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APPROXIMATIONS OF A GINZBURG-LANDAU MODEL
FOR SUPERCONDUCTING HOLLOW SPHERES BASED ON

SPHERICAL CENTROIDAL VORONOI TESSELLATIONS

QIANG DU AND LILI JU

Abstract. In this paper the numerical approximations of the Ginzburg-
Landau model for a superconducting hollow spheres are constructed using
a gauge invariant discretization on spherical centroidal Voronoi tessellations.
A reduced model equation is used on the surface of the sphere which is valid
in the thin spherical shell limit. We present the numerical algorithms and
their theoretical convergence as well as interesting numerical results on the
vortex configurations. Properties of the spherical centroidal Voronoi tessella-
tions are also utilized to provide a high resolution scheme for computing the
supercurrent and the induced magnetic field.

1. Introduction

The quantized vortex phenomena are well-known signatures of superfluidity.
The macroscopic model of Ginzburg and Landau [15, 33] has been widely used
to describe the vortex state in both low-temperature and high-temperature su-
perconductors. The nucleation of quantized vortices in superconductors due to
the applied magnetic field has been rigorously established and extensively simu-
lated based on the phenomenological Ginzburg-Landau equations; see, for exam-
ple, [2, 3, 4, 16, 19, 21, 22, 26] and the references cited therein. The numerical
approximations of Ginzburg-Landau type models have also been studied, including
the popular finite difference methods [12, 23] and finite element methods [8, 15, 16].
Based on a planar Voronoi-Delaunay grid, covolume techniques have also been an-
alyzed, and they provide gauge invariant approximations to the Ginzburg-Landau
model [20]. It is clear that methods based on unstructured grids, for example, the
finite element and finite volume methods become handy when we simulate super-
conducting samples of various geometric forms.

The geometry we focus on in this paper is a thin spherical superconducting
shell. In the physics literature, various studies on superconducting samples with
spherical geometry have been made, ranging from superconducting balls to hollow
spheres [9, 11, 34, 35]. Superconducting hollow spheres play important roles in
the technological applications of superconductivity, such as in the design of the
superconducting gravimeters [29] and the Gravity Probe B gyroscopes developed
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1258 QIANG DU AND LILI JU

at Stanford [25] for testing the theory of general relativity. In light of the latest
development in superconducting nano-clusters [31, 32], spherical geometries and
thus the vortex structures related to spherical geometries may be of great interest
for future superconductivity research.

Taking advantage of the thin structure, a reduction of the full three-dimensional
Ginzburg-Landau model can be made which still captures many basic features of
the vortex state [6]. The resulting model becomes a simplified equation for the
order parameter defined on the sphere surface, similar to the case of a thin film
[3, 5, 7]. To simulate the simplified equation, a well-designed approximation scheme
is needed and a high-quality spherical grid is also desirable as it is well known that
a perfect uniformly distributed grid does not exist on the sphere for all levels of
resolution.

Recently, we have made numerous studies on generating high-quality, almost-
uniform spherical tessellations that we call spherical centroidal Voronoi tessella-
tions [14]. We have also studied the application of finite volume approximation
of convection diffusion equations on such grids [14, 17]. In this paper, we extend
the finite volume methods to construct a gauge invariant approximation of the
reduced Ginzburg-Landau (G-L) model. The novelty of the extension lies in its im-
plementation on a spherical centroidal Voronoi tessellation (SCVT) which provides
a higher order resolution of the physical variables than on a conventional spherical
Voronoi-Delaunay grid. Such a claim results from the optimality of SCVT on the
sphere: the SCVT gives a high quality mesh for both the numerical solution and
their gradient recovery; it also leads to optimal quadratures for numerical integra-
tions on the sphere. As illustrated in the paper, the Ginzburg-Landau model on
the sphere is a typical nonlinear system that provides a natural setting to utilize
these optimal spherical centroidal Voronoi tessellations. While a brief convergence
theory of our approximations is provided, the focus of the paper is on the discussion
of the numerical algorithm, some of its interesting properties, its implementation
with respect to the spherical centroidal Voronoi grids, and the effective evaluation
of various physically relevant quantities. We also present numerical simulations of
the vortex structure on the spherical shell generated by a constant applied magnetic
field and obtain the second order of convergence numerically.

The paper is organized as follows. In Section 2 we describe the basic Ginzburg-
Landau theory and the reduced model for the spherical shell. In Section 3 finite
volume approximations are discussed. The SCVT grids are briefly discussed in
Section 4. In Section 5 some theoretical issues concerning the convergence of the
numerical approximations are examined. In Section 6 we discuss how to utilize the
SCVT to compute the physical variables. Some numerical examples are given in
Section 7, and final conclusions are given in Section 8.

2. The Ginzburg-Landau model for superconductivity

Let Ω ⊂ Rd (d = 3) be the region occupied by the superconducting sample.
The primary variables used in the equilibrium G-L model are the complex scalar-
valued order parameter ψ and the real vector-valued magnetic potential A (for
time-dependent models, the real scalar-valued electric potential Φ̄ is also needed).
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According to Ginzburg and Landau [15, 33], in a nondimensionalized form, the
conventional Gibbs free energy is given by

G(ψ,A) =
∫

Ω

(
1
2

∣∣∣∣
(
i

κ
∇ + A

)
ψ

∣∣∣∣
2

+
1
4
(1 − |ψ|2)2 +

1
2

∫
Rd

|curl A − �H |2
)
dΩ ,

where κ, the Ginzburg-Landau parameter, is a material constant and �H is a given
applied magnetic field.

The minimizers of the free energy functional satisfy the G-L equations(
i

κ
∇ + A

)2

ψ − ψ + |ψ|2ψ = 0 in Ω ,

curl curlA +
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = 0 in Ω,

curl curlA = 0 in Rd \ Ω,

with curlA = �H at infinity. Solutions of the G-L equations satisfy the gauge
invariance property. Assume that �H = H�z is a constant field in the z-direction
with strength H , and let A0 = A0(x) be given by

A0(x, y, z) =
H

2
(y,−x, 0)T .

A popular gauge choice is given by divA = 0 and A → A0 at infinity.
It turns out a reduction of the model is possible when the domain Ω is made of

a very thin structure [3, 5]. For example, in the case of a thin shell under constant
field in the z-direction, with δa(x) being the thickness function and δ being a
small constant, the solution of the above equations can be approximated, to the
leading order of δ, by (ψ,A0) where the function ψ is defined on the sphere surface
S2 = {x | ‖x‖ = r > 0} [6], in the same spirit as of the thin film.

Denote by ∇s the surface tangential gradient [24] on the sphere defined as

∇s = (∇s,1,∇s,2,∇s,3) = ∇− (∇ · �nx)�nx,

where ∇ is the standard gradient operator and �nx is the outer normal vector toward
S2 at x, by A0s the tangential projection of A0 defined as

A0s = A0 − (A0 · �nx)�nx.

After a rescaling, the reduced equation satisfied by ψ then becomes

(2.1) −(∇s − iA0s)a(x)(∇s − iA0s)ψ +
1
ε2
ψ(|ψ|2 − 1) = 0 , on S2,

where a > 0 is a function measuring the relative thickness of the three-dimensional
thin spherical shell. The parameter ε can be interpreted as the effective coherence
length which depends on κ for the thin shell; see [5] for details. For simplicity, here
we let a(x) = 1; in other words, we assume that the spherical shell has uniform
thickness.

It is easy to see that the solutions of equation (2.1) are the critical points of the
energy functional

(2.2) F(ψ) =
∫

S2

(
|(∇s − iA0s)ψ|2 +

1
2ε2

(1 − |ψ|2)2
)
dS.
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1260 QIANG DU AND LILI JU

It is in our interest here to first compute for the ground state of the energy, and
then to calculate all solution branches for (2.1) to obtain an accurate bifurcation
diagram, similar to the study made in [2].

The gauge invariance of the functional F , and thus, the gauge invariance of
the solution space for the Ginzburg-Landau equations, is understood as F being
invariant under the transformation: for any smoothly defined real-valued scalar
function η = η(x),

(2.3) (A0s, ψ) → (A0s + ∇sη, ψ exp(iη)) .

Another feature related to the gauge invariance in the solution space, in the
spherical setting, is the rotational group invariance in the independent variables
with respect to the z axis. In fact, if ψ = ψ(x) is a solution of equation (2.1), and
T : S2 → S2 is a plane rotation

T =


 cosα sinα 0

− sinα cosα 0
0 0 1


 ,

where α is the angle of rotation, then ψ̂ = ψ̂(x) defined by

ψ̂(x) = ψ(Tx) exp(ix2 sinα/2 + ixy(1 − cosα) + iy2 sinα/2 + iβ)

for x = (x, y, z)T ∈ S2, is also a solution for an arbitrary real scalar constant β.
The invariance with respect to β gives the U(1) symmetry of the solution space.

A consequence of the gauge and rotation invariance is that rigorous numerical
analysis is best applied in a properly defined quotient space. Such a point is to be
further addressed in a future work.

3. Finite volume approximations

Denote by d(x,y) the geodesic distance between x and y on S2; i.e.,

d(x,y) = r
[
arccos

(x · y
r2

)]
∀ x,y ∈ S2 .

Given a set of distinct points {xj}n
j=1 ⊂ S2, we can define for each point xj ,

j = 1, . . . , n, the corresponding Voronoi region Vj , j = 1, . . . , n, by

Vj =
{
y ∈ S2 | d(xj ,y) < d(xk,y) for k = 1, . . . , n and k �= j

}
.

Clearly, we have xj ∈ Vj , and {Vj}n
j=1 forms a tessellation of S2. We refer to

{Vj}n
j=1 as the Voronoi tessellation or Voronoi diagram of S2 associated with the

point set {xj}n
j=1. We call xj a generator, and a subdomain Vj ⊂ S2 is referred

to as the Voronoi region or Voronoi cell corresponding to the generator xj . It is
easy to see that each Voronoi cell Vj is an open convex spherical polygon on S2;
i.e., its sides are geodesic arcs. It is also well known that the dual tessellation to
a Voronoi tessellation of S2 consists of spherical triangles. The dual tessellations
[28] are referred to as Delaunay triangulations and are very popular computational
meshes on the sphere, similar to the planar cases.

Given a spherical Voronoi-Delaunay mesh W = {xj , Vj}n
j=1 (see Figure 1), define

m(A) =
{

the area of A if it is a nonempty subdomain of S2,
the length of A if it is a geodesic arc on S2 .
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Figure 1. Left: a spherical Voronoi tessellation; right: a single
Voronoi region and its dual triangles.

Then, for �ψh = (ψ1, ψ2, . . . , ψn), the Ginzburg-Landau functional is discretized as

Fh(�ψh) =
1

2ε2

n∑
j=1

{
m(Vj)(1 − |ψj |2)2

}

+
1
2

n∑
j=1

∑
k∈χj

{
m(Γjk)

‖xj − xk‖
|ψk exp(−icjk) − ψj |2

}
,(3.1)

where

cjk =
∫
x̃kxj

A0s(x) ·�tjkd	 =
(∫

x̃kxj

A0s(x)d	
)
·�tjk,

where �tjk denotes the unit tangent field along the geodesic arc x̃jxk at the middle
point of x̃jxk. In fact, due to symmetry, we have

�tjk =
xk − xj

‖xk − xj‖
.

For any j, the index set χj denotes the indices of all vertices which are adjacent
to the vertex xj . We also assume that for two adjacent vertices xk and xj , the
common boundary Γjk of their Voronoi regions (part of their bisector, i.e., points
on the sphere having equal distance to xk, xj) has a nonzero measure m(Γjk).

The choice of the above discrete energy is made in order to preserve several
properties shared by the continuous energy functional at the discrete level: one
being the validity of the maximum principle, which states that the magnitude of
the order parameter should not exceed the unit (constant 1); another being the
gauge invariance in the discrete sense. Detailed discussions on gauge invariant
approximations to the full Ginzburg-Landau models can be found in [12, 20]. As
the original continuous model enjoys gauge invariance, it is desirable that such
a property still holds at the discrete level. Moreover, the gauge invariance gives
one the freedom to choose the most convenient gauge to work with and makes the
gauge fixing much easier to implement numerically [12]. For the reduced model
given above, the discrete gauge transformation may be defined by

(3.2)
(
A0s, {ψj}n

j=1

)
→
(
A0s + ∇sη(x), {ψj exp(iη(xj))}n

j=1

)
.
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It is easy to see that the discrete energy functional is invariant under the discrete
gauge transformation. The rotational invariance can be understood in the sense
that, for an arbitrary mesh, a plane rotation would lead to a new mesh and a discrete
solution on the new mesh can be obtained from a solution in the old mesh. Notice
that for a given mesh (such as the SCVT grid discussed here), the discrete solution
is possibly rotation invariant only for a finite rotation group with a cardinality
independent of the mesh size. Thus, we do not have to worry about the rotation
invariance (except the U(1) symmetry given by a constant phase change) of the
discrete solution space. The U(1) symmetry can be fixed by explicitly assigning
the phase variable at a particular point (typically chosen to be located on the
equator where the solution has nonzero magnitude).

Let �ψh represent the vector with components {ψj}, and define

(3.3) Fjk(�ψh) = −m(Γjk)
ψk exp(−icjk) − ψj

‖xj − xk‖
.

Then the Euler-Lagrange equation gives

(3.4)
1

m(Vj)

∑
k∈χj

Fjk +
1
ε2
ψj(|ψj |2 − 1) = 0 for j = 1, . . . , n .

The gauge invariance of the discrete free energy functional naturally implies
that the above finite volume scheme is also gauge invariant. Gauge invariant finite
difference methods have been widely used in the physics literature [1, 23]. Though
uniform cartesian grids do not exist for the sphere, the invariant approximation
given above provides a natural extension of the standard gauge invariant finite
difference methods based on spherical geometry.

4. Mesh regularity and the SCVT

To ensure good approximation properties, some mesh regularity assumptions on
the underlying grids are needed.

Given a Voronoi mesh W = {xj , Vj}n
j=1, we define the mesh norm h by

(4.1) h = max
j=1,...,n

hj, where hj = max
y∈Vj

d(xj ,y) .

Thus, hj gives the maximum geodesic distance between the particular generator xj

and the points in its associated cell Vj , and h gives the maximum geodesic distance
between any generator and the points in its associated cell. We then define the
mesh regularity norm σ [14] by

(4.2) σ = min
j=1,...,n

min
k∈χj

d(xj ,xk)
2hj

.

σ can be used as a measure of the uniformity of a mesh; the larger the value of
σ, the more uniform the mesh. In addition, the value of σ provides us a measure
of the mesh regularity; i.e., the local uniformity of a mesh. We will refer to W as
regular if σ is uniformly bounded above zero for small h (large n).

An optimal spherical mesh that gives good mesh regularity is the one given by the
SCVT [14]. The SCVT is a spherical Voronoi tessellation with special distributions
of their Voronoi generators.

Given a density function ρ defined on S2, for any spherical region V ⊂ S2, the
spherical mass centroid xc of V on S2 is given by the minimizer of

(4.3) min
x∈V

e(x) , where e(x) =
∫

V

ρ(y)‖y − x‖2 ds(y),
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where ds(y) denotes the area element at y ∈ V ⊂ S2. As in [14], a Voronoi
tessellation of S2 is called a spherical centroidal Voronoi tessellation if and only if
the points {xj}n

j=1 which serve as the generators of the associated spherical Voronoi
tessellation {Vj}n

j=1 are also the spherical mass centroids of those Voronoi regions.
The SCVTs are special cases on the sphere of the constrained CVTs for general
surfaces [13]. It can be shown [13] that a properly defined energy is minimized only
when {xj , Vj}n

j=1 forms a SCVT.
Consequently, spherical centroidal Voronoi meshes have many good geometric

properties; see [14]. In particular, for large n, it gives very good mesh regularity,
and, when applied to the finite volume approximations of linear convection diffusion
equations, it leads to high resolution of both the solution and their gradients [17].
Examples of the SCVT grids are given later in the paper.

In our study here, we only take the special case of a constant density ρ = 1. In
such a case, the SCVT generators are uniformly distributed.

5. Analysis of the finite volume methods

We define the standard Sobolev space on S2 (a compact, two-dimensional Rie-
mannian manifold) [24, 14, 17] such as

Wm,p(S2) =
{
φ(x) |

∫
S2
|∇α

s φ|p ds(x) <∞, for 0 ≤ |α| ≤ m

}
,

where α = (α1, α2, α3), ∇α
s = ∇α1

s,1∇α2
s,2∇α3

s,3, and |α| = α1 + α2 + α3. Also,

‖φ‖m,p,S2 =



(∑

0≤|α|≤m ‖∇α
s φ‖

p
0,p,S2

)1/p

for 1 ≤ p <∞,

max0≤|α|≤m ‖∇α
s φ‖0,∞,S2 for p = ∞ .

For the case p = 2, we let Hm(S2) = Wm,2(S2) and ‖φ‖m,S2 = ‖φ‖m,2,S2 .
If xj1 ,xj2 , and xj3 are neighbors for each other in W , we denote by τ̃jkl the

spherical triangle determined by xj1 ,xj2 , and xj3 , and by τj1j2j3 the corresponding
planar triangle. We use the notation Σ = {Vj}n

j=1, T̃ = {τ̃j1j2j3}, and T = {τj1j2j3}.
It is easy to see that

τ̃j1j2j3 =
{
P(y) = y/‖y‖ | y ∈ τj1j2j3

}
= P(τj1j2j3),

and T̃ is the corresponding spherical Delaunay triangulation of S2 associated with
the generators {xj}n

j=1. We can also view P as a one-to-one smooth function that
maps S∗ =

⋃
τj1j2j3∈T τj1j2j3 to S2 =

⋃
τ̃j1j2j3∈T̃ τ̃j1j2j3 . Clearly, S∗ ∩ S2 = {xi}n

i=1.
From now on, we assume the mesh regularity on the spherical Voronoi-Delaunay

mesh used in the discretization (3.1), which is automatically satisfied by the SCVT
grid with sufficiently many generators. Moreover, for such a SCVT grid, all angles
of the corresponding planar triangles in T are acute for large enough n.

For any x ∈ S2 and x1,x2 ∈ τ̃j1j2j3 , we have

(5.1)




‖x − P−1(x)‖ ≤ ch2,

(1 − ch2)d(x1,x2) ≤ ‖P−1(x1) − P−1(x2)‖ ≤ (1 + ch2)d(x1,x2),
m(τj1j2j3) ≤ m(τ̃j1j2j3) ≤ (1 + ch2)m(τj1j2j3),

where m(τj1j2j3) denotes the area of the triangle τj1j2j3 and c represents a generic
constant that is independent of h for h small.
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Given �φh = (φ1, φ2, . . . , φn), we call φh,L a piecewise linear function on S∗ that
interpolates �φh at all the vertices {xj}n

j=1 if and only if

φh,L(y) = λj1φj1 + λj2φj2 + λj3φj3 ∀ y ∈ τj1j2j3 ,

where λj1 , λj2 , λj3 are the barycentric coordinates of y in the planar triangle τj1j2j3 .
Based on φh,L, we define a special approximate piecewise linear approximation that
interpolates �φh at all the vertices on the sphere S2 by

(5.2) φh(x) = φh,L(y) = φh,L(P−1(x)), x ∈ S2.

For the properties of such an interpolation on S2, see [14, 17]. It is easy to find that
φh ∈ H1(S2).

Let ∇∗ be the tangential surface gradient operator on S∗, i.e., for any function
ξ defined on S∗,

∇∗ξ(y) = (∇∗,1,∇∗,2,∇∗,3)ξ(y) = ∇ξ(y)− (∇ξ(y) ·�nτj1j2j3
)�nτj1j2j3

∀ y ∈ τj1j2j3 ,

where �nτj1j2j3
is the unit outer normal vector to τj1j2j3 . In fact, the operator ∇∗ is

locally equivalent to the standard two-dimensional gradient operator in each planar
triangle τj1j2j3 ; consequently, we know that for any y1,y2 ∈ τj1j2j3 ,

(5.3) ∇∗φ
h,L(y1) = ∇∗φ

h,L(y2)

since φh,L is linear on τj1j2j3 .
For convenience, we define A0∗ as the piecewise projection of A0s onto S∗; that

is,
A0∗(y) = A0s(P(y)) − (A0s(P(y)) · �nτj1j2j3

)�nτj1j2j3
,

in each τj1j2j3 . Clearly,

|A0∗(y)| ≤ |A0s(P(y))| ,
|A0s(P(y)) − A0∗(y)| ≤ ch|A0s(P(y))| .

We define a modified energy functional: for φ with ‖φ‖1,S∗ <∞,

(5.4) FL(φ) =
∑

τj1j2j3∈T

∫
τj1j2j3

(
|(∇∗ − iA0∗)φ|2 +

1
2ε2

(1 − |φ|2)2
)
dτ.

Here, we let ‖φ‖2
1,S∗ =

∑
τj1j2j3∈T ‖φ‖2

1,τj1j2j3
.

It is also easy to find that for any y ∈ τj1j2j3 and x = P(y) ∈ S2, we have

(5.5) �nx · �nτj1j2j3
≥ 1 − ch2.

Using (5.1), (5.2), and similar analyses in [14, 17], we have that for any x ∈
τ̃j1j2j3 , y = P−1(x) ∈ τj1j2j3 ,

(5.6) |∇sφ
h(x) −∇∗φ

h,L(y)| ≤ ch|∇sφ
h(x)|, j = j1, j2, j3,

and

(5.7) |∇sφ
h(x) −∇∗φ

h,L(y)| ≤ ch|∇∗φ
h,L(y)|, j = j1, j2, j3,

for some constant c > 0. Consequently, let φh be an approximate piecewise linear
function in H1(S2) corresponding to the spherical triangulation T̃ . Then for h
small,

(5.8) (1 − ch2)‖φh,L‖2
1,S∗ ≤ ‖φh‖2

1,S2 ≤ (1 + ch2)‖φh,L‖2
1,S∗

for some constant c > 0 independent of h.
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First, we have the following maximum principle.

Lemma 5.1. If �ψh = (ψ1, ψ2, . . . , ψn) is a minimizer of Fh of (3.1), then |ψj | ≤
1 for any j.

The proof follows the same line of argument as that given in [12, 20] for the
planar case.

Given an approximate piecewise linear approximation φh with respect to the
spherical triangulation T̃ associated with the spherical Voronoi tessellation Σ, and
φh interpolates data �φh ∈ Capn at the vertices in the way defined in (5.3); i.e.,
φh(xj) = φj , 1 ≤ j ≤ n. Then we have

Lemma 5.2. If Fh(�φh) is uniformly bounded, then there exists a generic constant
c > 0, independent of h, such that∥∥φh

∥∥
1,S2 ≤ c ,

and ∥∥φh,L
∥∥

1,S∗ ≤ c .

Proof. From the definition of Fh and the uniform boundedness, we get∑
j

|φj |4m(Vj) ≤ c .

By the equivalence of norms in polynomial spaces and scaling argument,

‖φh‖0,4,S2 ≤ c

for the piecewise linear function ψh. Then we get∑
kj

{
m(Γkj)

‖xj − xk‖
|φk − φj |2

}
≤ c .

Using the equivalence of the norms given in [17], we get the final results for φh

and φh,L. �

Theorem 5.3. There exists a minimizer �ψh of Fh. Moreover, |ψj | ≤ 1 for all j.

Proof. The functional Fh is obviously continuous and bounded below, and thus has
a minimizing sequence {�ψh

n}∞n=1. Using the previous lemma, Fh(�ψh
n) is uniformly

bounded above and this implies that �ψh
n is also uniformly bounded, so that a min-

imizing sequence must have a convergent subsequence. By continuity, limit of this
subsequence is a minimizer of Fh. The pointwise bound follows from the maximum
principle. �

Then, we have the following result.

Lemma 5.4. If φh defined above is uniformly bounded independent of h in H1(S2),
then

(5.9) F(φh) = FL(φh,L) + o(1) as h→ 0

and

(5.10) FL(φh,L) = Fh(�φh) + o(1) as h→ 0.

Consequently,

(5.11) F(φh) = Fh(�φh) + o(1) as h→ 0.
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Proof. We note first that ‖φh,L‖1,S∗ is also uniformly bounded by Lemma 5.2.
Using the inequalities (5.1), we have∣∣∣∣
∫

S2
(1 − |φh|2)2 dS −

∫
S∗

(1 − |φh,L|2)2 dS∗
∣∣∣∣

≤
∑

τ̃j1j2j3∈T̃

∣∣∣∣∣
∫

τ̃j1j2j3

(1 − |φh(x)|2)2 ds(x) −
∫

τj1j2j3

(1 − |φh,L(y)|2)2 ds∗(y)

∣∣∣∣∣
=

∑
τ̃j1j2j3∈T̃

∣∣∣∣∣
∫

τ̃j1j2j3

(1 − |φh(x)|2)2 ds(x)

−
∫

τ̃j1j2j3

(1 − |φh(x)|2)2 ds∗(P−1(x))

∣∣∣∣∣
≤ ch2

∑
τ̃j1j2j3∈T̃

∫
τ̃j1j2j3

(1 − |φh(x)|2)2 ds(x)

≤ ch2(m(S2) + ‖φh‖4
1,S2).

Moreover, by the inequalities (5.1), (5.5), (5.8), the norm equivalence, and
Sobolev imbedding theorems, we similarly get∣∣∣ ∫

τ̃j1j2j3

|(i∇s + A0s)φh(x)|2 ds(x) −
∫

τj1j2j3

|(i∇∗ + A0∗)φh,L(y)|2 ds∗(y)
∣∣∣

≤
∣∣∣ ∫

τ̃j1j2j3

(
|(i∇s + A0s)φh(x)|2 − |(i∇∗ + A0∗)φh,L(P−1(x))|2

)
ds(x)

∣∣∣
+
∣∣∣ ∫

τj1j2j3

|(i∇∗ + A0∗)φh,L(y)|2 ds(P(y))

−
∫

τj1j2j3

|(i∇∗ + A0∗)φh,L(y)|2 ds∗(y)
∣∣∣

≤ ch2(‖φh‖2
1,τ̃j1j2j3

+ ‖A0s‖2
0,4,τ̃j1j2j3

‖φh‖2
0,4,τ̃j1j2j3

)

+ ch2(‖φh,L‖2
1,τj1j2j3

+ ‖A0∗‖2
0,4,τj1j2j3

‖φh,L‖2
0,4,τj1j2j3

)

≤ ch2(‖φh‖2
1,τ̃j1j2j3

+ ‖A0s‖2
1,τ̃j1j2j3

‖φh‖2
1,τ̃j1j2j3

) .

Then we have ∣∣∣ ∫
S2
|(i∇s + A0s)φh|2 dS −

∫
S∗

|(i∇∗ + As∗)φh,L|2 dS∗
∣∣∣

≤ ch2(‖φh‖2
1,S2 + ‖A0s‖2

1,S2‖φh‖2
1,S2) .

So we get
|F(φh) −FL(φh,L)| ≤ ch2,

which directly induces (5.9).
The proof of (5.10) is based on similar consideration given in [20] for the pla-

nar case. Using standard approximation results, scaling argument and the norm
equivalence in [17] with (5.1), we have for any continuous piecewise polynomial ζ
(of degree ≤ 4) defined on S∗ with respect to the triangulation T ,

(5.12)
∣∣∣ ∫

S∗
ζ dS∗ −

∑
Vj1∈Σ

ζ(xj1 )m(Vj1 )
∣∣∣ ≤ ch‖ζ‖1,1,S∗ ,

where c is a generic constant independent of h.
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Let ζ = 1
2 (1 − |φh,L|2)2. We have

‖ζ‖1,1,S∗ =
1
2
‖1 − |φh,L|2‖2

0,2,S∗ + ‖2(1 − |φh,L|2)�{(φh,L)∗∇∗φ
h,L}‖0,1,S∗ .

By Sobolev imbedding theorems and the uniform bound on ‖φh,L‖1,2,S∗ , we get

(5.13)

∣∣∣∣∣∣
∫

S∗

1
2
(1 − |φh,L|2)2 dS∗ −

∑
Vj1∈Σ

m(Vj1)
2

(1 − |φj1 |2)2
∣∣∣∣∣∣ ≤ ch .

Consider a typical spherical triangle τ̃j1j2j3 with vertices xj1 ,xj2 , and xj3 , let

aj1j2 =
1

‖xj1 − xj2‖

∫
x̃j1xj2

A0s(x)ds .

It is easy to see that �tj1j2 , �tj2j3 , �tj3j1 are three unit vectors for the edges of the
planar triangle τj1j2j3 . Then for any vector v (real or complex), we have [20]

m(τj1j2j3)|v|2 = cot θj3‖xj1 − xj2‖2|v ·�tj1j2 |2

+ cot θj1‖xj2 − xj3‖2|v ·�tj2j3 |2

+ cot θj2‖xj3 − xj1‖2|v ·�tj3j1 |2,

where the θ′js are the corresponding angles of the triangle.
Thus, we are motivated to consider the kinetic energy:

(I)j1,j2
j1j2j3

:=
∫

τj1j2j3

∣∣∣(i∇∗ + A0∗

)
φh,L(y) ·�tj1j2

−
(
i∇∗φ

h,L(xj2 ) ·�tj1j2 + (aj1j2 ·�tj1j2)φ
h,L(xj2 )

)∣∣∣2ds∗(y)

≤
∫

τj1j2j3

∣∣∣(A0∗(x) ·�tj1j2)φ
h,L(y) − (aj1j2 ·�tj1j2)φ

h,L(xj2 )
∣∣∣2 ds∗(y)

≤ 2
∫

τj1j2j3

(
|A0∗(y) ·�tj1j2 |2|φh,L(y) − φh,L(xj2 )|2

− |(A0∗(x) − aj1j2) ·�tj1j2 |2|φh,L(xj2)|2
)
ds∗(y)

≤ 2‖φh,L − φh,L(xj2)‖2
0,∞,τj1j2j3

‖A0∗‖2
0,τj1j2j3

+ ch2‖φh,L‖2
0,∞,τj1j2j3

‖A0∗‖1,τj1j2j3
.

Here, we have used the estimate (5.6) and (5.7).
Thus, we can get

1
m(τj1j2j3)

(
cot θj3‖xj1 − xj2‖2(I)j1j2

j1j2j3

+ cot θj1‖xj2 − xj3‖2(I)j2j3
j1j2j3

+ cot θj2‖xj3 − xj1‖2(I)j3j1
j1j2j3

)
≤ 2 max

l=1,2,3
‖φh − φh(xjl

)‖2
0,∞,τj1j2j3

‖A0∗‖2
0,τj1j2j3

+ ch2‖A0∗‖2
1,τj1j2j3

‖φh‖2
0,∞,τj1j2j3

.
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Since φh,L is a linear polynomial on τj1j2j3 , by the inverse estimate, Holder’s
inequality, and the norm equivalence, we get

‖φh,L − φh,L(xjl
)‖2

0,∞,τj1j2j3
‖A0∗‖2

0,τj1j2j3

≤ c‖φh,L − φh,L(xjl
)‖2

0,q,τj1j2j3
‖A0∗‖2

0,p,τj1j2j3
,

where p > 2 and 2/p+ 2/q = 1.
By Sobolev imbedding theorems and scaling arguments again, we get

E1 :=
∑

τj1j2j3∈T

1
m(τj1j2j3)

{
cot θj3‖xj1 − xj2‖2(I)j1j2

j1j2j3

+ cot θj1‖xj2 − xj3‖2(I)j2j3
j1j2j3

+ cot θj2‖xj3 − xj1‖2(I)j3j1
j1j2j3

}
≤ ch2−4/p‖A0∗‖2

1,S∗‖φh,L‖2
1,S∗ + ch2‖A0∗‖2

1,S∗‖φh,L‖2
1,S∗ .

On the other hand, we consider

(II)j1j2
j1j2j3

:=
∣∣∣(i∇∗φ

h,L(xj2 ) ·�tj1j2 + (aj1j2 ·�tj1j2)φ
h,L(xj2 )

)
− iβj1j2

∣∣∣2
=
∣∣∣ φj2 − φj1

‖xj1 − xj2‖
− φj2 exp(−icj1j2) − φj1

‖xj1 − xj2‖
+ iαj1j2φ

h,L(xj2 )
∣∣∣2

≤
∣∣∣∣φh,L(xj2)

(
1 − exp(−icj1j2)

‖xj1 − xj2‖
− iαj1j2

)∣∣∣∣
2

≤
∣∣∣∣φh,L(xj2)

(
1 − exp(−icj1j2)

‖xj1 − xj2‖
− i

cj1j2

‖xj1 − xj2‖

)∣∣∣∣
2

≤ c‖φh,L‖2
0,∞,τj1j2j3

|αj1j2 |4‖xj1 − xj2‖2,

where φj1 = φh,L(xj1), φj2 = φh,L(xj2 ) and

αj1j2 = aj1j2 ·�tj1j2 =
cj1j2

‖xj1 − xj2‖
, βj1j2 =

φj2 exp(−icj1j2 ) − φj1

‖xj1 − xj2‖
.

Again, by a similar argument as before, we have

E2 :=
∑

τj1j2j3∈T

{
cot θj3‖xj1 − xj2‖2(II)j1j2

j1j2j3

+ cot θj1‖xj2 − xj3‖2(II)j2j3
j1j2j3

+ cot θj2‖xj3 − xj1‖2(II)j3j1
j1j2j3

}
≤ ch2‖A0∗‖4

1,S2‖φh,L‖2
1,S∗ .

Let

K :=
∑

τj1j2j3∈T

{
cot θj3‖xj1 − xj2‖2|βj1j2 |2

+cot θj2‖xj2 − xj3‖2|βj2j3 |2 + cot θj1‖xj3 − xj1‖2|βj3j1 |2
}
.

Then, by the estimate on φh, we get the error estimate∣∣∣ ∫
S∗

∣∣(i∇∗ + A0∗)φh,L
∣∣2 dS∗ −K

∣∣∣ ≤ c(E1 + E2)

≤ ch2−4/p‖A0∗‖2
1,S∗(1 + h4/p + h4/p‖A0∗‖2

1,S∗)‖φh‖2
1,S∗

for any p ≥ 2 and h small.
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Using mesh regularity and approximation properties of planar triangles τj1j2j3

to spherical triangles τ̃j1j2j3 , it is easy to find that for any two triangles τji1 j2j3 and
τji2 j2j3 sharing the common edge xj2xj3 , we have∣∣∣ cot θji1

+ cot θji2
− m(Γj2j3)

‖xj2 − xj3‖

∣∣∣ ≤ ch2(cot θji1
+ cot θji2

) .

Let

K̃ :=
1
2

n∑
j=1

∑
k∈χj

m(Γjk)
‖xj − xk‖

|ψk exp(−icjk) − ψj |2

=
1
2

n∑
j=1

∑
k∈χj

m(Γjk)
‖xj − xk‖

‖xj − xk‖2|βjk|2 .

Then |K̃ − K| ≤ ch2K, and consequently,

|K̃ − K| ≤ ch2
( ∣∣∣∣K −

∫
S∗

∣∣(i∇∗ + A0∗)φh,L
∣∣2 dS∗

∣∣∣∣
+
∫

S∗

∣∣(i∇∗ + A0∗)φh,L
∣∣2 dS∗

)
≤ ch2(‖φh,L‖1,S∗ + ‖A0∗‖2

1,S∗‖φh,L‖2
1,S∗) .

Thus, we have

(5.14)

∣∣∣ ∫
S∗

∣∣(i∇∗ + A0∗)φh,L
∣∣2 dS∗ − K̃

∣∣∣
≤ ch2−4/p(1 + ‖A0∗‖2

1,S∗)(1 + h4/p + h4/p‖A0∗‖2
1,S∗)‖φh‖2

1,S∗ .

Taking p sufficiently large in (5.14) with (5.13), we obtain

(5.15) |FL(φh,L) −Fh(�φh)| ≤ ch,

which directly induces (5.10). �

Now let ψ∗ be a global minimizer of problem (2.2); i.e.,

F(ψ∗) = min
H1(S2)

F .

Let Ihψ∗ be an approximate piecewise linear approximation of ψ∗ (the standard
elliptic projection or an interpolant using the averages of ψ∗ over the Voronoi regions
{Vj} as values at the vertices {xj}).

It is straightforward to see that the bounds on the energy functional imply

‖Ihψ∗‖1,S2 ≤ c‖ψ∗‖1,S2 .

It follows that

Lemma 5.5. Using the definitions given above, we have

F(Ihψ∗) = F(ψ∗) + o(1) as h→ 0

and
F(Ihψ∗) = Fh(�ψh

∗ ) + o(1) as h→ 0,

where �ψh
∗ = (Ihψ∗(x1), Ihψ∗(x2), . . . , Ihψ∗(xn)).
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For any h, let �ψh be a minimizer of Fh; i.e.,

Fh(�ψh) = min
Rapn

Fh.

It is easy to see that Fh(�ψh) is uniformly bounded.
Let ψh be the approximate piecewise linear approximation of the data �ψh in S2.

Then
‖ψh‖1,S2 ≤ c

for some generic constant c > 0.
We now prove the convergence theorem.

Theorem 5.6. For any h, let �ψh and ψh be defined as above. Then as h → 0,
there is a subsequence of {ψh} that converges to a global minimizer of F in H1(Ω),
and

lim
h→0

Fh(�ψh) = min
H1(S2)

F .

Proof. Let ψ∗ be a global minimizer of F . By definition,

F(ψ∗) ≤ F(ψh) .

For any δ > 0, if h small enough, we have, by Lemma 5.4,

F(ψh) ≤ Fh(�ψh) + δ .

Thus,
F(ψ∗) ≤ Fh(�ψh

∗ ) + δ .

It follows from earlier estimates in Lemma 5.5 that, for small h,

Fh(�ψh
∗ ) ≤ F(ψ∗) + δ .

So,
F(ψ∗) ≤ F(ψh) ≤ F(ψ∗) + 2δ

and
F(ψ∗) ≤ Fh(�ψh) + δ ≤ F(ψ∗) + 2δ.

If we let δ → 0, we see that {ψh} forms a minimizing sequence of F ; thus, it has
a weakly convergent subsequence {ψh

n} that converges to a global minimizer of F .
Using results in functional analysis, we see that the subsequence also converges
strongly in H1(S2). Moreover, we consequently have

lim
h→0

Fh(�ψh) = lim
h→0

F(ψh) = min
H1(S2)

F . �

The above theorem gives the convergence of the discrete approximation under
minimal regularity assumptions on the exact solution. If smoothness assumptions
on the exact solutions can be made, we have the following results, which indicate
the superiority of the SCVT grid.

Corollary 5.7. Given ψ ∈ H2(Ω), let �ψh and ψh be defined as above for a SCVT
grid. Then, for any δ > 0,

Fh(�ψh) = F(ψ) +O(h2−δ) as h→ 0 .
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Proof. With the smoothness assumption on ψ, we can utilize the property of the
SCVT to get that

(5.16)

∣∣∣∣∣∣
∫

S2
ζ dS −

∑
Vj1∈Σ

ζ(xj1 )m(Vj1 )

∣∣∣∣∣∣ ≤ ch2‖ζ‖2,S2 ,

where ζ = 1
2 (1 − |ψ|2)2 is in H2(S2), and c is a generic constant independent of h.

Note that a scaling argument leads to

(5.17) ‖∇sψ −∇sI
hψ‖0,τ̃j1j2j3

≤ ch‖ψ‖2,τ̃j1j2j3
, j = j1, j2, j3,

for some constant c > 0. Then, following the proof of the earlier theorems, we can
get that

|Fh(�ψh) −F(ψ)| ≤ ch2−1/p as h→ 0
for any p > 2, which can be arbitrarily large. �

We note that if the grid used is not a SCVT grid, only first order estimates of
the type

Fh(�ψh) = F(ψ) +O(h) as h→ 0
may be expected since (5.16) may not be always valid for arbitrary spherical Voronoi
tessellations. Thus, the SCVT allows an almost full extra order of accuracy over the
arbitrary Voronoi-Delaunay grids on the sphere. It is also possible to derive error
estimates for the finite volume approximations using arguments along the lines of
[17]. We leave this to future works.

6. Gauge invariant gradient recovery and field computation

Once the discrete solution {ψj} is computed, we can readily obtain the scalar
field {|ψj|2} which described the local state: the positions {j | |ψj | = 0} are called
the vortices as the superconducting carrier density (|ψj |2) is zero; on the other
hand, the points {j | |ψj | ≈ 1} represent superconducting region.

Another interesting physical quantity is the supercurrent

(6.1) Js = �{ψ∗∇sψ} − A0s|ψ|2 = −�{ψ∗(i∇sψ + A0sψ)} , on S2.

Since it involves the gradient computation, an accurate scheme is required. One
way is to use the superconvergent gradient recovery technique proposed in [17] for
the SCVTs. That is to do the two terms ψ∗∇sψ and A0s|ψ|2 separately. After all,
only the gradient term ∇sψ needs better recovery scheme.

However, in order to preserve the gauge invariance, we here propose another
approach for superconvergent gradient recovery which gives an accurate computa-
tion of i∇sψ + A0sψ and the supercurrent Js while still preserves discrete gauge
invariance.

For any generator xj , let us define an element patch Vxj =
⋃

xj∈τjj1j2
τjj1j2 ; that

is, the union of all spherical triangles in the dual spherical Delaunay triangulation
that contain xj as one of its vertices. We first project Vxj onto the tangential plane
Sxj of S2 at xj (Sxj is perpendicular to �nxj at xj). Let �e1,xj , �e2,xj be any given
orthonormal basis of Sxj . We now move Sxj to the (x, y)-plane via an affine map
satisfying that �nxj is mapped to the z-axis and �e1,xj to the x-axis and �e2,xj to
the y-axis (see Figure 2). We then define a map Hxj : Vxj → R2 by the above
procedure such that V ′

xj
= Hxj (Vxj ).
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Figure 2. The mapping Hxj .

On each planar triangle �x′
jx

′
j1

x′
j2

= Hxj (τjj1j2), we uniquely determine a linear
function ψjj1j2 by setting

ψjj1j2(x
′
l) = ψh(xl) = ψl, l = j, j1, j2.

Then, we compute the gauge invariant approximations to the components of i∇sψ+
A0sψ along the x′

jx
′
j1 and x′

jx
′
j2 directions, respectively:

(6.2) vjjk
= i

ψjk
exp(−icjjk

) − ψj

‖xj − xjk
‖ , k = 1, 2 .

Clearly, from the vector decomposition and the fact that ψjj1j2 is linear on
�x′

jx
′
j1

x′
j2

, we know that there exists a unique set {skl}2
k,l=1 such that

(6.3) ∇x′ψjj1j2 =
(
s11 s12
s21 s22

)( ∇ψjj1j2 ·�tx′
jx

′
j1

∇ψjj1j2 ·�tx′
jx

′
j2

)
,

where �tx′
jx

′
l

denotes the unit vector from x′
j to x′

l for l = j1, j2. Since x′
j is the

origin, if we write x′
j1

= (x1, y1) and x′
j2

= (x2, y2), then in fact we can get

s11 =
y2r1
Q

, s12 = −y1r2
Q

, s21 = −x2r1
Q

, s12 =
x1r2
Q

,

where

r1 =
√
x2

1 + y2
1 , r2 =

√
x2

2 + y2
2, Q = x1y2 − x2y1.
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Now we set

(6.4)
(
D1

jj1j2

D2
jj1j2

)
=
(
s11 s12
s21 s22

)(
vjj1

vjj2

)
.

Finally, we approximate i∇sψ + A0sψ at xj by

(6.5) (i∇sψ + A0sψ)(xj) ≈ αj =
1
q

∑
τjj1j2⊂Vxj

(
D1

jj1j2�e1,xj +D2
jj1j2�e2,xj

)
,

where q = Card({τjj1j2 | τjj1j2 ⊂ Vxj}). Then we compute the discrete supercurrent
Js at xj by

(6.6) Js(xj) ≈ −�{ψ(xj)αj} .

Next, we consider the computation of the induced magnetic field. Although
for very thin shells, the applied magnetic field, to the leading order, penetrates
through the sample completely (curlA0 = H�z), it is also of interest to study the
higher order corrections, in particular, the next order term H1 given by the solution
of the following three-dimensional Maxwell equations [5]:

divH1 = 0 , curlH1 = 0 , in R3

with interface condition

[H1 × n]s = Js × n on S2,

where n is the unit outer normal to the sphere and [ · ]s denotes the jump across the
spherical surface (the difference between the exterior value and the interior value),
and H1 → 0 at infinity.

The solution H1 can be computed via an integral representation: for any y ∈ R3,

H1(y) =
∫

S2
∇ 1
‖y − x‖ × Js(x) dSx .

The total corrected field is given by H = H�z+δH1, where δ represents the thickness
of the thin spherical shell.

It is easy to see that

∫
S2

1
‖y − x‖ dSx =

{
4πr, ‖y‖ ≤ r,
4πr2/‖y‖, ‖y‖ > r.

So for any y ∈ R3 − S2, we get that

(6.7) G(y) =
∫

S2
∇ 1
‖y − x‖ dSx =

{
0, ‖y‖ < r,
−4πr2y/‖y‖3, ‖y‖ > r,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1274 QIANG DU AND LILI JU

and for any y ∈ S2,

(6.8)




G−(y) = lim
y′→y,‖y′‖<r

∫
S2
∇ 1
‖y′ − x‖ dSx = 0,

G+(y) = lim
y′→y,‖y′‖>r

∫
S2
∇ 1
‖y′ − x‖ dSx = −4πy/‖y‖,

which leads to the jump discontinuity of the applied magnetic field across the
spherical surface.

To accurately compute the H1, we need to resolve the numerical singularity when
y approaches S2. Let us choose xjy ∈ {xj}n

j=1 such that

‖xjy − y‖ < ‖x − y‖ for all x ∈ {xj}n
j=1 − xjy .

For any y ∈ R3 − S2, we compute

(6.9)
H1(y) ≈ H1(y) = G(y) × Js(xjy )

+
∑

j 	=jy
m(Vj)

(
∇(‖y − x‖−1)(xj) ×

(
Js(xj) − Js(xjy )

))
.

If y ∈ S2, then replace G by G− and G+, respectively, in (6.9) to get the interior
limit and the exterior limit of H1(y) across the sphere surface.

Let us estimate the error of the approximation (6.9):

H1(y) − H1(y) =
∫

S2
∇‖y − x‖−1 ×

(
Js(x) − Js(xjy )

)
dSx

−
∑
j 	=jy

m(Vj)
(
∇(‖y − x‖−1)(xj) ×

(
Js(xj) − Js(xjy )

))

=
∑
j 	=jy

(∫
Vj

∇‖y − x‖−1 ×
(
Js(x) − Js(xjy )

)
dSx

−m(Vj)
(
∇(‖y − x‖−1)(xj) ×

(
Js(xj) − Js(xjy )

)))

+
∫

Vjy

∇‖y − x‖−1 ×
(
Js(x) − Js(xjy )

)
dSx

= I1 + I2

Suppose that Js ∈
(
C2(S2)

)3. It is easy to see that there exists a constant C > 0
such that for any x ∈ S2,∣∣∇‖y − x‖−1 ×

(
Js(x) − Js(xjy )

)∣∣ < C.

We get

(6.10) |I2| ≤ Cm(Vjy ) ≤ ch2.

On the other hand, using the special properties of SCVT [17], by the Cauchy-
Schwartz inequality, we know that

(6.11) |I1| ≤
∑
j 	=jy

ch2(m(Vj))1/2‖Js‖2,Vj ≤ ch2‖Js‖2,S2 .

By (6.10) and (6.11), we see that (6.9) gives a high-quality quadrature rule on
the sphere for accurately computing the correction to the magnetic field.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATIONS OF G-L MODEL FOR SUPERCONDUCTING SPHERES 1275

Figure 3. SCVT with a constant density for n =162, 642, 2562, 10242.

7. Numerical experiments

To solve the finite volume equations for the nonlinear G-L model, the so-called
Nonlinear Conjugate Gradient method [27] is used. Other nonlinear minimization
methods can also be applied, such as Newton’s method or other descent methods.
In the simulation reported here, we take the unit sphere (r = 1) and set ε = 0.2.
The spherical centroidal Voronoi meshes with n = 162, 642, 2562, 10242 are used;
see Figure 3.

Table 1. Computational results for H = 15.0.

n 162 642 2562 10242

Fh 68.7961 73.1503 74.1873 74.4508

|Fh − F∗|/|F∗| 0.0761 0.0175 0.0036 -

‖ψh − ψ∗‖0,S2/‖ψ∗‖0,S2 0.2669 0.0662 0.0186 -

Figure 4. The solution |ψh| forH = 15.0. Top: top view; bottom:
3-D view; left: n = 642; middle: n = 2562; right: n = 10242.
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When the applied magnetic field is absent (H = 0), the global energy minimizer is
given by a pure superconducting solution ψ = exp(iθ) for some constant angle θ. In
our simulation, with the initial iteration given by ψ(x) = 0.5 exp(iπ

4 ) everywhere,
a pure superconducting solution ψ = exp(iπ

4 ) is found numerically; see the first
picture of Figure 8. For H large enough, we expect to see vortex nucleation; that
is, ψ(x) = 0 at some points x ∈ S2, and due to the symmetry of the sphere,
vortices appear in pairs (with vortex and antivortex on two hemispheres). For
larger and larger H , more and more vortices nucleate (again in pairs). A path-
following approach is adopted here to probe the energy landscape by varying the
parameter H .

To find solutions with vortices, due to the energy barrier [3, 4], sometimes we
intensionally plant some vortex-like structures. For instance, an initial guess of the

Figure 5. Supercurrent Js. Left: top view; right: 3-D view.

Figure 6. Corrected magnetic field H with δ = 0.1. Left: on the
plane y = 0; right: on the surface {x | ‖x‖ = 1.1}.
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Table 2. Minimum energy Fh vs. magnetics field strength H .

H 0.0 1.0 2.0 3.0 4.0 5.0 6.0

Fh 0.0000 2.0863 8.2457 17.2853 19.9073 26.3519 32.2881

H 7.0 8.0 9.0 10.0 11.0 12.0 13.0

Fh 37.0270 41.7372 45.4901 50.6589 53.6079 59.3215 61.6361

H 14.0 15.0 16.0 17.0 18.0 19.0 20.0

Fh 66.4742 68.5107 72.8404 73.5258 78.6327 81.0200 84.2344
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Figure 7. Minimum energy Fh vs. magnetics field strength H .

form 


ψ(x, y, z) =
x+ iy

ρ
, |z| >

√
1 − ρ2,

ψ(x, y, z) =
x+ iy√
x2 + y2

, |z| ≤
√

1 − ρ2,

may be used. For small ρ, such a function appears to have two vortices at both
ends of the poles.

In order to show the convergence of the numerical solution, we compute the
solution on grids with n = 162, 642, 2562, 10242, respectively. For H = 15.0, a
solution representing seven vortices is found on the four different grids, and the
computational results are shown in Figure 4 and Table 1. The numerical solution
obviously demonstrates the convergence as a finer and finer grid is used. Since
the exact solution for this case is not known, we take the numerical solution with
n = 10242, denoted by ψ∗, as a baseline to which we compare the solutions on other
grids. Let F ∗ be the corresponding energy of ψ∗. The relative numerical errors for
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Figure 8. Vortex configurations (density plots of |ψ|). Top (left
to right): vortex free (H = 0, Fh = 0.0), 1 vortex pair (H =
4, Fh = 19.97), 2 pairs (H = 7, Fh = 37.03), 3 pairs (H =
9, Fh = 45.49); bottom: 4 pairs (H = 11, Fh = 53.61), 5 pairs
(H = 13, Fh = 61.64), 6 pairs (a) (H = 15, Fh = 68.51), 6 pairs
(b) (H = 16, Fh = 73.33).

both Fh and ‖ψh‖0,S2 are computed and shown in Table 1 and the quadratic order
convergence is observed.

Figures 5 and 6 contain plots of the corresponding supercurrent Js computed on
the n = 10242 grid by the discrete gauge invariant gradient recovery scheme and
the corrected magnetic field H with the shell thickness δ = 0.1.

Normally, a solution branch is found by path-following with respect to the pa-
rameterH . Jumping onto other solution branches may occur for some critical values
of H , then new branches are probed. Repeating such processes, various solution
branches become known and some of the corresponding configurations are given
in Figure 8 (top view). The corresponding energy values are computed for each
solution. For various values of the applied magnetic field H , only particular vortex
configurations correspond to global minimizers of free energy. Global minimum en-
ergy values Fh and corresponding vortex configurations are shown in Figure 7 and
Table 2. Note that there are two topologically different vortex configurations all
with six vortex pairs (top view) with energy values very close to each other. Nev-
ertheless, the configuration with a vortex pair in the center has a slightly smaller
energy value.

8. Conclusion

The recently developed spherical centroidal Voronoi tessellations are applied here
to the numerical solution of a nonlinear problem arising from the study of the vortex
phenomenon in superconductivity, namely, a reduced Ginzburg-Landau model.

In our work, the approximation of the Ginzburg-Landau model for a supercon-
ducting hollow sphere based on the SCVT enjoy many interesting mathematical
and physical properties, ranging from the maximum principle to gauge invariance
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and high order resolution. They also utilize the properties of the SCVT to pro-
vide effective computation of the various solution branches and vortex nucleation
patterns on the spheres. Though standard gauge invariant finite difference meth-
ods have been well studied and used on tensor based cartesian grids, for spherical
geometry, however, the finite volume scheme on the spherical Voronoi tessellations
presented here seems to be the only viable alternative for preserving discrete gauge
invariance.

For the purpose of illustration, a constant magnetic applied field is considered.
The effects of nonconstant fields and the variation in the thickness of the spheri-
cal shell have not been investigated. Other more complicated models such as full
three-dimensional Ginzburg-Landau models have not been considered either. More
detailed studies of the vortex state for superconducting hollow spheres will be made
[18] and compared with existing studies for other geometries such as thin films. Nev-
ertheless, the analysis and the numerical simulations presented here clearly demon-
strate the effectiveness of the SCVT based numerical discretization methods even
for nonlinear problems, especially when the physical and mathematical structures
of the physical problem can be utilized. It is expected that SCVT will also find
other applications related to the computation of physical models on spheres, for
instance, in the simulation of shallow water models and global circulation models.
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