldots, Y_{m}. After each such possible merge, we obtain a local Steiner forest by constructing an optimal solution for every new group. We are interested in a local Steiner forest with the minimum cost among all possible merges for each cell.

Let forest \hat{F}^{P} denote the collection of the minimum-cost local Steiner forests, one for each cell. \hat{F}^{P} has the following properties.

LEMMA 10. (i) Each tree in \hat{F}^{P} is completely contained in the interior area of a cell; (ii) The distance between any pair of trees T_{i} and T_{j} in \hat{F}^{P} is greater than c; and (iii) The total cost of the forest \hat{F}^{P} is at most $\bar{C}\left(F^{P}\right)$. Thus,

$$
\bar{C}\left(\hat{F}^{P}\right) \leqslant \bar{C}\left(F^{P}\right) \leqslant \bar{C}\left(T^{\min }\right)
$$

Suppose that there are m groups in a cell. Using the method in [16], we can compute a minimum-cost local Steiner forest in $O\left(2^{m} M(|Y|)\right)$ time, where $M(Y)$ is the time to construct an optimal solution for the set of terminals Y, which is exponential in the size of Y.

5.4. AN EXACT ALGORITHM FOR STP-MTP

Let Y be a set of $|Y|$ terminals. Without loss of generality, we can assume that the terminals in Y are leaves in the tree. The number of possible topologies (the degree can be unbounded) for Y is at most $|Y|$!. Consider a fixed topology T for Y. If the number of candidate points for each internal vertex in T is at most m, then a modification of a standard dynamic programming algorithm finds an optimal solution for the fixed topology T in $O(|Y| m)$ time [5].

LEMMA 11. The number of candidate points for each internal vertex is at most $(|Y| \sqrt{2} k / R)^{3|\gamma|-1}$ if terminals in Y are in a square of size k by k.

Proof. Let $T^{\text {min }}$ be an optimal solution for the fixed topology T. Consider an internal vertex \vee at the bottom whose children are leaves in T. Without increasing the number of Steiner points, we can move the point assigned to V such that the distance between \vee and $\mathrm{V}_{i}(i=1$ and 2$)$ is $R h_{i}$, where h_{i} 's are integers, and V_{1} and V_{2} are some children of V . Thus, the number of candidate points for V is at most $|Y|^{2} \times(\sqrt{2} k / R)^{2}$. The height of T is at most $|Y|-1$. For a vertex of height i, the number of candidate points is denoted as $f(i)$. Then $f(i) \leqslant f(i-1)^{2} \times|Y|^{2} \times(\sqrt{2} k /$ $R)^{2} \leqslant f(i-1)^{3}$. Therefore, for any internal node, the number of candidate points is at most $(|Y| \sqrt{2} k / R)^{3^{|Y|}-1}$.

From the above discussion, it is easy to see that $M(Y)=O\left(|Y|!(|Y| \sqrt{2} k / R)^{2^{|Y|}}\right)$.

5.5. CONNECTING THE LOCAL FORESTS AND BOUNDARY POINTS

We can construct a Steiner tree for X from the forest \hat{F}^{P} as follows. Fix a minimum-cost spanning tree T_{S} for X and add degree-2 Steiner points to ensure that the length of each edge is at most R. Note that each stem in T_{S} has length at most c since X is c-local. Let E_{P} denote the set of crossing edges in T_{S}. Construct a graph G_{P} by adding all the crossing edges in E_{P} to \hat{F}^{P} and adding degree-2 Steiner points to ensure that the length of each edge is at most R. It is easy to see that

LEMMA 12. G_{P} is connected.

Now, we are ready to introduce our algorithm, which in fact computes $G_{P_{i, j}}$ for every possible partition $P_{i, j}$, selects a $G_{P_{i, j}}$ with the smallest cost, and prunes the selected $G_{P_{i, j}}$ into a tree. See Figure 9.

THEOREM 3. The performance ratio of the algorithm in Figure 9 is $1+[16(4+$ $3 \log k) c / k]$.

Proof. Consider the stems in the minimum spanning tree for X. Since the boundary area of each cell consists of at most $4(2+3 \log k) c k$ terminals, each terminal of a crossing stem can be inside a boundary area at most $4(2+3 \log k) c k$ times under the k^{2} partitions. Since the length of a stem is at most c, a stem can be a crossing stem at most $4(4+3 \log k) c k$ times. Therefore, the total cost of the $k^{2} G_{P_{i, j}}$,s is bounded as follows:

$$
\begin{aligned}
\sum_{i=0}^{k-1} \sum_{j=0}^{k-1} \bar{C}\left(G_{P_{i, j}}\right) & \leqslant k^{2} \bar{C}\left(T^{m i n}\right)+\sum_{i=0}^{k-1} \sum_{j=0}^{k-1} \bar{C}\left(E_{P_{i, j}}\right) \\
& \leqslant k^{2} \bar{C}\left(T^{\text {min }}\right)+4(4+3 \log k) c k \times \bar{C}\left(T_{s}\right) .
\end{aligned}
$$

From Theorem 1, we know that at least one partition yields a solution with cost less than or equal to $1+[16(4+3 \log k) c / k]$ times of the optimum.

```
1. Construct a minimum-cost spanning tree \(T_{S}\) for \(X\).
2. for each possible partition \(P_{i, j}\)
3. begin
4. Find the set of crossing edges \(E_{P_{i, j}}\).
5. for each cell
6. Compute a minimum-cost local Steiner forest.
7. Let \(\hat{F}^{P_{i, j}}\) be the set of all local Steiner forests.
8. Construct the graph \(G_{P_{i, j}}=E_{P_{i, j}} \cup \hat{F}^{P_{i, j}}\).
9. Add degree-2 Steiner points if necessary.
10. end.
11. Select a \(G_{P_{i, j}}\) with the smallest cost among all partitions.
12. Prune \(G_{P_{i, j}}\) into a tree.
```

Figure 9. Algorithm 1.

COROLLARY 1. There exists a polynomial time approximation scheme for STPMTP when the set of terminals is c-local.

COROLLARY 2. Suppose T_{B} is produced by the algorithm in Figure 9 and T^{*} is an optimal tree for STP-MSP. Then

$$
\frac{C\left(T_{B}\right)}{C\left(T^{*}\right)} \leqslant 1+\frac{16(4+3 \log k) c}{k}+\frac{16(4+3 \log k) c}{k} \cdot \frac{4 n}{C\left(T_{S}\right)}
$$

where T_{S} is a steinerized minimum spanning tree for the same set of n terminals. That is, there exists a polynomial time approximation scheme for STP-MSP when the given set of terminals is c-local and the minimum spanning tree on n terminals has length at least $(1+\alpha) n R$ for some positive constant α.

6. Discussion

One of the reasons that we are so interested in the problem STP-MSP is that no geometric optimization problem has been found to be MAX-SNP-hard. STP-MSP may be the one. In fact, Arora's approach [1] does not work for STP-MSP. It is an open problem whether STP-MSP has a polynomial-time approximation scheme.

Acknowledgement

The authors wish to thank Professor Rich Pollack for his comments on a previous version of this paper.

References

1. Arora, S. (1996), Polynomial time approximation schemes for Euclidean TSP and other geometric problems, Proceedings of 37th FOCS.
2. Chiang, C., Sarrafzadeh, M. and Wong, C.K. (1990), A powerful global router: based on Steiner min-max tree, in Proc. ICCAD-89; also IEEE Transactions on Computer-Aided Design 19: 1318-1325.
3. Du, D.-Z. and Hwang, F.K. (1992), A proof of Gilbert-Pollak's conjecture on the Steiner ratio, Algorithmica 7: 121-135.
4. Hochbaum, D.S. and Maass, W. (1985), Approximation schemes for covering and packing problems in image processing and VLSI, J. ACM 32: 130-136.
5. Hwang, F.K. and Richards, D.S. (1992), Steiner tree problems, Networks 22: 55-89.
6. Garey, M.R. Graham, R.L. and Johnson, D.S. (1977), The complexity of computing Steiner minimal trees, SIAM Journal on Applied Mathematics 32: 835-859.
7. Gilbert, E.N. (1967), Minimum cost communication networks, Bell System Technical Journal 9: 2209-2227.
8. Gilbert, E.N. and Pollak, H.O. (1968), Steiner minimal trees, SIAM Journal on Applied Mathematics 16: 1-29.
9. Hwang, F.K., Richard, D. and Winter, P. (1992), The Steiner minimum tree problems, Annals of Discrete Mathematics, Vol. 53, North-Holland.
10. Karpinski, M. and Zelikovsky, A. (1997), New approximation algorithms for the Steiner tree problems, Journal of Combinatorial Optimization 1(1): 47-65.
11. Li, C.-S., Tong, F.F., Georgiou, C.J. and Chen, M., Gain equalization in metropolitan and wide area optical networks using optical amplifiers, Proc. IEEE INFOCOM'94, pp. 130137, June 1994.
12. Lin, G.-H. and Xue, G.L. (1999), Steiner tree problem with minimum number of Steiner points and bounded edge-length, Information Processing Letters 69: 53-57.
13. Rubinstein, J.L. and Weng, J.F. (1997), Compression theorems and Steiner ratios on spheres, Journal of Combinatorial Optimization 1(1): 67-78.
14. Ramamurthy, B., Iness, J. and Mukherjee, B., Minimizing the number of optical amplifiers needed to support a multi-wavelength optical LAN/MAN, Proc. IEEE INFO-COM'97, pp. 261-268, April 1997.
15. Soukup, J. (1975), On minimum cost network with nonlinear costs, SIAM Journal on Computing 29: 571-581.
16. Wang, L. and Jiang, T. (1996), An approximation scheme for some Steiner tree problems in the plane, Networks 28: 187-193.
17. West, D.B. (1996), Introduction to Graph Theory, Prentice Hall.

[^0]: * Supported in part by the National Science Foundation under grant CCR-9530306.
 * Supported in part by National Natural Science Foundation of China under grant 19331050 and 973 fundamental research project of China.
 ${ }^{\text {§ }}$ Supported in part by the Army Research Office grant DAAH04-96-10233 and by the National Science Foundation grants ASC-9409285 and OSR-9350540.

