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Abstract. In the analysis of complex stochastic dynamic programs, we often seek strong
theoretical guarantees on the suboptimality of heuristic policies. One technique for
obtaining performance bounds is perfect information analysis: this approach provides
bounds on the performance of an optimal policy by considering a decision maker who has
access to the outcomes of all future uncertainties before making decisions, that is, fully
relaxed nonanticipativity constraints. A limitation of this approach is that in many
problems perfect information about uncertainties is quite valuable, and thus, the resulting
bound is weak. In this paper, we use an information relaxation duality approach, which
includes a penalty that punishes violations of the nonanticipativity constraints, to derive
stronger analytical bounds on the suboptimality of heuristic policies in stochastic dynamic
programs that are too difficult to solve. The general framework we develop ties the
heuristic policy and the performance bound together explicitly through the use of an
approximate value function: heuristic policies are greedy with respect to this approxi-
mation, and penalties are also generated in a specific way using this approximation. We
apply this approach to three challenging problems: stochastic knapsack problems, sto-
chastic scheduling on parallel machines, and sequential search problems. In each of these
problems, we consider a greedy heuristic policy generated by an approximate value
function and a corresponding penalized perfect information bound. We then characterize
the gap between the performance of the policy and the information relaxation bound in
each problem; the results imply asymptotic optimality of the heuristic policy for specific
“large” regimes of interest.

Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2018.1782.
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1. Introduction
Dynamic programming (DP) is a powerful and widely
used framework for studying sequential decision
making in the face of uncertainty. Unfortunately, sto-
chastic dynamic programs are often far too difficult
to solve as the number of states that need to be
considered typically grows exponentially with the
problem size. As a result, we are often relegated to
consider suboptimal, heuristic policies. In specific prob-
lem instances, a variety of methods, often employing
Monte Carlo simulation, may be used to assess the
quality of heuristic policies. More broadly, we may
also seek strong analytical guarantees on the per-
formance of heuristic policies. Ideally, this analysis
will allow us to conclude that a heuristic policy
provides a good approximation to the optimal policy
on a broad set of instances or at least allow us to
understand on what instances the heuristic policy is
nearly optimal.

One technique for obtaining performance bounds is
“perfect information analysis.” This approach provides
bounds by considering a decision maker (DM) who
has advance access to the outcomes of all future un-
certainties, that is, a problem with fully relaxed non-
anticipativity constraints. We refer to this as the perfect
information problem. For each sample path, the DM then
solves a deterministic optimization problem, which is
often much easier to analyze than the original, sto-
chastic DP. The typical analysis compares the expected
performance of the heuristic policy under consider-
ation with the expected performance of the perfect
information problem, or the perfect information bound.
This approach has been used successfully to analyze
heuristic policies in some applications; we survey a few
in Section 1.1. In many problems, however, perfect
information about uncertainties is quite valuable and
leads to a weak bound as a result; this limits the ap-
plicability of the approach.
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In this paper, we study the information relaxation
duality approach developed in Brown et al. (2010) (BSS
hereafter). The framework in Brown et al. (2010) in-
volves “information relaxations” in which some (i.e.,
imperfect information) or all (i.e., perfect information)
of the uncertainties are revealed in advance as well as
a penalty that punishes violations of the nonantici-
pativity constraints. Brown et al. (2010) show both
weak duality and strong duality. Weak duality ensures
that any penalty that is dual feasible—in that it does not
impose a positive, expected penalty on any nonantic-
ipative policy—leads to an upper bound on the ex-
pected reward with any feasible policy, including an
optimal policy. Strong duality ensures the existence
of a dual feasible penalty such that the upper bound
equals the expected reward with an optimal policy.
Thus, by including a dual feasible penalty, we may be
able to improve the perfect information bound. We
refer to the optimization problem in which we relax all
nonanticipativity constraints and include a dual fea-
sible penalty as the penalized perfect information problem
and the associated bound as the penalized perfect in-
formation bound.

Although the general theory we use closely follows
Brown et al. (2010), the primary application of infor-
mation relaxation duality to this point has been as a
computational method for evaluating heuristic policies
in a variety of applications. In contrast, our objective
here is to use the approach to derive theoretical guar-
antees on the performance of heuristic policies in com-
plex DPs. The general setup we study considers a given
approximation to the optimal continuation value and
a heuristic that selects actions “greedily” with respect
to this approximate continuation value. We then gen-
erate a dual feasible penalty using this same approx-
imate continuation value by taking the penalty to be
the sum of the realized approximate continuation val-
ues minus their expectations; this construction follows
the recipe for generating “good” penalties from Brown
et al. (2010). We then obtain a bound on the subop-
timality of the heuristic policy by analyzing the dif-
ference between the performance of the policy and the
penalized perfect information problem in every sam-
ple path.

This basic recipe is broadly applicable: every ap-
proximate continuation value leads to a corresponding
greedy heuristic policy and a “paired” penalized per-
fect information bound. It is not hard to show that with
an optimal continuation value (and, hence, an optimal
policy), the penalized perfect information bound and
policy coincide in every sample path; this suggests that,
with a good approximation to the optimal continuation
value, the penalized perfect information problem will
be nearly “aligned” with the heuristic policy in every
sample path and, thus, close in value, thereby prov-
ing that the policy is nearly optimal. We apply the

approach to three challenging problems: (1) stochastic
knapsack problems, (2) stochastic scheduling on par-
allel machines, and (3) sequential search problems. In
each problem, the method leads to analytical bounds
on the suboptimality of a particular greedy heuristic
policy and imply asymptotic optimality of the policy in
specific regimes of interest.

1. Stochastic knapsack. In this problem (Dean et al.
2008), there is a set of items available to be inserted into
a knapsack of finite capacity. Each item has a determin-
istic value and a stochastic size that is independently
distributed. The actual size of an item is unknown
until insertion of that item is attempted. The DM
repeatedly selects items for insertion until the ca-
pacity overflows, and at that moment, the problem
ends. The goal is to maximize the expected value of all
items successfully inserted into the knapsack. In this
problem, we need to balance choosing items with
high values against items that tend to use little ca-
pacity (i.e., have small sizes). We consider an ap-
proximate continuation value that values remaining
capacity in a simple linear fashion; the resulting
greedy heuristic policy simply ranks items according
to their value per expected size. Using this approxi-
mate continuation value in the penalty, it is nearly
optimal to select items according to the greedy policy
in the penalized perfect information problem in every
sample path. The resulting gap implies the greedy
policy is asymptotically optimal with many items,
provided capacity scales at a particular rate.

2. Stochastic scheduling on parallel machines. This is
the problem of scheduling a set of jobs on identical
parallel machines when no preemptions are allowed.
Job processing times are stochastic and independently
distributed, and the processing times of each job are
known only after a job is completed. The goal is to
minimize the total expected weighted completion time.
We consider an approximate continuation value from
an identical scheduling problem but with a single ma-
chine that is M times faster, where M is the number of
machines in the original problem. The resulting greedy
heuristic policy schedules jobs in decreasing order of
the ratio of a job’s weight to its expected processing
time (the weighted shortest expected processing time
(WSEPT) first order). Using this approximate contin-
uation value in the penalty, it is not hard to show that
the greedy policy is nearly optimal in the penalized
perfect information problem in every sample path. The
resulting bound implies that the greedy policy is as-
ymptotically optimal as the number of jobs grows large.
The specific performance result complements existing
performance guarantees on the greedy (WSEPT) policy
in the scheduling literature, for example, inWeiss (1990)
and Möhring et al. (1999).

3. Sequential search for the best alternatives.We consider
a variation of the sequential search problem studied in
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Weitzman (1979). In this problem, a DM sequentially
searches a given set of alternatives with unknown re-
wards, drawn from independent distributions. Search
is costly but reveals the rewards of an alternative. The
DM can select previously revealed alternatives and
collect the associated rewards.Weitzman (1979) studies
the case when at most one alternative can be selected
and characterizes the optimal policy in terms of a
simple reservation price rule. We study a variation in
which the DM has the capacity to select multiple al-
ternatives, which significantly complicates the prob-
lem. We use an approximate continuation value based
on a model with an infinite number of alternatives; the
resulting greedy policy is a simple reservation price
rule with reservation prices depending only on the re-
maining capacity. Using this approximate continuation
value in the penalty, we can show that in the penalized
perfect information problem the value of each unit of
capacity is no larger than the corresponding reservation
price in each sample path. This allows us to conclude
that the greedy policy is asymptotically optimal as the
number of alternatives grows large.

As we demonstrate in all three problems, the penalty
is essential for obtaining a good bound. In each prob-
lem, we provide a simple example that is easy to solve
in closed form but the perfect information bound is
weak. For example, in the stochastic knapsack problem,
the perfect information problem involves revealing all
item sizes prior to any item selection decisions, and the
DM can avoid inserting items with large realized sizes.
In Section 3, we reproduce a convincing example from
Dean et al. (2008) for which these bounds can be ar-
bitrarily weak. With the inclusion of the penalty we
consider, however, we recover a tight bound.

The approach does not circumvent the need for
problem-specific insights and some problem-specific
analysis (e.g., in determining the approximate contin-
uation value). We view this as typical of most approx-
imation schemes used to obtain policies and bounds.
For example, in the approximate linear programming
approach to dynamic programming (e.g., de Farias
and Roy 2003), one needs to specify appropriate basis
functions. Similarly, in applying Lagrangian duality
to analyze DPs (e.g., Adelman andMersereau 2008), one
needs to specify the Lagrange multipliers. A potentially
attractive feature of our approach, however, is that the
penalized perfect information problem and the heuristic
policy are explicitly linked in a way that can be directly
applied to many other problems.

The rest of the paper is organized as follows. Sec-
tion 1.1 reviews some related work. Section 2 develops
the general theory related to information relaxation
duality and provides an overview of the approach.
We study the stochastic knapsack problem in Section 3,
the stochastic scheduling problem in Section 4, and the
sequential search problem in Section 5. Each of these

sections follows the general theory in Section 2 in self-
contained fashion: in each section, we begin by describ-
ing the problem and the perfect information bound,
and we then discuss the penalized perfect information
bound and present our performance analysis. Section 6
concludes. Most proofs are in the appendix. Online
Appendices B, C, and D present some extensions.

1.1. Literature Review
In this section, we discuss the connection of our work
to several streams of literature. First, our paper nat-
urally relates to the literature on information relaxations.
Brown et al. (2010) draw inspiration from a stream of
papers on “martingale duality methods” aimed at cal-
culating upper bounds on the price of high-dimensional,
American options, tracing back to independent de-
velopments by Haugh and Kogan (2004) and Rogers
(2002). Rogers (2007) independently developed similar
ideas as in Brown et al. (2010) for perfect information
relaxations of Markov decision process (MDPs) using
change-of-measure techniques.
In terms of applications of information relaxations,

there are many other applications to option pricing
problems (Andersen and Broadie 2004, Brown et al.
2010, Desai et al. 2012); inventory management prob-
lems (Brown et al. 2010, Brown and Smith 2014); val-
uation of natural gas storage (Lai et al. 2010, Nadarajah
et al. 2015); integrated models of procurement, pro-
cessing, and commodity trading (Devalkar et al. 2011);
dynamic portfolio optimization (Brown and Smith
2011, Haugh et al. 2016); linear-quadratic control with
constraints (Haugh and Lim 2012); network revenue
management problems (Brown and Smith 2014); and
multiclass queueing systems (Brown and Haugh 2017).
Of central concern in these papers is computational
tractability: the goal is to use an information relaxation
and penalty that render the upper bounds sufficiently
easy to compute. A recurring theme in these papers is
that relatively easy-to-compute policies are often nearly
optimal, and the bounds computed from information
relaxations are essential in showing this. This line of
work has focused on computing numerical bounds for
specific problem instances; our focus is on using in-
formation relaxations to derive analytical guarantees
on the performance of heuristic policies.
Perfect information bounds (without penalty) have

been successfully used in theoretically analyzing heu-
ristic policies in several applications in operations re-
search and computer science and are often referred
to as “hindsight bounds” or “offline optimal bounds.”
Talluri and van Ryzin (1998) show that static bid–price
policies are asymptotically optimal in network revenue
management when capacities and the length of the
horizon are large; they provide various upper bounds
on the performance of the optimal policy, including
perfect information bounds. Feldman et al. (2010) study
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the online stochastic packing problem in the setting in
which the underlying probabilistic model is unknown
and show that a training-based primal-dual heuristic is
asymptotically optimal when the number of items and
capacities are large; they use the perfect information
bound as a benchmark. Manshadi et al. (2012) study
the same problem when the underlying probability
distributions are known by the decision maker and
present an algorithm that achieves at least 0.702 of the
perfect information bound. Garg et al. (2008) study the
stochastic Steiner tree problem in which each demand
vertex is drawn independently from some distribution
and show that greedy policy is nearly optimal relative
to the perfect information bound. Similarly, Grandoni
et al. (2008) study stochastic variants of set cover and
facility location problems and show that suitably de-
fined greedy policies perform well with respect to the
expected cost with perfect information. Finally, in com-
puter science, there is a large body of work on com-
petitive analysis, which revolves around studying the
performance of online algorithms relative to the per-
formance of an optimal “offline” algorithm that knows
the entire input in advance. In this line of work, there
is no underlying probabilistic model for the inputs,
and instead, performance is measured relative to the
offline optimum in the worst case (see, e.g., Borodin
and El-Yaniv 1998 for a comprehensive review).

The knapsack problem has a rich history in opera-
tions researchwith various applications in areas such as
finance, advertising, transportation, revenue manage-
ment, and scheduling (Martello and Toth 1990). The
version of the stochastic knapsack problem we study
was introduced by Dean et al. (2008) although variants
of this problem have been studied earlier. For example,
Papstavrou et al. (1996) study a version in which items
arrive stochastically and in take-it-or-leave-it fashion;
Dean et al. (2008) provide an overview of earlier work.
Dean et al. (2008) study both nonadaptive policies and
adaptive policies for the problem and show that the
loss for restricting attention to nonadaptive policies
is at most a factor of four. In addition, they provide
sophisticated linear programming bounds based on
polymatroid optimization. The nonadaptive policy they
consider is a greedy policy that inserts items in de-
creasing order of the ratio of value to expected size.
When item sizes are small relative to capacity, Dean
et al. (2008) show that the greedy policy performswithin
a factor of two of the optimal policy. Derman et al.
(1978) show that the greedy policy is optimal in the
case of exponentially distributed sizes for a “covering”
variation of the problem (we discuss this variation in
Section 3.5). Blado et al. (2016) develop approximate dy-
namic programming bounds for this problem and in ex-
tensive numerical experimentsfind that the greedy policy
often performs well, especially for examples with many
items. In subsequent work, Blado and Toriello (2016)

establish some asymptotic optimality results for the
greedy policy using a different approach involving
approximate linear programming relaxations.
Stochastic scheduling is a fundamental problem in

operations research with a vast literature, which we
do not attempt to review here; see Pinedo (2012) for a
comprehensive review. Weiss (1990) originally estab-
lished the optimality gap of the WSEPT policy for
scheduling on parallel machines and proved that this
policy is asymptotically optimal undermild conditions.
Möhring et al. (1999) study polyhedral relaxations of
the performance space of stochastic parallel machine
scheduling and provide bounds on the performance of
the WSEPT policy. The result we present in Section 4 is
closest to a result inWeiss (1990); in Online Appendix C,
we provide an alternative and novel proof of the result
in Möhring et al. (1999) using penalized perfect in-
formation bounds.
Finally, there is long literature on sequential search

problemswith many applications. The model we study
is similar to that in Weitzman (1979), who describes
the problem in terms of opening “boxes” with a priori
unknown rewards and derives an optimal policy.
Weitzman (1979) calls this reservation price policy
“Pandora’s Rule.” The optimal reservation price rule in
Weitzman (1979) is essentially equivalent to a Gittins
index (Gittins and Jones 1974) policy. Many variations
of this problem have been studied, but it appears that
“Pandora’s Rule does not ready generalize” (Weitzman
1979, p. 650) inmany natural extensions of the problem.
With the ability to select only one alternative (“box”),
the problem reduces to a stopping problem; when the
DM can select multiple alternatives, the DM may in-
termittently recall past alternatives as opportunities for
finding better alternatives dwindle, and optimal poli-
cies may need to track previous search results as part
the problem state. The ability to select multiple alter-
natives also appears to significantly complicate other
versions of sequential search problems; for example,
Vanderbei (1980) studies a version of the secretary
problem with the goal of selecting a best subset of the
search population.

2. General Theory
In describing the basic results related to information
relaxations, we work with a general MDP formulation.
We consider a discrete-time, finite-horizon MDP with
T periods and decision periods denoted by t � 1, . . . ,T.
We let xt denote the MDP state at time t. In each period,
a DM must choose an action a from a set At(xt). After
an action at ∈ At(xt) is selected, a random variable εt is
realized, the DM collects reward rt(xt, at, εt), and the
state transitions according to xt+1 � χt(xt, at, εt), where
the εt are independent random variables. Feasible pol-
icies in this primal DPmust be nonanticipative, meaning
the actions selected in period t must be measurable
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functions of the past actions and states. We restrict
feasible policies to be deterministic and Markovian,
and we use α � (αt)Tt�1 to denote a feasible policy; that
is, α is a sequence of deterministic functions αt that
map from a state xt to an action in At(xt) for all t
and xt. We let ! denote the set of feasible Markovian
policies. For any policy α ∈ !, we denote the expected
performance of the policy by Vα ≜E r(α)[ ], where
r(α)≜∑T

t�1 rt(xt, αt(xt), εt). The DM’s goal is to select
a feasible policy that maximizes the expected value
of the total reward.

We let V∗ denote the optimal value and assume there
exists at least one feasible policy α ∈ ! attaining V∗.
We can write the primal DP succinctly as

V∗ � max
α∈!

E r(α)[ ]. (1)

Under a variety of standard conditions (see, e.g.,
Puterman 1994), it is well known that we can equiv-
alently write Equation (1) as a recursion over value
functions; we take V∗

T+1 � 0, and

V∗
t (xt) � max

a∈At(xt)
Eεt rt(xt, a, εt) + V∗

t+1(χt(xt, a, εt))[ ]
, (2)

with V∗ � V∗
1(x1) in the initial state x1. We letQ∗

t(x, a, ε)≜
rt(x, a, ε) +V∗

t+1(χt(x, a, ε)) denote the optimal continuation
value in period t when the current state is x, the action
taken is a, and the ensuing realized uncertainty is ε.
Equation (2) implies that an optimal action α∗

t(xt)
should be “greedy”with respect to the expected value
of Qt; specifically, an optimal policy selects actions
according to

α∗
t(xt) ∈ argmax

at∈At(xt)
Eεt Q

∗
t(xt, at, εt)

[ ]
.

The function Eεt Q
∗
t(xt, at, εt)

[ ]
depends on the state–

action pair (xt, at) and is often referred to as the
“Q-factor” in the approximate dynamic programming
and reinforcement learning literature (see, e.g., Bertsekas
2000, section 6.4). We modify this definition to also
include the uncertainties εt as these values are revealed
in the information relaxations.

All of the heuristic policies we study can be inter-
preted as policies that are “greedy” with respect to a
given approximation of the optimal continuation value.
In particular, given an approximation Qt(x, a, ε) of the
optimal continuation value, the heuristic policies select
actions according to

αt(xt) ∈ argmax
at∈At(xt)

Eεt Qt(xt, at, εt)[ ] . (3)

2.1. Duality Results
We work exclusively with the perfect information re-
laxation, in which all uncertainties are revealed prior to
making decisions. This relaxation can be viewed as one

in which all nonanticipativity constraints are removed;
Brown et al. (2010) consider more general information
relaxations that correspond to partial relaxations of the
nonanticipativity constraints.
Formally, we consider a relaxed DP in which the

sequence (εt)Tt�1 is revealed to the DM prior to making
any decisions. Letting ε≜ (ε1, . . . , εT), a≜ (a1, . . . , aT),
and A(ε)≜ {a : at ∈ At(xt) for all t}, we can write the
perfect information problem given ε as a deterministic
optimization problem:

VP(ε) � sup
a∈A(ε)

∑T
t�1

rt(xt, at, εt), (4)

where states evolve as xt+1 � χt(xt, at, εt). Because
selecting actions according to any feasible, nonan-
ticipative policy is feasible in Equation (4), the perfect
information problem provides an upper bound on V∗
in expectation; that is, V∗ ≤ Eε VP(ε)[ ]

.
Unfortunately, this perfect information upper bound

is often quite weak: absent any penalty for the addi-
tional information, the DM with perfect information
may obtain an expected reward much larger than V∗.
In the problems we study, our goal is to show that a
simple, heuristic policy performs well in some asymp-
totic limit, and we show with explicit examples that
the perfect information bound is not an asymptotically
tight bound in each of these problems.
Following Brown et al. (2010), we, therefore, consider

including a penalty that attempts to compensate for the
benefit of the additional information. As with rewards,
the penalty is an action-dependent random variable
z(a)≜∑T

t�1 zt(xt, at, εt) for some sequence of period-t
penalty functions (zt)Tt�1. We say a penalty is dual fea-
sible if E z(α)[ ] � 0 for all α ∈ !; that is, a dual feasible
penalty “charges” zero expected penalty for any non-
anticipative policy. The penalty may, however, charge
a positive expected penalty to policies that “cheat” by
violating the nonanticipativity constraints.
We use the following version of the “weak duality”

result from Brown et al. (2010) to generate performance
bounds on the primal DP. In what follows, we let
Vα

z (ε) � ∑T
t�1 rt(xt, αt(xt), εt) − zt(xt, αt(xt), εt), that is, the

penalized performance of a given feasible policy α ∈ !;
for a dual feasible penalty z, we have E[z(α)] � 0, and
hence, Eε[Vα

z (ε)] � Vα.

Proposition 1 (Weak Duality). For any α ∈ ! and any dual
feasible penalty z,

Vα ≤ Eε VP
z (ε)

[ ]
≜VP

z , (5)

where VP
z (ε)≜ supa∈A(ε) r(a) − z(a){ }. In particular, we

have V∗ − Vα ≤ Eε[VP
z (ε) − Vα

z (ε)].
Proof. We have Vα � E[r(α)] � E[r(α) − z(α)] ≤
Eε

[
sup
a∈A(ε)

{r(a) − z(a)}] � VP
z , where the second equality
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follows by feasibility of α and dual feasibility of the
penalty and the inequality follows by the fact that the
actions selected by α are feasible in every sample path
ε. The last statement follows because V∗ ≤ VP

z (take
α to be an optimal policy in ! with Vα � V∗), and
Eε[Vα

z (ε)] � Vα again by dual feasibility of z. □

Taking α to be an optimal, nonanticipative policy,
Proposition 1 implies that V∗ ≤ VP

z for any dual feasible
penalty z. We can think of the upper bound VP

z in terms
of Monte Carlo simulation: we randomly simulate
sample paths ε, solve the deterministic “inner prob-
lem” VP

z (ε) � maxa∈A(ε){r(a) − z(a)} given ε, and aver-
age the resulting optimal values. (In everything that
follows, we assume the sup in Equation (5) is almost
surely attained, justifying the use max in place of sup;
this holds in all of our examples.)

In our analysis of heuristic policies, we compare
the value VP

z (ε) of the penalized perfect information
problem to the value of the heuristic policy in every
sample path. To facilitate this comparison, we include
the penalty in the performance of the policy; this does
not affect the expected reward of the policy. The last
part of Proposition 1 states that the expected value of
Eε[VP

z (ε) − Vα
z (ε)] is an upper bound on the subopti-

mality of the policy. The goal in a given problem is to
show that this upper bound is sufficiently small.

We use the approximate continuation value Qt that
generates the greedy heuristic policy to generate pen-
alties as well. Specifically, we use penalties of the form

zt(xt, at, εt) � Qt(xt, at, εt) − Eε̃t Qt(xt, at, ε̃t)[ ], (6)

where Qt is the approximation used in Equation (3) for
selecting actions in the heuristic policy. By applying the
law of iterated expectations, we see for any α ∈ !, that
Eεt[zt(xt, αt(xt), εt)] � 0 for each time period t and state
xt, and hence, the penalty from Equation (6) is dual
feasible.

Intuitively, the goal of the penalty is to cancel the
benefit of perfect information. By taking Qt � Q∗

t ,
where Q∗

t(x, a, ε) � rt(x, a, ε) + V∗
t+1(χt(x, a, ε)), the pen-

alty in Equation (6) perfectly cancels the benefit of
perfect information, and the optimal value of the pe-
nalized perfect information problem in Equation (5)
equals V∗ in every sample path. To see this, fix a
sample path ε and fix the actions a ∈ A(ε) and states
to be optimal actions and states for the penalized
perfect information problem given the sample path.
We have

VP
z (ε) � r(a) − z(a)

� ∑T
t�1

rt(xt, at, εt) + Eε̃t Q
∗
t(xt, at, ε̃t)

[ ] −Q∗
t(xt, at, εt)

≤ ∑T
t�1

V∗
t (xt) − V∗

t+1(xt+1) � V∗
1(x1) − V∗

T+1 � V∗,

where the inequality follows from the definition of
Q∗

t , using that V∗
t (xt) � maxa∈At(xt) Eε̃t Q

∗
t(xt, a, ε̃t)

[ ]
from

Equation (2), and xt+1 � χt(xt, at, εt). Because the actions
of an optimal policy α∗

t(x∗t), where x∗t is the state induced
by α∗

t , are feasible for the penalized perfect information,
by a similar argument it follows that V∗ ≤ VP

z (ε). This
implies that strong duality holds and that the optimal
value of the penalized perfect information problem
equals V∗ in every sample path.

Overview of Approach. As just discussed, we can in
principle obtain a tight bound using the “ideal penalty”
based on the optimal continuation value Q∗

t . This does
not directly help us in problems with large state
spaces, where Q∗

t is difficult to determine. Nonetheless,
the strong duality result just discussed is suggestive: a
good approximation to the optimal continuation value
Q∗

t will lead to both a good policy and a good penalty,
and the penalized performance of the policy will be
close to the penalized perfect information value in every
sample path.
Our approach works as follows:
1. Design an approximation Qt(x, a, ε) to the optimal

continuation value. This determines a heuristic policy α
using Equation (3) and a penalty z using Equation (6).

2. Establish an error bound Δ(ε) such that for every
sample path ε:

VP
z (ε) − Vα

z (ε) ≤ Δ(ε). (7)

3. Taking expectations, using Proposition 1, and
denoting Δ � Eε[Δ(ε)], we obtain

V∗ − Vα ≤ VP
z − Vα ≤ Δ .

A given approximation Qt leads to both a policy and
a performance bound, and the task then reduces to
deterministic analysis to obtain a bound on the gap in
Equation (7) in each sample path. What constitutes a
“good” value of Δ depends on the goals of the analysis;
in the problems we study, we seek an error bound Δ
that is (relatively) small in some asymptotic regime of
interest, which allows us to conclude that α is asymp-
totically optimal in this limit.

3. Stochastic Knapsack Problem
We consider the version of the stochastic knapsack
problem studied in Dean et al. (2008). There is a set
of items, indexed by i ∈ ( � {1, . . . , I}, available to be
inserted into a knapsack of initial capacity κ. Item i ∈ (
has a deterministic value denoted by vi ≥ 0 and a sto-
chastic size denoted by si ≥ 0. The sizes are independent
random variables with known, arbitrary distributions.
The actual size of an item is unknown until the item
is selected for insertion. Random values can be easily
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accommodated, provided values are independent and
independent of sizes, by replacing each random value
with its expectation.

At each decision epoch, the DM selects an item i and
attempts to insert it into the knapsack. After that, the
size si of item i is revealed, and a value of vi is obtained
if i is successfully inserted, that is, if si is no larger than
the remaining capacity. The DM repeatedly selects
items for insertion until the capacity overflows. At that
moment, the problem ends, and the value of the over-
flowing item is not collected. The goal is to maximize
the expected value of all items successfully inserted into
the knapsack.

A feasible policy α ∈ ! is a mapping that determines
the next item α(6, c) to attempt to insert into the
knapsack given the set of remaining items 6 ⊆ ( and
the remaining knapsack capacity c ∈ [0, κ]. We denote
the decision epochs by t � 1, . . . , I. For a given α ∈ !,
we let 6t

α denote the items available for insertion at
the beginning of time t and cαt denote the knapsack’s
remaining capacity. To simplify the notation, we let
αt � α(6t

α, cαt ) denote the item to be inserted at time t
under policy α. The initial conditions are 61

α � ( and
cα1 � κ. At time t, item αt � α(6t, ct) is selected for in-
sertion, and the state is updated as6α

t+1 � 6t
α \ {αt} and

cαt+1 � cαt − sαt . If the item fits into the knapsack, that is,
if cαt+1 ≥ 0, the value of vαt is collected. Otherwise, the
problem ends.

We let τα � inf{t ≥ 1 : cαt+1 < 0} denote the stopping
time corresponding to the first time capacity overflows.
We can then write the problem as

V∗ � max
α∈!

E
∑I∧(τα−1)

t�1
vαt

[ ]
.

3.1. Approximate Continuation Value and
Greedy Policy

We let Qt(c, i, si) denote the approximate continuation
value in period t when the remaining knapsack ca-
pacity is c and item i with unknown size si is selected
for insertion. We use the approximation

Qt(c, i, si) � vi + ri(c − si) . (8)

In Equation (8), we use a simple linear approximation
for the value of remaining capacity. We consider the
specific choice ri ≜ vi/E[si], that is, the ratio of the se-
lected item’s value to its expected size; this approxi-
mation naively assumes the currently selected item i
appropriately captures the marginal value of remain-
ing capacity irrespective of the subset 6 of remain-
ing items. Because the expected continuation value is
Esi Qt(c, i, si)[ ] � vi/(E[si])c, Equation (3) implies that the
greedy policy induced by Equation (8) sorts the items
in decreasing order of ri and inserts items in this order

until the knapsack overflows or no items remain.1

Without loss of generality, we assume that items are
sorted in decreasing order of this ratio; that is, r1 ≥
r2 ≥ . . . ≥ rI . The expected performance of the greedy
policy is given by

VG � E
∑I∧(τG−1)

t�1
vt

[ ]
,

where τG is the first time that capacity overflows under
the greedy policy.
Dean et al. (2008) show that a randomized variant

of the greedy policy performs within a factor of 7/32
of the optimal value. It is possible to find simple ex-
amples in which the greedy policy can perform arbi-
trarily poorly (see, e.g., a deterministic example of this
with I � 2 in §4 of Dean et al. 2008). In general, the
greedy policy performs poorly, even in deterministic
examples, when sizes are large relative to capacity:
because we cannot add fractional amounts of items, the
ratio of value to size may not be a good proxy for the
marginal value of adding an item.
On the other hand, we might expect the greedy

policy to perform well when sizes are small relative
to capacity: with many small items, the problem
“smoothes” in a certain sense. We can gain intuition for
this from the deterministic case by considering the
linear programming (LP) relaxation of the problem that
allows the DM to insert fractional items. Because the
greedy ordering is optimal in the LP relaxation, in the
deterministic case we have

V∗ − VG ≤ VLP − VG ≤ max
i�1,...,I vi , (9)

where VLP is the optimal objective value of the LP
relaxation. In Equation (9), the gap in the last inequal-
ity arises from potential lost value of an overflowing
item, which can be included fractionally in the LP re-
laxation but cannot be included by the greedy policy. If
we then consider scaling the problem so that capacity
increases by an integer factor θ ≥ 1 and we make θ
copies of all items, we conclude from Equation (9) that
the relative suboptimality of the greedy policy goes to
zero as θ gets larger. In this sense, in the deterministic
problem, the greedy policy performs well as we con-
sider problems with many items that are small relative
to capacity.
We derive a result analogous to Equation (9) for the

stochastic version of the problem in which the deci-
sion maker optimizes over all possible nonanticipative
policies. The result then allows us to analyze the per-
formance of the greedy policy as the number of items
grows large—and the problem is, thus, increasingly
difficult to solve—under certain conditions on the ca-
pacity, values, and the distributions of sizes.
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3.2. Perfect Information Bound
Consider a clairvoyant with access to all future reali-
zations of the sizes s � (si)Ii�1 before selecting any items.
Given a sample path s ∈ RI

+, we let VP(s) denote the
optimal (deterministic) value for sample path s with
perfect information about sizes. The expected value
VP � Es[VP(s)] is an upper bound for the optimal
performance; that is, V∗ ≤ VP. The perfect information
problem is equivalent to the deterministic knapsack
problem

VP(s) � max
x∈{0,1}I

∑I
i�1

vixi :
∑I
i�1

sixi ≤ κ

{ }
,

where xi ∈ {0, 1} indicates whether item i is included
in the knapsack.

Unfortunately, the perfect information bound may
be quite loose: by knowing the realizations of all sizes
in advance, the DM can avoid inserting potentially
large items. Dean et al. (2008) demonstrate this with the
following example: consider the case when all items are
symmetric with value one, and each item’s size is either
zero or κ + ε (for some ε>0) with probability 1/2.
Because the items are symmetric, the problem is trivial,
and it is easy to show that VG � V∗ � 1 − (1/2)I ≤ 1. On
the other hand, in the perfect information problem, it
is optimal to select every item with a realized size of
zero. Because this occurs with probability 1/2 for each
item and items are independent, this leads to the very
poor upper bound of VP � I/2.

3.3. Penalized Perfect Information Bound
To improve the upper bound, we impose a penalty that
punishes violations of the nonanticipativity constraints.
Equation (6) implies that the period-t penalty induced
by Equation (8) is zt(c, i, si) � ri(E[si] − si). Denoting by
at the item to be inserted at time t, we obtain that the
total penalty is given by

z(a) � ∑I∧τα
t�1

rat(E[sat] − sat) .

Note that we include the penalty terms until τα, that
is, until it is known that an overflow has occurred. This
is required to ensure dual feasibility of the penalty:
for any feasible policy α ∈ !, τα is a stopping time, but
τα − 1 is not.

We let VP
z (s) denote the optimal (deterministic) value

of the penalized perfect information problem for
sample path s ∈ RI

+. From Proposition 1, we obtain an
upper bound V∗ ≤ VP

z , where VP
z � Es[VP

z (s)] denotes
the penalized perfect information bound. In Appendix
A.1, we discuss how to calculate VP

z (s) by solving an
integer programwith additional variables representing
which item, if any, overflows the knapsack.

Recall that the DM with perfect information may
“cheat” by selecting items with low realized sizes. The

penalty creates an incentive for the DM with perfect
information to resist selecting items with realized sizes
that are small relative to their expected sizes: the pe-
nalized value of selecting item i becomes vi + ri(si −
E[si]) � risi. Thus, in the penalized perfect information
problem, the DM may “cheat” and select items with
low realized sizes but will also receive less value for
doing so.
It is instructive to see how this works on the example

from Dean et al. (2008) as discussed in Section 3.2 with
I symmetric items of value one and sizes that are either
zero or κ + ε with probability 1/2. Recall that a greedy
policy is (trivially) optimal, and the optimal value is
V∗ � 1 − (1/2)I, but the perfect information problem
leads to the poor bound of VP � I/2. In the penalized
perfect information problem, the value for selecting an
item is risi, which is zero if si � 0 and two if si � κ + ε: in
particular, any itemswith realized sizes of zero provide
zero value as well. Moreover, we can select at most one
item with realized positive size of κ + ε—in particular,
an item that overflows the knapsack. Because the pen-
alty for the item that overflows the knapsack equals
one, we obtain VP

z (s) � 1 if si > 0 for any i and VP
z (s) � 0

otherwise. Because P{si � 0 ∀ i} � (1/2)I, the penalized
perfect information bound then is

VP
z � 1 − (1/2)I � V∗,

that is, we recover a tight bound for all values of I.
In general, the penalty aligns the perfect information

problem with the greedy policy in that it is “nearly”
optimal for the perfect information policy to select items
according to the greedy ordering. The “nearly” involves
quantifying the slack in the upper bound because of
value collected from an overflowing item, analogous to
the analysis of LP relaxations in the deterministic case
in Equation (9).

3.4. Performance Analysis
We now formalize this discussion in the general
case. We show that the greedy policy incurs a small
loss in value compared with the optimal policy when
the scale of the problem increases and, in particu-
lar, that the greedy policy is asymptotically optimal
under conditions that we make precise. Let VG

z (s) �∑I∧(τG−1)
i�1 vi +∑I∧τG

i�1 ri(si − E[si]) denote the penalized
performance of the greedy policy under sample path
s and x+ � max(x, 0) for x ∈ R. The following result
compares, for every sample path, the penalized per-
formance of the greedy policy to the performance of the
penalized perfect information problem.

Proposition 2. For every sample path s, the penalized
performance of the greedy policy satisfies

VP
z (s) − VG

z (s) ≤ max
i∈(

vi +max
i∈(

ri(si − E[si])+ . (10)
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We prove Equation (10) by relating the optimal value
of the penalized perfect information problem VP

z (s) to
the penalized performance of the greedy policy VG

z (s).
Recall that with the penalty, the values for selecting
items with low realized sizes are adjusted downward,
and thus, the DM with perfect information has less
incentive to “cheat” by selecting items with low re-
alized sizes. The DM with perfect information, how-
ever, can still “cheat” by choosing a large item to
overflow the knapsack because it receives the value of
the overflowing item. We handle this issue by decom-
posing the penalized perfect information problem into
(1) a traditional deterministic knapsack problem and
(2) another problem in which the DM can choose any
item as a candidate to overflow the knapsack regard-
less of whether this item actually leads to the overflow.
In the LP relaxation of the first problem, the greedy
policy is optimal, and a loss of at most maxi vi is in-
curred because the last item can be included frac-
tionally in the LP relaxation but cannot be included by
the greedy policy. This leads to the first loss term in
Equation (10). In the second problem, the DM simply
chooses the itemwith largest penalized value ri(si −E[si])
whenever this value is nonnegative as a candidate to
overflow the knapsack, which leads to the second loss
term in Equation (10).

Taking expectations in Equation (10) and using the
duality results of Section 2, we obtain the following
guarantees on the performance of the greedy policy.

Corollary 1. The performance of the greedy policy satisfies:
1. Performance guarantee.

V∗ − VG ≤ VP
z − VG ≤ max

i
vi + E max

i∈(
ri(si − E[si])+

[ ]
.

2. Asymptotic optimality. If lim
I→∞

1
κE maxi risi[ ] � 0, then

lim
I→∞

1
κ
(V∗ − VG) � 0 . (11)

Corollary 1 shows that the greedy policy is asymp-
totically optimal when the expected maximum penal-
ized value risi grows more slowly than the capacity of
the knapsack; this, in turn, limits the value the penal-
ized perfect information DM can obtain by overflowing
the knapsack (the asymptotic regime allows the ca-
pacity κ to scale with the number of items I).2 Note that
asymptotic optimality requires 1

κE maxi risi[ ] → 0: this
follows from the fact that maxi vi ≤ E[maxi risi] and
(si − E[si])+ ≤ si as we show in the proof of the result.
The condition given in Corollary 1, part 2, although
general, may be difficult to verify directly. The next
result provides more easily verifiable sufficient con-
ditions for asymptotic optimality. We say an is little
omega of bn or an � ω(bn) if limn→∞ an/bn � ∞, that is, an
grows asymptotically faster than bn.

Corollary 2. Suppose that ri ≤ r̄ for some r̄<∞ independent
of I. Then Equation (11) holds if

1. Sizes are uniformly bounded; that is, si ≤ s<∞, and
capacity scales as κ � ω(1).

2. Sizes have uniformly bounded p>1 moments, that is,
E[spi ] ≤ m<∞, and capacity scales as κ � ω(I1/p).

3. Sizes are uniformly sub-Gaussian, that is, there exist
a, b> 0 such that P{si > x} ≤ a exp(−bx2) for all x ≥ 0, and
capacity scales as κ � ω( ������

log I
√ ).

Intuitively, the growth of the maximum penalized
value maxi risi is governed to a large extent by the tails
of the distributions of sizes. When items are sym-
metric, roughly speaking, we have that E[maxi si] ≈
F−1(I/(I + 1)), where F is the cumulative distribution
function of sizes, and thus, we need capacity to grow
at least as F−1(I/(I + 1)) for Equation (11) to hold.
Corollary 2 makes this intuition precise and provides
the necessary growth rate of capacity for different
families of distributions. When sizes are uniformly
bounded (e.g., uniform or Bernoulli), the penalized
values are trivially bounded, and it suffices that ca-
pacity grow unbounded at any rate. When sizes have
p-moments, it suffices that capacity grow at a power-
law rate. When sizes are sub-Gaussian, it suffices that
capacity grow at a logarithmic rate.

3.5. Stochastic Covering Variation
We consider a variation of the stochastic knapsack
problem in which a DM needs to select components to
cover certain requirement at minimum cost.3 Following
Derman et al. (1978), we consider an application to
equipment maintenance in which a system, requiring a
certain component to function, must operate for a fixed
amount of time. The component needs to be replaced
each time it fails. There is a set of spare components,
indexed by i ∈ ( � {1, . . . , I}, that can be used to
operate the system. Component i has a deterministic
cost vi and a random operating life si. The operating
lives are independent random variables with known,
arbitrary distributions. The actual operating life of
a component is unknown at the time of replacement.
The goal is to minimize the expected cost of operating
the system for κ units of time. As in Derman et al.
(1978), we guarantee that the problem is feasible by
assuming that there is an infinite supply of one type of
component. These components are indexed by i> I and
assumed to have deterministic cost c and operating life
s. We let (+ � {1, . . .} denote the indices of all com-
ponents with indices 1, . . . , I corresponding to the I
spare components.
As before, a policy α ∈ ! is a mapping that deter-

mines the next component α(6, c) to be selected given
the set of remaining spare components 6 ⊆ ( and the
remaining time c. We denote the decision epochs by
t ≥ 1. To simplify the notation, we let αt denote the tth
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component used under policy α. We let τα � inf{t ≥ 1 :∑t
j�1 sαj ≥ κ} be the total number of components re-

quired by policy α to operate the system until the finish
date. We can then write the problem as4

V∗ � min
α∈!

E
∑τα
t�1

vαt

[ ]
.

Consider the approximation to the continuation value
given in Equation (8). The greedy policy induced by
this approximation sorts the components in increasing
order of cost per expected life, ri ≜ vi/E[si], and selects
components for replacement until the target time is
reached. Without loss of generality, we assume that
components are sorted in increasing order of this ratio.
The expected performance of the greedy policy is de-
noted byVG � E

[∑τG
t�1 vt

]
,where τG is the total number

of components used by the greedy policy to operate the
system until the finish date.

As in the knapsack problem, the perfect informa-
tion bound may be quite loose: by knowing the re-
alizations of all operating lives in advance, the DM
with perfect information can avoid selecting compo-
nentswith short realized operating lives. To improve the
lower bound, we impose a penalty that punishes vio-
lations of the nonanticipativity constraints. Equation (6)
implies that the period-t penalty induced by Equa-
tion (8) is zt(c, i, si) � ri(E[si] − si). We let VP

z (s) denote
the optimal (deterministic) value of the penalized
perfect information problem for sample path s ∈ RI

+.
By Proposition 1, we obtain a lower bound VP

z ≤ V∗,
where VP

z � Es[VP
z (s)] denotes the penalized perfect

information bound.
Using a similar analysis as in the knapsack problem,

we can compare the penalized performance of the
greedy policy, denoted by VG

z (s), with the performance
of the penalized perfect information problem in every
sample path. Unlike Proposition 2, the bound has a
single loss term because the cost of the component used
at termination counts toward the objective.

Proposition 3. For every sample path s, the penalized
performance of the greedy policy satisfies

VG
z (s) − VP

z (s) ≤ max
i∈(+ risi . (12)

Taking expectations in Equation (12) and using the
duality results of Section 2, we obtain the following
guarantees on the performance of the greedy policy:

VG − V∗ ≤ VG − VP
z ≤ E max

i∈(+ risi

[ ]
.

Thus, the greedy policy is asymptotically optimal in the
sense that (VG − V∗)/κ → 0 as κ → ∞ when the ex-
pected maximum penalized cost grows more slowly
than the finishing date. Because the components i> I

have deterministic operating lives, the conditions
provided in Corollary 2 on the distributions of si for
the I spare components are sufficient to guarantee
asymptotic optimality.

4. Stochastic Scheduling on
Parallel Machines

We consider the problem of scheduling a set of jobs
on identical parallel machines with the objective of
minimizing the total weighted completion time when
no preemptions are allowed. Job processing times are
stochastic, and the processing time of each job is not
fully known until a job is completed. Formally, con-
sider a set of jobs, indexed by j ∈ ) � {1, . . . , J}, to
be scheduled on M identical parallel machines. The
processing time of job j ∈ ) is independent of the
machine and denoted by the random variable pj. Job
processing times are assumed to be independent (but
not necessarily identical) with finite means. We let
Cj denote the completion time of job j ∈ ); that is, Cj
equals the waiting time until processing of j starts plus
the processing time pj of j. Each job has an associated
weightwj, and the objective is to minimize the expected
total weighted completion time E[∑J

j�1 wjCj]. Using
Graham’s notation, the problem can be written as
PM//E[∑j wjCj] (see Pinedo 2012).
A policy α ∈ ! is a sequence of mappings that de-

termine the job to be processed, denoted by α(t,0,3, s)
at time t given the set of waiting jobs 0 ⊆ ), the set
of jobs 3 ⊆ ) currently in process, and the amount
of processing currently elapsed s ∈ RJ

+ on each job
in process. We let 0t

α ⊆ ) denote the subset of jobs
waiting for service at time t and 3t

α ⊆ ) denote the
subset of jobs under process at time t using policy α.
Denoting the time when all jobs are completed by
τα � inf{t ≥ 0 : 0t

α ∪3t
α � Ø}, the completion time of

job j ∈ ) is given by Cα
j � ∫τα

0 1{ j ∈ 0t
α ∪3t

α}dt. We
restrict attention to policies satisfying Eτα <∞. The
problem can be written as

V∗ � min
α∈!

E
∑J
j�1

wjCα
j

[ ]
.

Although this problem is perhaps most naturally de-
scribed as a continuous-time DP, we can equivalently
write the problem as a discrete-time DP by discretizing
all job processing time distributions; decision epochs
then correspond to possible completion times of some
job. Discretization can be done with arbitrary preci-
sion and is standard in the scheduling literature (see,
e.g., Skutella et al. 2016). Nonetheless, weak duality
(Proposition 1) relies primarily on using relaxed sets of
policies (by relaxing the nonanticipativity constraints)
and still leads to valid performance bounds for continuous-
time problems.
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4.1. WSEPT Policy and Single
Machine Approximation

It iswell known (Rothkopf 1966) that theWSEPTpolicy is
optimal in the case of a single machine. This policy sorts
the jobs in decreasing order of weight per expected pro-
cessing time rj ≜wj/E[pj] and then schedules the jobs
in this order without idling. With multiple machines, this
is no longer true, and it may even be optimal to idle in
some states (for examples, see Uetz 2003). When there
are many jobs relative to machines, we may nonetheless
expect the policy that schedules jobs in WSEPT order in
nonidling fashion to performwell (we simply refer to this
as theWSEPTpolicy). In this regime, the system is heavily
loaded, machines will nearly always be processing, and
we may expect with an optimal policy that the total
processing time will be shared approximately equally
across allM machines. Thus, when there are many jobs,
the system behavior resembles that of the same problem
but with a single machine that is M times faster.

We consider approximations of the optimal continu-
ation value inspired by this intuition. Assume that jobs
are sorted by decreasing order of weight per expected
processing time; that is, r1 ≥ r2 ≥ . . . ≥ rJ . We consider
the following approximate continuation value when
the set 0 ⊆ ) of jobs remains to be processed, and we
assign job j ∈ 0 at time t, and its realized processing
time is pj:

Qt(0, j,pj) � 1
M

wjpj + 1
M

∑

∈0\{j}

w
 pj +
∑

k∈0\{j}, k≤

E[pk]

( )
.

(13)

The first term in Equation (13) captures the weighted
completion time remaining for the currently selected
job j. The second term captures the expected weighted
completion time of the remaining jobs0 \ {j} under the
approximation that these jobs are processed optimally
by a single machine (hence, the processing of these
remaining jobs by label order, which corresponds to
WSEPT). We scale the processing times by 1/M to
reflect the fact that the single machine in this ap-
proximation is M times faster.

Because Equation (13) is the optimal continuation
value for a single machine problem, the heuristic policy
that is greedy with respect to Equation (13) corre-
sponds to the WSEPT policy; in other words, with jobs
indexed according to their WSEPT order, we have
min{j ∈ 0} ∈ argminj∈0Ep̃j[Qt(0, j, p̃j)] (note that the
greedy policy does not consider the option of idling an
available machine, which may be optimal). We let VG

denote the expected performance of this policy; that is,
VG � E[∑J

j�1 wjCG
j ], where CG

j denotes the completion
time of job j ∈ ) under theWSEPT policy. The goal is to
compare the performance VG using the WSEPT policy
to the performance V∗ using an optimal policy.

4.2. Perfect Information Bound
Consider a clairvoyant with access to all future re-
alizations of the processing times p � (pj)Jj�1. Given a
sample path p ∈ RJ

+, we let VP(p) denote the optimal
(deterministic) total weighted completion time with
perfect information. The expected valueVP � Ep[VP(p)]
is the perfect information bound, which in this problem
is a lower bound for the optimal performance; that
is, VP ≤ V∗.
The perfect information bound may be loose in

general because there can be substantial benefit to
knowing the realized processing times in advance. To
illustrate this, we consider a simple example with one
machine and J jobs with weight one, and each jobs’
processing time is either ε or one, each with probability
1/2. Because the jobs are a priori identical, the prob-
lem is trivial, and it is easy to show that VG � V∗ �
(1 + ε)J(J + 1)/4. On the other hand, in the perfect in-
formation problem, it is optimal to first schedule every
short job with a realized processing time of ε. Let It �∑J

j�1 1{pj � t} denote the number of jobs with pro-
cessing time t ∈ {ε, 1}, respectively. The total comple-
tion time of the short jobs is εIε(Iε + 1)/2, and the total
completion time of the long jobs is εIεI1 + I1(I1 + 1)/2.
Taking expectations and using the fact that Iε + I1 � J
together with the fact that I1 is binomially distributed
with J trials and success probability 1/2 because jobs
are independent leads us to the poor lower bound of
VP � J(J + 3 + ε(3J + 1))/8. For J large, this lower bound
is off from V∗ by nearly a factor of two.

4.3. Penalized Perfect Information Bound
With the single machine approximate continuation
value given in Equation (13), the resulting penalty ac-
cording to Equation (6) for assigning job j at time t is
given by zt(0, j, pj) � 1

M
∑

k∈0 wk(E[pj] − pj). For a given
sample path p, we let A(p) denote the set of feasible
deterministic scheduling policies in the perfect infor-
mation problem. For a given feasible schedule a ∈ A(p),
after rearranging sums, we can write the total penalty as

z(a) � 1
M

∑
j∈)

wj
∑
i�aj

E[pi] − pi

( )
,

where we use i ≺a j to denote all jobs i preceding j using
a (and i �a j to also include j itself in a summation).
We can then write the penalized perfect information
problem as

VP
z (p) � min

a∈A(p)
∑
j∈)

wjCa
j + z(a)

� min
a∈A(p)

1
M

∑
j∈)

wj
∑
i�aj

E[pi] +
∑
j∈)

wj Ca
j −

1
M

∑
i�aj

pi

( )
.

(14)
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The first term represents the expected weighted com-
pletion time when jobs are processed in the order given
by a by a single machine that is M times faster. The
second term is an error term, which can be interpreted
as the difference between the weighted completion
time in the given sample path in the actual problem
(i.e., with M machines) and the weighted completion
time in the single machine approximation. If only the
first term were present in this objective, the WSEPT
policy would be optimal in the penalized perfect in-
formation problem: this follows from the fact that this
term corresponds to the expected value for a single
machine–scheduling problem. In fact, if we return to
the one-machine example in Section 4.2, the penalized
perfect information bound is tight in every sample
path. In our analysis, we effectively bound the second
(i.e., error) term, which allows us to conclude under
mild conditions that the WSEPT policy is asymptoti-
cally optimal in the regime of many jobs.

4.4. Performance Analysis
We let VG

z (p) denote the penalized value of the greedy
policy given sample path p; following the discussion in
Section 2.1, we have Ep[VG

z (p)] � VG. Using the penalty
described previously leads us to the following result.

Proposition 4. For every sample path p, the WSEPT policy
satisfies

VG
z (p) − VP

z (p) ≤
M − 1
M

( )∑
j∈)

wj max
i∈)

pi. (15)

We show Equation (15) by bounding from below the
second term in the penalized perfect information ob-
jective in Equation (14). We do this by using a known
fact from deterministic scheduling: for any perfect
information-scheduling policy a ∈ A(p), the start time
Saj for any job j must satisfy

Saj ≥
1
M

∑
i≺aj

pi −M − 1
M

·max
i∈)

pi.

This leads to a lower bound on the second term in
Equation (14) that is independent of a; the result then
follows from the fact that the WSEPT policy is optimal
for the first term in Equation (14) in isolation.

If we consider a scaling of the number of jobs J, where
job weights and expected processing times are boun-
ded away from zero, then the optimal cost V∗ scales
quadratically with J. Under mild conditions, the gap
implied by Proposition 4 grows slower than quadrat-
ically in J; for example, if job weights are uniformly
bounded and processing times are bounded, then the
gap implied by Proposition 4 is linear in J, which
implies that the WSEPT policy is asymptotically opti-
mal as J grows large.

Taking expectations of Equation (15) and using
Proposition 1 leads to the following:

Corollary 3. The performance of the WSEPT policy satisfies:
1. Performance guarantee.

VG − V∗ ≤ VG − VP
z ≤ M − 1

M

( )∑
j∈)

wjE max
i∈)

pi

[ ]
. (16)

2. Asymptotic optimality. If weights are uniformly
bounded, that is, wj ≤ w̄ for some w̄<∞ independent of the
number of jobs J and limJ→∞ 1

J E maxj∈) pj
[ ] � 0, then

lim
J→∞

1
J2
(VG − V∗) � 0 . (17)

As with the stochastic knapsack problem, we can
state conditions on the processing time distributions
similar to those in Corollary 2 that would ensure that
limJ→∞ 1

J E maxj∈) pj
[ ] � 0 (e.g., this condition holds

provided the mean and variance of the processing
times are uniformly bounded). Note that, in the case
of M � 1, Corollary 3, part 1, shows that WSEPT is
optimal and the penalized perfect information bound is
tight (in every sample path, according to Proposition 4).
Following the discussion on strong duality in Sec-
tion 2.1, this is to be expected: with M � 1 the con-
tinuation value Equation (13) is optimal, and hence, the
resulting penalty is ideal.
Proposition 3.1 of Weiss (1990) is similar to Equa-

tion (16), but Equation (16) is stronger by a factor of
two. Using a different approach involving valid in-
equalities for the performance space of all feasible
scheduling policies, Möhring et al. (1999) show that
the WSEPT policy satisfies

VG − V∗ ≤ (M − 1)(1 + ρ)
2M

∑
j∈)

wjE[pj], (18)

where ρ is an upper bound on the squared coefficient
of variation of job processing times. We show in Online
Appendix C that we can also establish Equation (18)
using penalized perfect information analysis, albeit
with a different penalty. Although Equation (18) is a
tighter bound than Equation (16) in many cases, this is
not always true. For example, when jobs are identical
and processing times are Bernoulli with probability q,
Equation (16) is tighter than Equation (18) when-
ever q ≤ 1 − (1/2)1/J .

5. Sequential Search for the
Best Alternatives

We consider a variation of the sequential search
problem studied by Weitzman (1979). In this problem,
a DM—for example, a firm wanting to hire new em-
ployees or an investor considering real estate options—
sequentially explores a given set of alternatives in an
effort to find the most valuable ones. Exploration is
costly but provides information about the value of
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an alternative. The DM can either stop the search and
select a previously explored alternative or continue
searching. The model considered in Weitzman (1979)
assumes the DM can only accept a single alternative.
In many applications of this basic model, the DMmay,
in fact, have the ability to accept multiple alternatives.
For example, firms may wish to hire several em-
ployees from a batch of applicants; we consider this
variation.

We formally describe the model with a finite number
N of a priori identical alternatives. Associated with
each alternative is an unknown reward; we let rn de-
note the random reward associated with alternative n
and assume that rewards are nonnegative, indepen-
dent, and identically distributed with finite mean. At
the beginning of each time period, the DM can pay a
search cost s ≥ 0 to explore an alternative, which re-
veals the alternative’s reward. At the end of each time
period, the DM can select any available (i.e., previously
explored but not yet selected) alternatives, thereby
collecting their associated rewards. Rewards are dis-
counted in each period according to a discount factor
δ ∈ (0, 1]. The DMmay explore as many alternatives as
desired but, because of capacity limitations, can select
at most K alternatives in total. The problem ends when
K alternatives have been selected or the DM stops
exploring (because of choice or because no capacity
remains or all N alternatives have been explored). To
avoid trivialities, we assume that δEr[r] ≥ s as, other-
wise, the DM has no incentive to explore any alterna-
tives. The goal is to maximize the expected discounted
reward, net of search costs, associated with selecting
alternatives.

We denote decision epochs by t � 1, . . . ,N. There
are two decisions per time period: (1) at the beginn-
ing of the period, whether to explore another alter-
native or stop the search and (2) at the end of the
period, which available alternatives, if any, to select. A
feasible policy α ∈ ! is given by a sequence of functions
(αE

t )Nt�1 and (αS
t )Nt�1, each taking as input the remain-

ing capacity k and the set of rewards 5 associated
with available alternatives. The function αE

t maps to
{EXPLORE, STOP}, indicating whether the DM ex-
plores another alternative or stops the search at the
beginning of period t. The function αS

t maps to a set
6 ⊆ 5, where |6| ≤ k, of available rewards to select at
the end of period t<N; we assume αS

N maps to a set 6
such that |6| � k because any optimal policy would use
any remaining capacity to select the highest remaining
rewards at the end of the horizon.

For a given α ∈ !, we let kαt denote the remaining
selection capacity and let 6α

t denote the set of rewards
selected at time t. Capacity evolves according to kαt+1 �
kαt − |6α

t | with kα1 � K. We let τα denote the stopping
time corresponding to the first time capacity runs out

or the DM stops the search. We can then write the
problem as

V∗ � max
α∈!

E
∑N∧τα

t�1
δt

∑
r∈6α

t

r − δt−1s

( )[ ]
.

In this problem, alternatives are a priori identical,
so which alternative to explore next is irrelevant. In
contrast, selection decisions in each period present
a complex trade-off between (1) immediately selecting
available alternatives and (2) preserving capacity to
select potentially more valuable alternatives at the ex-
pense of further discounting and additional search costs.

5.1. Approximate Continuation Value and
Greedy Policy

In the case of K � 1, Weitzman (1979) shows that a
threshold policy can be used to determine whether
to select the best available alternative; specifically,
Weitzman (1979) shows that when t<N, it is optimal to
select the highest available reward (and, hence, stop
before searching all alternatives) if and only if this
reward is above a reservation price v∗ given by the so-
lution to v∗ � δEr[max(r, v∗)] − s. The value v∗ represents
the indifference point between immediate selection and
continuing the search one more period and is equiv-
alent to the Gittins index for an unexplored alternative.
The problem is more complicated when K >1: optimal
policies may deplete capacity over time by intermittently
recalling previously explored alternatives, and optimal
selection thresholds in general may depend on remaining
capacity k, the largest k available rewards, and time.
We instead consider a greedy policy based on reser-

vation prices that only depend on remaining capacity;
these reservation prices will be nonincreasing with ca-
pacity, reflecting a DM who is more discriminating as
capacity diminishes. With this assumption, the greedy
policywill either select an alternative immediately after it
is explored or (possibly) at the end of the horizon.We let
vj ≥ 0 denote the reservation price for the jth last unit of
capacity (i.e., v1 corresponds to the final unit of capacity)
and interpret vj as an approximation of the marginal
value of this unit of capacity with an optimal policy.
Because the DMhas two decisions per time period, we

use approximate continuation values QS
t and QE

t for ex-
ploration and selection, respectively. It is easiest to write
our approximationdenoting a selectiondecision at ∈ {0, 1},
which indicates whether the most recently explored
alternative with reward rt is selected at time t. Letting k
denote the capacity remaining prior to this selection,
we approximate the continuation value of selection as

QS
t (k, rt, at) � rtat + (1 − at)vk +

∑k−1
j�1

vj . (19)

With Equation (19), the greedy policy at ∈ argmaxa∈{0,1} ·
QS

t (k, rt, a) selects the current alternative if and only

Balseiro and Brown: Approximations via Information Relaxation Duality
Operations Research, 2019, vol. 67, no. 2, pp. 577–597, © 2019 INFORMS 589



if its reward rt is no smaller than the marginal value
(or reservation price) vk.5 The remaining term

∑k−1
j�1 vj

captures the approximate net present value of all
remaining capacity. Including the search cost and dis-
counting, we can thus approximate the continuation value
of exploration as

QE
t (k, rt) � δmax rt, vk( ) + δ

∑k−1
j�1

vj − s . (20)

Because vj ≥ 0, the assumption δEr[r] ≥ s implies that
Er[QE

t (k, r)] ≥ 0. Thus, taking the value of stopping
search equal to zero, the greedy policy will continue
exploring as long as some positive capacity remains.

Choice of Reservation Prices. Although we can con-
sider a greedy policy based on any reservation prices,
we show that with a particular choice of reservation
prices, the greedy policy is asymptotically optimal
when the number N of alternatives grows large.

Our main focus is on the case when capacity grows
more slowly than the number of alternatives; that is,
K � o(N). In this regime, capacity is precious, and good
selection policies must balance selecting an alternative
against the net present value of many possible future
search opportunities. (In Section 5.5, we consider the
regime in which capacity grows proportionally with
the number of alternatives.) Motivated by this intuition,
we consider an approximation in which the number of
alternatives is infinite and the DM never recalls pre-
viously explored alternatives. Optimal policies in this
approximation use reservation prices vk that only de-
pend on remaining capacity k and are defined recur-
sively from k � 1 to K as

vk +
∑k−1
j�1

vj � δEr[max(r, vk)] − s + δ
∑k−1
j�1

vj . (21)

The value
∑k

j�1 vj represents the optimal net present
value with k units of capacity in the infinite alternative
model. Given values v1, . . . , vk−1, we can thus interpret
Equation (21) as describing the value vk that makes the
DM indifferent between (1) immediate selection of an
alternative with reward vk (and using the kth last unit
of capacity) and (2) exploring another alternative (and
preserving the kth last unit of capacity for at least one
more period). The term

∑k−1
j�1 vj is discounted on the

right because preserving the kth last unit of capacity
delays use of all remaining capacity by an additional
period. Because δEr[r] ≥ s, it is not hard to see there
exist reservation prices vk satisfying Equation (21) that
are nonincreasing in k. In addition, because reservation
prices are (weakly) increasing as remaining capacity
decreases, it can never be optimal to recall previously
explored alternatives using this approximation. The
reservation price v1 for the last alternative to select
corresponds to the reservation price v∗ in Weitzman
(1979).When δ � 1, the reservation prices satisfy vk � v∗

for every k, where v∗ � Er[max(r, v∗)] − s, that is, again
the optimal reservation price in Weitzman (1979) but
with δ � 1.
We let VG denote the expected performance of the

greedy policy with vk chosen as in Equation (21).

5.2. Perfect Information Bound
Consider a clairvoyant with access to all future re-
alizations of the rewards r � (rn)Nn�1 before exploring or
selecting any alternatives. Given a sample path r ∈ RN

+ ,
we letVP(r) denote the optimal (deterministic) value for
sample path r with perfect information about rewards.
The expected value VP � Er[VP(r)] is an upper bound
for the optimal performance; that is, V∗ ≤ VP.
With perfect information, unexplored alternatives

are no longer a priori identical and the DM can “ex-
plore” and then select alternatives known to have large
rewards.6 The DM with perfect information would
always select an alternative immediately after explor-
ing it, and the perfect information problem is equiva-
lent to the deterministic assignment problem

VP(r) � max
x∈{0,1}N

∑N
t�1

∑N
n�1

δt−1(δrn − s)xn,t

s.t.
∑N
n�1

xn,t ≤ 1 ∀t, (22a)

∑N
t�1

xn,t ≤ 1 ∀n, (22b)

∑N
t�1

∑N
n�1

xn,t ≤ K, (22c)

where xn,t ∈ {0, 1} indicates whether alternative n is
selected in period t. Equation (22a) ensures that at most
one alternative can be selected per time period, (22b)
ensures that each alternative can be selected at most
once, and (22c) ensures that the DM can select at most
K alternatives.
The perfect information bound may be quite loose as

the DM is free to only select alternatives with large
rewards in every sample path. For example, consider
the problem when K � N and δ � 1. The problem is
trivial, and V∗ � N(Er[r] − s) because the optimal pol-
icy explores and selects all alternatives. On the other
hand, in the perfect information problem, it is optimal
to select only alternatives with realized rewards greater
than the search cost. This leads to the weak upper
bound of VP � NEr[(r − s)+].

5.3. Penalized Perfect Information Bound
To improve the upper bound, we impose a penalty that
punishes violations of the nonanticipativity constraints.
We construct penalties according to Equation (6), using
the approximate continuation valuesQS

t andQE
t inducing

the greedy policy. Selection decisions are induced by
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QS
t (k, rt, at), which is measurable with respect to past

actions and states and, thus, leads to zero penalty. The
approximate continuation value for exploration, how-
ever, does lead to a useful penalty: Equation (6) implies
that the period-t penalty induced by Equation (20) is
zt(k, rt) � δmax(rt, vk) − δE r̃[max(r̃, vk)] � δ(rt − vk)+ −
δE r̃[(r̃ − vk)+]. Using a to represent the vector of ex-
ploration and selection decisions and τa to denote the
time the search ends with a, the total penalty is

z(a) � ∑N∧τa

t�1
δt((rt − vkat )+ − E r̃[(r̃ − vkat )+]) .

We let VP
z (r) denote the optimal (deterministic) value of

the penalized perfect information problem for sample
path r ∈ RN

+ . From Proposition 1, we have V∗ ≤ VP
z .

As discussed, the DM with perfect information may
“cheat” by selecting alternatives known to have large
rewards. This penalty helps to align the perfect infor-
mation DM with the greedy policy by “punishing” the
perfect information DM for selecting alternatives with
realized rewards (net of reservation prices) that are large
relative to their expected value. Thus, although the DM
in the penalized perfect information problem may still
“cheat” and select alternatives with large realized re-
wards, the penalty reduces the benefit of such cheating.

It is instructive to see how this works on the example
from Section 5.2. Recall that the optimal value is V∗ �
N(Er[r] − s), but the perfect information bound with-
out penalty provides the bound of VP � NEr[(r − s)+].
With δ � 1, the reservation prices in Equation (21)
reduce to those as in Weitzman (1979); that is,
vk � v∗ with Er[(r − v∗)+] � s. In the penalized problem,
the penalized reward for selecting alternative n is
rn − s − (rn − v∗)+ + Er[(r − v∗)+] � min(rn, v∗), and the
payoff for exploring but not selecting the alternative
is −s − (rn − v∗)+ + Er[(r − v∗)+] � −(rn − v∗)+. More-
over, because v∗ ≥ 0, we conclude that the DM with
perfect information selects all alternatives in every
sample path. Because these actions coincide with the
optimal policy in every sample path, we conclude that
VP

z � V∗; that is, we recover a tight bound.

5.4. Performance Analysis
We now formalize this discussion in the general case.
We show that the greedy policy incurs a small loss in
value compared with the optimal policy when the
number of alternatives is large and, in particular, that
the greedy policy is asymptotically optimal under con-
ditions that we make precise. We let VG

z (r) denote the
penalized value of the greedy policy for sample path r.

The following result compares the penalized per-
formance of the greedy policy with the performance of
the penalized perfect information problem along each
sample path. We let k̄G denote the number of alter-
natives, if any, “recalled” by the greedy policy at t � N;
formally, we have k̄G� K −∑N∧τG

t�1 1{rt ≥ vkGt }, where kGt

denotes the capacity remaining at the start of period t
using the greedy policy.

Proposition 5. For every sample path r, the penalized
performance of the greedy policy satisfies

VP
z (r) − VG

z (r) ≤ δN
∑k̄G
j�1

vj . (23)

Moreover, when δ � 1, we have VP
z (r) � VG

z (r) for every
sample path r.

In the proof of Proposition 5, we show that, in the
penalized perfect information problem, the value of the
jth last unit of capacity is no larger than vj in Equation (21)
in every sample path regardless of the specifics (i.e.,
which alternatives are selected and when) of the se-
lection decisions. Intuitively, even if an alternative with
a large realized reward rt is selected for this unit of
capacity, the penalty −δ(rt − vj)+ + δEr[(r − vj)+] com-
pensates for this and prevents the selection value for
this unit of capacity from exceeding vj. The penalized
performance of the greedy policy for the jth last unit of
capacity also reduces to be vj unless this capacity is
fulfilled by an alternative that is recalled by the greedy
policy at t � N. Combining these results leads us to
Equation (23). We note that Equation (23) applies to the
same problem when the DM cannot recall past alter-
natives because in proving Equation (23) we drop the
value of any alternatives recalled by the greedy policy
at t � N.
Another consequence of the proof of Proposition 5

is that VP
z (r) ≤ ∑K

j�1 vj; that is, the infinite alternative
model without recall provides an upper bound, and
VP

z (r) provides a tighter upper bound in every sample
path. Finally, as noted in Proposition 5, in the case of
δ � 1, these arguments can be strengthened to show
that the optimal actions in the penalized perfect in-
formation problem coincide with those of the greedy
policy, thus implying the greedy policy is, in fact,
optimal in this case.
Using Proposition 1, we then obtain the following

guarantees on the performance of the greedy policy.

Corollary 4. The performance of the greedy policy satisfies:
1. Performance guarantee. When δ � 1, VG � V∗ � VP

z ,
and in general, we have

V∗ − VG ≤ VP
z − VG ≤ δNE

[∑k̄G
j�1

vj

]
. (24)

2. Asymptotic optimality. If either (a) δ is fixed or (b)
K � o(N) and lim sup

N→∞
(1 − δ)N <∞, then

lim
N→∞

1
K
(V∗ − VG) � 0 .
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Corollary 4 states that the greedy policy is asymp-
totically optimal when the discount factor is fixed (for
any scaling of capacity) or if capacity grows at a slower
rate than N and δ → 1. This latter scaling is arguably
more interesting and can be interpreted as a setting
with a fixed time horizon in which a large number
of decisions needs to be made and the time between
decisions is small. Intuitively, when the number of al-
ternatives grows faster than capacity, the greedy policy
will tend to exhaust capacity relatively early in the
horizon, and the infinite alternative model provides
a good approximation even if the DM is becoming in-
creasingly patient. In the proof we argue, using a con-
centration inequality, that the probability that the
greedy policy reaches the end of the horizon with
positive capacity converges to zero asN → ∞, and thus,
the expected value of the gap in Equation (23) becomes
vanishingly small relative to capacity. As a result, with
either condition (a) or (b), the convergence rate to op-
timality is exponential in the number of alternatives.

5.5. Extensions
In this section, we discuss a generalization in which al-
ternatives are not a priori identical and then discuss how
our results extend to a regime in which initial capacity
grows proportionally with the number of alternatives.

Multiple Types. In some applications, alternatives may
not be a priori identical (e.g., an employer may expect
performance levels to vary across applicants with dif-
ferent experiences and backgrounds). We consider a
variant in which there is a set ( � {1, . . . , I} of types for
the alternatives. An alternative of type i ∈ ( has reward
drawn independent and identically distributed from
a type-dependent distribution Fi(·) and search cost si.
The DM has N opportunities to explore alternatives,
and each type has an infinite supply of alternatives. In
each period t � 1, . . . ,N, the DM needs to determine
which type of alternative to explore or stop the search.

As before, we consider an approximation of the
problem in which the number of search opportunities
is infinite and the DMnever recalls previously explored
alternatives. Reservation prices vk only depend on re-
maining capacity k and are defined recursively from
k � 1 to K as

vk +
∑k−1
j�1

vj � max
i∈(

δEri[max(ri, vk)] − si
{ } + δ

∑k−1
j�1

vj , (25)

where Eri denotes the expectation with respect to the
reward distribution Fi for type i. Similar to Equation
(21), the value vk makes the DM indifferent between
immediately selecting an alternative of reward vk (and,
hence, using the kth unit of capacity) and exploring
another alternative (and preserving the kth unit of
capacity for at least one more period). At a given level

of capacity k, the greedy policy induced by Equation (25)
will explore the same type until an alternative is se-
lected; at that point, capacity is reduced by one, and
the DM may choose to explore a different type of
alternative.
It is not hard to show that the performance guar-

antees of Proposition 5 and Corollary 4 extend to this
setting. In this variation, the greedy policy is again
asymptotically optimal when the discount factor is
fixed (for any scaling of capacity) or if capacity grows
at a slower rate than N and δ → 1.

Large Capacity. Our analysis can be extended to a re-
gime in which initial capacity grows proportionally
with the number of alternatives; that is, K � Θ(N). In
this regime, the greedy policy induced by the reser-
vation prices given in Equation (21) is not asymptoti-
cally optimal. To see this, consider an example with
δ � 1 − 1/N and K � N. Here, the optimal policy ex-
plores and selects all alternatives, implying that a
greedy policy with v � 0 is optimal. It is not hard to see
that the reservation prices given in Equation (21) are
strictly positive during a nonvanishing fraction of the
horizon. Thus, the greedy policy will postpone select-
ing a significant number of alternatives until the end of
the horizon, which introduces a loss because of dis-
counting; it can be shown that this loss does not go to
zero even though δ → 1 in this case.
In Online Appendix D, we consider reservation prices

that depend on time but not capacity; these reservation
prices are based on an approximation in which the
capacity constraint is satisfied in expectation. This
approximation is predicated on the fact that, when the
number of alternatives is large, the state trajectories of
an optimal policy tend to concentrate around the ex-
pected trajectory. We use reservation prices of the
form vt � λδ−t, where λ ≥ 0 can be interpreted as the
Lagrange multiplier of the capacity constraint. Because
reservation prices are increasing with time, the result-
ing greedy policy will only select an alternative im-
mediately after it is explored or at the end of the
horizon.
Using these reservation prices within the penalties,

we can bound from above the gap between the pe-
nalized perfect information problem and the penalized
performance of the greedy policy and again conclude
that the greedy policy is asymptotically as the number
of alternatives grows.

6. Conclusion
The general recipe proposed here is broadly applicable
to problems in which we have an underlying approxi-
mate value function of interest. Although penalized
perfect information analysisweaves a common thread in
the problems we study here, problem-specific analysis
remains: we need to derive a bound between the
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penalized perfect information problem and the (penal-
ized) value of the greedy heuristic policy. The upside is
that the analysis for this key step is deterministic.

For the key step just described, we leveraged results
from the deterministic version of the problem. In the
stochastic knapsack problem, we applied LP relaxa-
tions to the penalized perfect information problem. In
the stochastic scheduling problem, we applied deter-
ministic scheduling bounds on the job completion
times in the penalized perfect information problem. In
the sequential search problem, we viewed the penal-
ized perfect information problem as a deterministic
assignment problem and bounded the value of each
unit of capacity.

Our main goal was to demonstrate the method on
different problems. Although the problems we stud-
ied have some similarities, there are important dif-
ferences. For example, total rewards in the knapsack
or sequential search problems roughly scale linearly
with capacity, whereas total costs scale quadratically
with the number of jobs in the scheduling problem.
The budget constraints in the knapsack and search
problems are somewhat different: in the knapsack
problem, values are deterministic, but capacity is
consumed by stochastic sizes, whereas in the search
problem, capacity consumption is deterministic, but
rewards are stochastic.

The approximations used in each of the problems
were relatively simple as were the resulting policies. It
would be interesting to see if approximate continuation
values with more complex state dependence could lead
to better policies, tighter penalized information rela-
xation bounds, and perhaps faster rates of convergence
to optimality. Variations of these specific models with
more realistic and complex features would also be in-
teresting to consider. Finally, andmost importantly, we
are hopeful that this method can be applied success-
fully and more broadly in the analysis of heuristic
policies for many other stochastic DPs.

Appendix. Proofs
A.1. Proof of Proposition 2
We bound the penalized perfect information value from
above in terms of the penalized performance of the greedy
policy. Herein we write the penalized perfect information
problem as an integer program; relaxing constraints (A.1b)
and (A.1d), we obtain that problem (A.1) decouples in terms
of the decision variables x and y. Thus, we obtain the upper
bound

V̄P
z (s) ≤

max
x∈{0,1}I

∑I
i�1 risixi

s.t.
∑I

i�1 sixi ≤ 1 .︸�����������︷︷�����������︸
♣

+
max
y∈{0,1}I

∑I
i�1 ri(si − E[si])yi

s.t.
∑I

i�1 yi ≤ 1 .︸���������������︷︷���������������︸
♠

.

We conclude the proof by bounding each term at a time.
For the first problem, note that the ratio of value to size of

each item is ri as in the greedy policy. By considering the
continuous relaxation to xi ∈ [0, 1], we obtain that xi � 1 for
i< τG, and xi ∈ (0, 1] for i � τG whenever τG ≤ I (and xi � 1 for
all i when τG > I). Rounding up to one the last fractional item
and using that risi � vi + ri(si − E[si]), we obtain the upper
bound

♣ ≤ ∑I∧τG
i�1

risi �
∑I∧(τG−1)

i�1
vi +

∑I∧τG
i�1

ri(si − E[si]) + vτG1{τG ≤ I}

� VG
z (s) + vτG1{τG ≤ I} ≤ VG

z (s) +max
i∈(

vi .

For the second problem, note that the optimal solution selects
the item with maximum objective, and thus,

♠ � max
i∈(

ri(si − E[si])+ .
The result then follows.

Integer programming formulation for VP
z (s): To calculate

VP
z (s), because the item that overflows the knapsack now

counts toward the objective, we need to explicitly account for
the overflowing item whenever it exists. We obtain an upper
bound on the penalized perfect information problem for
a fixed sample path s by solving the integer programming
problem

V̄P
z (s)≜ max

x,y∈{0,1}I
∑I
i�1

(vi + ri(si − E[si]))xi +
∑I
i�1

ri(si − E[si])yi

s.t.
∑I
i�1

sixi ≤ κ , (A.1a)

xi + yi ≤ 1 , ∀i ∈ ( , (A.1b)∑I
i�1

yi ≤ 1 , (A.1c)

∑I
i�1

si(xi + yi) ≥ κ(1 − xi) , ∀i ∈ ( , (A.1d)

where xi ∈ {0, 1} indicates whether the item is selected and fits
the knapsack, and yi ∈ {0, 1} indicates if the item overflows
the knapsack. Constraint (A.1b) imposes that an item either
fits the knapsack or overflows it. Constraint (A.1c) guarantees
that there is at most one overflowing item. Constraint (A.1d)
requires that the overflowing item, if one exists, causes the
selected capacity to exceed the capacity of the knapsack. This
constraint is vacuouswhen all items fit the knapsack, that is, if
there is no overflow. Note that we can only be sure that
VP

z (s) ≤ V̄P
z (s) because the overflowing item yi can be chosen

to exactly match the capacity of the knapsack. For item yi to
actually overflow the knapsack, we need to make inequality
(A.1d) strict. When the distribution of item sizes are abso-
lutely continuous or lattice (i.e., there exists some h> 0 such
that P si ∈ {0, h, 2h, . . .}{ } � 1 for all i ∈ (), replacing constraint
(A.1d) by

∑I
i�1 si(xi + yi) ≥ (κ + ε)(1 − xi) for some ε> 0 in

problem (A.1) gives that V̄P
z (s) � VP

z (s). The bound given
by V̄P

z (s), however, suffices for our analysis.

A.2. Proof of Corollary 1
Part 1 of the result follows by taking expectations of Equation
(10) and applying Proposition 1. Equation (11) follows
because maxi vi � maxi E risi[ ] ≤ E maxi risi[ ] from Jensen’s
inequality together with the fact that (si − E[si])+ ≤ si.
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A.3. Proof of Corollary 2
Because the value-to-size ratios are bounded, it suffices to
show that EI ≜ 1

κE maxi�1,...,I si
[ ] → 0 as I → ∞. We prove each

case separately.
Case (a). This case follows trivially because EI ≤ s/κ and

κ � ω(1).
Case (b). Using Lyapunov’s inequality and linearity of

expectations, we obtain that

EI ≤ 1
κ
E[max

i
|si|p]1/p ≤ 1

κ

∑I
i�1

E |si|p[ ]( )1/p
≤ (mI)1/p

κ
, (A.2)

which converges to zero because κ � ω(I1/p).
Case (c). Because si is sub-Gaussian, using the tail formula

for expectations, we obtain that

E |si|p[ ] � ∫ ∞

0
pxp−1P{si > x}dx ≤ a

∫ ∞

0
pxp−1 exp(−bx2)dx

� p
2bp/2

Γ(p/2) .

Stirling’s approximation implies that there exists a constant
c> 0 such that E |si|p[ ]1/p≤ c

��
p

√
. Using Equation (A.2) and

setting p � log(I), we obtain that EI → 0 as I → ∞ when
κ � ω( ��������

log(I)√ ).

A.4. Proof of Proposition 3
We bound the penalized perfect information value from
below in terms of the penalized performance of the greedy
policy for a fixed sample path s. The penalized perfect in-
formation problem can be written as

VP
z (s) � min

x∈{0,1}∞
∑∞
i�1

(vi + ri(si − E[si]))xi

s.t.
∑∞
i�1

sixi ≥ κ ,

where xi ∈ {0, 1} indicates whether the component is selected.
Note that the ratio of cost to operating life of each component
is ri as in the greedy policy. By considering the continuous
relaxation to xi ∈ [0, 1], we obtain that xi � 1 for i< τG, and
xi ∈ (0, 1] for i � τG. Rounding down to zero the last fractional
item and using that risi � vi + ri(si − E[si]), we obtain the
lower bound

VP
z (s) ≥

∑τG−1
i�1

risi � VG
z (s) − rτGsτG ≥ VG

z (s) −max
i∈(+ risi ,

where the first equality follows because the penalized per-
formance of the greedy policy is VG

z (s) � ∑τG
i�1 risi. The result

then follows.

A.5. Proof of Proposition 4
Fix a sample path p and consider any feasible action a ∈ A(p)
in the perfect information problem. Letting Saj denote the start
time of a given job j using a, we first note that

Saj ≥ 1
M

∑
i≺ a j

pi −M − 1
M

max
i∈)

pi , (A.3)

which is a known result from deterministic scheduling (see,
e.g., the proof of proposition 3.1 in Weiss 1990). From

Equation (14), we can then bound the penalized perfect in-
formation objective from below:

VP
z (p) � min

a∈A(p)
1
M

∑
j∈)

wj
∑
i�aj

E[pi] +
∑
j∈)

wj Ca
j −

1
M

∑
i�aj

pi

( )

≥ min
a∈A(p)

1
M

∑
j∈)

wj
∑
i�aj

E[pi] +M − 1
M

∑
j∈)

wj pj −max
i∈)

pi

( )

� 1
M

∑J
j�1

wj
∑
i≤j

E[pi] +M − 1
M

∑
j∈)

wj pj −max
i∈)

pi

( )
,

where the inequality follows from Equation (A.3) and the fact
that Ca

j � Saj + pj. The second equality follows from the fact
that the WSEPT policy is optimal for the remaining objective
(the only term that depends on a in the second line is the
objective for a single machine–scheduling problem) and the
fact that the jobs are indexed according to WSEPT. The pe-
nalized objective of the WSEPT policy VG

z (p) corresponds to
Equation (14) with the policy a corresponding to the WSEPT
policy. We note that the completion time CG

j usingWSEPT for
any job j satisfies CG

j ≤ (1/M)∑i< j pi + pj (see, e.g., lemma 3.3
of Hall et al. 1997). We then have

VG
z (p) �

1
M

∑J
j�1

wj
∑
i≤ j

E[pi] +
∑
j∈)

wj CG
j − 1

M

∑
i≤ j

pi

( )

≤ 1
M

∑J
j�1

wj
∑
i≤ j

E[pi] +M − 1
M

∑
j∈)

wjpj .

Equation (15) then follows from the above lower bound on
VP

z (p) and this upper bound on VG
z (p).

A.6. Proof of Corollary 3
Equation (16) follows from taking expectations in Equation
(15) and applying Proposition 1. Equation (17) then follows
directly given the assumption that wj ≤ w̄.

A.7. Proof of Proposition 5
We first analyze the penalized perfect information problem. In
the perfect information problem, the DMmust select exactlyK
alternatives, and any selected alternative must have been
previously explored. Assume that the rewards are labeled so
that theywould be optimally explored in the penalized perfect
information problem (i.e., rt corresponds to the tth alternative
that is explored). There is no penalty for selecting alternatives,
and hence, the penalized reward for selecting reward rt at time
τ ≥ t is given simply by δτrt. The penalized cost for exploring
this alternative, however, is given by

δt−1(−s − zt) � δt−1 −s + δEr̃[(r̃ − vkt )+] − δ(rt − vkt )+
( )

� δt min vkt − rt, 0
( ) + (1 − δ)δt−1 ∑kt

j�1
vj , (A.4)

where we use kt to denote the capacity remaining at the start
of time t and that

(1 − δ)∑k
j�1

vj � δEr̃[(r̃ − vk)+] − s

from Equation (21). Note that any term vj in the sum
∑kt

j�1 vj
will continue to be accrued in the penalized perfect in-
formation problem up to and including the period when the
jth unit of capacity (counting down from K to one) is con-
sumed by some selection. Let τj denote the time when the jth
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unit of capacity is consumed or, equivalently, when the (K −
j + 1)th alternative is selected, and let tj ≤ τj denote the time at
which the alternative used for this selection is explored.
Decomposing the penalized rewards across units of capacity
consumption, we then have

VP
z (r) ≤

∑K
j�1

(1 − δ)∑τj
t�1

δt−1vj + δtj min(vktj − rtj , 0) + δτj rtj

( )

� ∑K
j�1

(1 − δτj )vj + δtj min(vktj − rtj , 0) + δτj rtj
( )

≤ ∑K
j�1

(1 − δτj )vj + δτj vj
( ) � ∑K

j�1
vj .

The first inequality follows because we exclude only terms of
the form δt min(vkt− rt, 0) ≤ 0 for alternatives that are ex-
plored but never selected. The first equality follows by
evaluating the geometric series for the first term. The second
inequality follows from the fact that δtj min(vktj − rtj , 0) +
δτj rtj ≤ δτj vj, which we argue as follows:

δtj min(vktj − rtj , 0) + δτj rtj ≤ δtj min(vj− rtj , 0) + δτj rtj

≤ δτj min(vj − rtj , 0) + δτj rtj � δτj min(vj, rtj ) ≤ δτj vj ,

where the first inequality follows from the fact that vj is
nonincreasing in j, and ktj ≥ j for every j. The second in-
equality follows because τj ≥ tj, δ ∈ (0, 1], and the term in
the minimization is no larger than zero.

We next analyze the penalized performance of the greedy
policy. Notice that the reservation prices vk are nonincreasing
in k. Because capacity decreases monotonically, the greedy
policy will only select an alternative immediately after it is
explored or at t � N. Because the greedy policy selects an al-
ternative immediately whenever rt ≥ vkt , using Equation (A.4)
we obtain that the penalized payoff at time t<N is given by

δt−1 δrt1{rt ≥ vkt} − s − zt
( ) � δtvkt1{rt ≥ vkt} + (1 − δ)δt−1 ∑kt

j�1
vj .

In period N, if any positive capacity remains, the greedy
policy will explore the final alternative and then select the
kN highest rewards. Because rewards are nonnegative,
the total reward selected in period N is no smaller than
δNvkN1{rN ≥ vkN } + (1 − δ)δN−1 ∑kN

j�1 vj.
As in the analysis above, let τj denote the time when the

(K − j + 1)th alternative is selected by the greedy policy. We
can then bound the penalized performance of the greedy
policy as

VG
z (r) ≥

∑N∧τG

t�1
δtvkt1{rt ≥ vkt} + (1 − δ)δt−1 ∑kt

j�1
vj

( )

� ∑K
j� k̄G+1

δτj vj + (1 − δ)∑K
j�1

vj
∑N∧τj

t�1
δt−1

� ∑K
j� k̄G+1

δτj vj +
∑K
j�1

vj(1 − δN∧τj ) � ∑K
j�1

vj − δN
∑k̄G
j�1

vj ,

where the inequality follows by the observation that the total
reward selected in periodN is no smaller than vkN1{rN ≥ vkN },

the first equality follows because the penalized reward of the
alternative selected at time τj is vj, the second equality from
the formula for geometric series, and the last because τj � N
for j ≤ k̄G. The result then follows because VP

z (r) ≤ ∑K
j�1 vj as

argued previously.
When δ � 1, the reservation prices vk equal a constant value

v∗ for each k � 1, . . . ,K with Er̃[(r̃ − v∗)+] � s. In this case, in
the penalized perfect information problem, the value for
exploring and selecting alternative t is given by min(rt, v∗),
and the value for exploring but not selecting an alternative is
given by min(0, rt − v∗) ≤ 0. Thus, in the perfect information
problem, it is optimal to explore and select the K alternatives
with the largest realized rewards and the optimal value is
given by VP

z (r) � ∑K
k�1 min(r(k), v∗), where r(k) denotes the kth

largest value of r; that is, r(1) ≥ r(2) ≥ · · · ≥ r(N). For the greedy
policy, the penalized reward for selecting the alternative
explored at time t is given by v∗1{rt ≥ v∗}. If the greedy
policy explores all N alternatives and capacity k̄G > 0 re-
mains, then the largest k̄G remaining alternatives are se-
lected. We can then write the penalized performance of
the greedy policy as

VG
z (r) � (K − k̄G)v∗ + ∑K

k�K−k̄G+1
r(k) �

∑K
k�1

min(r(k), v∗) � VP
z (r) .

A.8. Proof of Corollary 4
Equation (24) follows from taking expectations in Equation (23)
and applying Proposition 1.

We now prove the second part of the result. We first as-
sume condition (a); that is, the discount factor is fixed. It is not
hard to see that the reservation prices are nondecreasing in δ.
Let v̂ be the reservation price when δ � 1, that is, the solution
of the equation Er̃[(r̃ − v̂)+] � s. Using the fact that the res-
ervation prices vk are nonincreasing in k, it follows that the
loss term in Equation (24) is bounded above by δNKv̂. Then
we have

1
K
(V∗ − VG) ≤ δNKv̂

K
� δNv̂ −→N→∞

0.

We now consider condition (b). Using the fact that δ ∈ (0, 1)
and the fact that vk ≤ v̂ as before, it follows that the loss
term in Equation (24) is bounded from above by v̂E[k̄G].
We next bound k̄G from above. Because reservation prices
satisfy vk ≤ v̂, we obtain that k̄G � K −∑N∧τG

t�1 1{rt ≥ vkt} ≤
max 0,K −∑N

t�1 1{rt ≥ v̂}( )
. Because rewards are indepen-

dent and identically distributed, we have
∑N

t�1 1{rt ≥ v̂} ∼
Bin(N, p̂); that is, the sum is distributed as a binomial random
variable with N trials and probability p̂ � P{r̃ ≥ v̂}. We next
argue that p̂> 0. Because E[r̃]<∞, for every ε> 0 there exists
some r̄>0 such that E[r̃1{r̃ ≥ r̄}]< ε. Without loss we can
assume that r̄ ≥ v∗. Using that (r − v∗)+ ≤ (r̄ − v∗)1{r ≥ v∗} +
(r − r̄)+, we obtain by taking expectations over r̃ that s ≤
(r̄ − v∗)p̂ + E[(r̃ − r̄)+] ≤ r̄p̂ + ε because r̄, v̄∗ ≥ 0. Therefore,
p̂ ≥ (s − ε)/r̄, and the result follows because ε is arbitrary.

Because K � o(N), we know that for any ε ∈ [0, p̂) it holds
that K ≤ (p̂ − ε)N for sufficiently large N. This leads us to

E[k̄G] ≤ E max(0,K − Bin(N, p̂))[ ] ≤ KP Bin(N, p̂) ≤ K
{ }

≤ K exp −2ε2N( )
,
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where the second inequality follows because max(0,K − a) ≤
K1{a ≤ K} for a,K ≥ 0 and the second inequality from
Hoeffding’s inequality.

Putting this together with Equation (24), we conclude

1
K
(V∗ − VG) ≤ 1

K
v̂E[k̄G] ≤ v̂ exp −2ε2N( ) −→N→∞

0 .

Endnotes
1Dean et al. (2008) considers an alternate policy that sorts items
according to wi/μi, where wi � viP{si ≤ κ} denotes the effective value
of item i and μi � E[min{si, κ}] denotes the mean truncated size of
item i. This takes into account the fact that in the event that si >κ, the
actual realization of the size is irrelevant because item i certainly
overflows the knapsack, and the DM will never collect the item’s
value in this case. In Online Appendix B, we show that our results
extend to this effective value formulation.
2We present the asymptotic optimality result in absolute form as is
customary in the operations research and regret-based learning lit-
erature. It is not hard to derive similar results in relative form by
providing a lower bound on the performance of the greedy policy in
terms of the problem parameters. Relative bounds are common in the
approximation algorithm literature.
3We thank an anonymous referee for suggesting this variation.
4 In contrast to the knapsackproblem, the cost of the component used at
termination counts toward the objective. Derman et al. (1978) considers
the case with rebates; that is, the cost of the last component used is
returned. Our results can be extended to accommodate rebates.
5To simplify notation, we do not include in Equation (19) the effect of
previously explored alternatives that are recalled by the greedy policy
at t � N. Our primary analysis of the greedy policy still applies
without including these possible rewards.
6 In the primal DP, we implicitly impose the constraint that the DM
must explore an alternative before selecting it. We can impose this
constraint in the perfect information relaxation as well. Thus, the DM
with perfect information still has to pay a search cost to select an al-
ternative even if the rewards are all known in advance. Note also
that the perfect information relaxation gives the DM freedom to
explore the alternatives in any order; in the case of a priori identical
items, we could obtain tighter upper bounds by fixing the explo-
ration sequence to be the same in every sample path. This variation
appears more difficult to analyze, however, and would not extend
to problems with alternatives that are not a priori identical (e.g., as
in Section 5.5).
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