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A b s t r a c t .  Let X 1 , X 2 , . . . , X ~  be iid random variables with a discrete dis- 
tribution {Pi}~=l. We will discuss the coincidence probability Rn, i.e., the 
probability that  there are members of {Xi} having the same value. If m = 365 
and p~ ~ 1/365, this is the famous birthday problem. Also we will give two 
kinds of approximation to this probability. Finally we will give two applica- 
tions. The first is the estimation of the coincidence probability of surnames in 
Japan. For this purpose, we will fit a generalized zeta distribution to a fre- 
quency data of surnames in Japan. The second is the true birthday problem, 
that  is, we will evaluate the birthday probability in Japan using the actual 
(non-uniform) distribution of birthdays in Japan. 

Key words and phrases: Birthday problem, coincidence probability, non-uni- 
formness, Bell polynomial, approximation, surname. 

I.  Introduction 

I t  is f requent ly  observed tha t ,  even within  a small  group, there  are people  wi th  
the  same surname.  I t  m a y  not  be considered so curious to  find persons  wi th  the  

same su rname  in a group compared  to those wi th  the  same bir thday.  But  if we 
consider the var ie ty  of  su rnames  and the  relat ively small  por t ions  of each su rname  
in some countries,  this  fact becomes less tr ivial  t h a n  is first seen. The  unusualness  
is mos t  clearly seen in au thor ' s  country,  Japan ,  where there  exist at  least 120,000 
surnames ,  and  the  cumula t ive  percentage  of su rnames  till 5,000th rank  is still 
92.3%; t ha t  is, there  are ex t remely  m a n y  su rnames  if rare names  are not t aken  
account  of. Therefore  it seems an interest ing p rob lem to  know the probabi l i ty  t h a t  
there  exist persons  having the  same su rname  in a given group of n persons.  

This  problem,  which we have a l ready noticed and  would like to call the sur- 
name problem, is nothing bu t  the  b i r thday  p rob lem with  unequal  probabi l i t ies  of 
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occurrence. The birthday problem is well-known since its implication contradicts 
our intuition considerably. Also it is generalized in many ways, see, Feller (1968), 
Johnson and Kotz (1977), Kolchin et al. (1978) and Fang (1985). One recent ex- 
ample is Nishimura and Sibuya (1988) where authors considered the coincidence 
probability of birthdays between two groups. 

But in almost all cases, the uniform occurrence probabilities are assumed and 
papers which consider unequal occurrence probabilities seem to be scarce. Early 
examples are Chistyakov and Viktorova (1965) and Bolotonikov (1968). Their 
interests were in the limiting forms of occupancy distributions. Recently Flajolet 
et al. (1988) showed that generating functions for several combinatorial problems 
can be derived in a unified and elegant manner using the concept of the shuffling 
operation of formal languages, see also Flajolet et al. (1991). Among others, they 
derived generating relations for various basic probabilities of the birthday problem 
with unequal occurrence probabilities. 

As to practical evaluations of coincidence probabilities for non-uniform occur- 
rence probabilities, we know only one paper of Klotz (1979). In his interesting 
paper, Klotz remarked that the true distribution of birthdays is never uniform 
and derived the formula of non-coincidence probability rn for non-uniform birth- 
day rates. Also he calculated r~ up to n = 25 using his formula directly for data 
of birthdays for 41,208 Wisconsin residents who died in 1975. 

Now we define the surname problem formally as follows: Let X1, X2, • • •, X~ be 
independent random variables which have an identical (infinite or finite) discrete 
distribution P ( X  = j )  = pj  for j = 1, 2, . . . .  What is the coincidence probability 
Rn that at least two of Xi have the same value? In this paper, we first express 
non-coincidence probabilities r~ = 1 - Rn using Bell polynomials and power sums 
Pa = ~-]i_>1P~, which is equivalent to the formula of Klotz. From this expression 
we derive a recurrence relation for rn. Also we give two types of approximations 
of non-coincidence probabilities. The second approximation is based on a formula 
of asymptotic expansion of logarithm of Bell polynomials and shows very fine 
agreements. 

Finally, we try to estimate the surname coincidence probabilities in Japan. 
This is a difficult problem since there are extremely many surnames in Japan and 
there is no complete global study of the distribution of Japanese surnames. We 
use the data of insurants of Daiiti Life Insurance Co. which consists of percentages 
of surnames up to 200th rank. We fit a generalized zeta distribution to this data 
by a non-linear regression and estimate percentages of surnames over 200th rank 
by extrapolation. From the estimated distribution we calculate the coincidence 
probabilities of surnames in Japan. As expected, these probabilities are very large 
even for rather small n. For example, the probability exceeds 50% already at 
n = 27 and exceeds 90% even at n = 50. 

Also we apply our formulas to the true birthday problem in Japan. For this 
purpose, we try to estimate the actual distribution of birthdays of Japanese (who 
lived in 1988 and were born from 1900 to 1987) from monthly birth number data. 
The estimated distribution shows in fact a considerable fluctuation. However, it 
is shown that coincidence probabilities differ very slightly from those calculated 
based on the uniform birth rate assumption. 
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2. Bell polynomials 

In the following, we will use Bell polynomials extensively. So we summarize 
the necessary facts first. For details, see Comtet (1974) or Roman (1984). (Expo- 
nential) partial Bell polynomials Bn,k(Xl,..., Xn-k+l) in variables xl, x2 , . . ,  are 
defined by the formal double series expansion; 

(2.1) exp u E Xmm--~.. = 1 + E E UkBn'k(Xl'X2''") ~'~." 
m > l  n > l  k = l  

(Exponential) complete Bell polynomials Yn(Xl,. . . ,  Xn) are defined by 

~n 
= 1 + L y , ~ ( x ~ , ~ , . . . , x n ) ~ ,  

n>l 

n B that is, Yn = ~-~k=l n,k and ]I0 = 1. The precise form of Bn,k is 

(2.2)  Bnk = ~ al!" .an!  .= , - - -  \ ~ /  , 

where the summation is taken over all (al, as , . . . ,  an) such that  ~-~inl a~ = k and 
~ = 1  zai = n. In particular, Bn,,~ = x~. Following homogeneous properties are 
immediate: 

(2.3) 
Bn,k(abxl, .  . . ,  abJxj , . . . )  = akb'~Bn,k(Xl, . . . ,  X j , . . . ) ,  

Yn(bzl, b2x2, . . . ,  bnxn) = bnyn(X l , . . . ,  Xn). 

It is known that Bell polynomials have the recurrence relation 

(2.4) Y , ~ ( x l , . . . , x n )  = i -  1 x~Y,~_~(xi , . . . ,xn_~) ,  
i=1 

see Roman ((1984), Chapter 4.1.8). 
Also we will need the concept of multi-indexed Bell polynomials. Although 

the author cannot find the definition of this concept in the literature, it is a 
direct generalization of the ordinary one. Let SN be the set of multi-indices a = 
(al , . . . ,  aN) # (0 , . . . ,  0). We use following notations; 

N N 
( X l ' '  " ' 'XN)a= H (xi)ai' fi[ : H ai!, 

i=1 i=1 
N N N 

lal = ~ ai, Ilall = ~ iai, (a) = ~-~(i + 1)ai = lal + [Jail. 
i=1 i : 1  i : 1  
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The (partial exponential) multi-indexed Bell polynomials Ba,k are polynomials in 
variables {Xb; b E SN} defined by the following formal double series expansion in 
t = (~:i,'.',~N): 

(2.5) exp u E Xb~. = 1 +  ~ ~ u k B a , k  ~..  
bCSN aESN k=l 

We can show that the closed expression of B~,k is 

Ba'k({Xb})= E IIbmb! kb!] ' 

where the summation is taken over all multi-indices {mb}, [b[ < lal, such that 
~-~bmb = k and ~~bmbb = a. Note that ~~bmblbl = lal. Also Ba,k({Xb}) 
depends only on those Xb with b < a (coordinate-wise) and Ibl _< lal - k + 1. 

Corresponding to (2.3), we have the relation B,~,k({aybxb}) = aky a × 
Ba,k({Xb}). As is well-known, Bell polynomials play an important role in dif- 
ferentiation of composite functions. Analogously multi-indexed Bell polynomials 
are useful in differentiation of composite functions of the form h(x) = f (g(x)). 
Let g(a)(x) = (O/Ox)ag(x). Then we can show that  

lal 

k=l 

The proof is almost the same as that of the case N = 1, i.e., Fa~ di Bruno formula's, 
see Comtet ((1974), Chapter 3). If we let f(x) = logx or e x in this formula we 
get one expression of the exlog relation discussed in Barndorff-Nielsen and Cox 
(1989). In particular, 

(2.7) ( ( 9 ) a  ,a[ [ (k=l),  1 ({g(b)(~)}) 
Oxx Iogg(x) = ~ ( -1)  ~-1 Ba,k • k=l g(~)k j 

Finally we need following easy properties: 

(2.8) 

(2.9) 

v N ( 1 , o , o , . . . , o )  = 1, (o). ~ YN(llxt,..., N!XN) 

- -  { o "YM if Ila[I <__ N, 

if Ilatl > N, 

where m = N -I la l l .  
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3. Non-coincidence probabilities 

Let {Pi}i>l be a given (finite or infinite) probability distribution. Power sums 
~-]-i>lpm are denoted by Pm. It is easy to see that  the probability rn of non- 
coincidence is equal to ~i1,~2 ..... in PilPi2"" "Pin, where the summation is taken 
over unordered mutually distinct indices. Therefore, the exponential generating 
function of {rn} is 

t i 
G(t) = 1 + ~--~ r i ~  = I I ( 1  +pit). 

i k l  i>1 

This is the simplest case of a family of generating functions due to Flajolet et al. 
(1988) for various probabilities of the birthday problem with unequal occurrence 
probabilities, see also Flajolet et al. (1991). From this generating function we can 
get an expression of rn's in terms of power sums {Pro} as follows. 

Therefore 

G(t) = exp [~>_ll°g(l + pnt) ] 

= exp (--1)i-l~--~t i 

= exp (--1)i-1(i -- 1)!Pi 

= 1 +  
t ~ 

E Y n  ( . . . ,  ( - 1 ) J - l ( j  - 1)!Pj , . . . )  n.r" 
n = l  

rn = Yn (1 , . . . ,  ( - 1 ) J - l ( j  - 1 ) !P j , . . . ,  ( - 1 ) " - 1 ( n  - 1) !P, ) .  

If we use the closed expression (2.2) of Bell polynomials, we can get the following 
explicit expression of rn from the last relation: 

n! ( 1 )  1Pi a~ 
(3.1) rn -- 1 + E al!. . 'an! 

al+2.a2+...+n.a,,=n i ~ l  
al ~ n  

This is the expression given by Klotz (1979). He derived it directly without using 
Bell polynomials. Also he used this expression to calculate rn up to n = 25 using 
data  of birthdays of 41,208 Wisconsin residents. 

Using the recurrence relation (2.4) we can get the following recurrence relation 
for r~'s immediately. 

PROPOSITION 3.1. 

(3.2) 

If we set ro = 1, then for n = 1, 2,.. .  
n 

rn = E ( - 1 )  i-1 ( n -  1)! Pi rn-i. 
i=l (n i)! 
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4. Approximation of non-coincidence probabilities 

Although the formula (3.1) is a complete answer to our problem, it is in 
general, a sum of numerous terms (for example, 1,958 summands for r25) each 
of which are products of big combinatorial numbers and small numbers {Pro}. 
Also the relation (3.2) involves products of big combinatorial numbers and small 
numbers and is not suitable to actual numerical evaluations. (If we can make 
calculations with sufficiently high order precision, (3.2) is the easiest method to 
calculate non-coincidence probabilities, see later sections.) 

In this section, we consider one approximation to non-coincidence probabili- 
ties. Let c = maxi Pi. We can assume c < 1 without loss of generality. The m-th 
power sum Pm can be bounded as P m =  ~ip~(Pi) "~-1 <_ c m-1. Therefore 

IB~,k(P1, -P2, . . . , ( - 1 ) J - l ( j  - 1)!Pj, . . ")1 

n! ~ i ( c ~ i  1 ) 
~- E al! " .an!  

a l + 2 . a 2 + . , . + n . a n  = n  i=  l 
a l  + a 2 + ' . . + a n = k  

(4.1) 
ai 

o, °, 

-<c~-k ~ al! -an! i! ] 
a l + 2.a 2 4 - . . -+n .an  = n  i ~ 1  

al  + a 2 W - . T a n = k  

= cn-kBn,k(O!, 1!,2!,...) = cn-kfs(n,k)[. 

Here s(n, k) is the Stirling number of the first kind. As to the definition of Stirling 
numbers and their expression in terms of partial Bell polynomials, see Comtet's 
book (1974). 

Note that the expression of r~ by partial Bell polynomials 

r ,  = ~ Bn,k(P1, -P2 , . . . ,  ( - 1 ) J - l ( j  - 1)!Pj, . . . ) .  
k = l  

Now we try to approximate rn by 

r?~m E Bn,k(P1,-P2, . . . ,  ( - 1 ) / - l ( j  - 1)!Pj,...). 
k = n - m ÷ l  

For example, 

r n ,  2 ~ 1 --  ( r t ) 2 P 2 ,  
2 

r n , 5  ~- r n , 4  -~ 

+ % -  : 3+ P4 

(n)6 p} (n)~ p}p + - ~ ] ,  
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where (x)m stands for the factorial polynomial x ( x  - 1) . . .  (x - m + 1). 
We can bound approximation errors using (4.1) as follows 

(4.2) 
n - - m  n - m  

Irn- rn,ml ~ E cn-kls(n'k)] = ca E c-kls(n'k)l" 
k = l  k = l  

If we use this estimate and the generating relation of signless Stifling numbers of 
the first kind, that  is, 

n 

x ( x  + 1)- . .  (x + n -  1 ) =  ~xkls(n,k)l, 
k = l  

see Comtet  ((1974), Chapter  5), we can get the following result. 

PROPOSITION 4.1. 

(4.3) 
m - 1  

Irn - r,~,ml < ( 1 +  c ) (1+  2c)- . . (1  ÷ ( n -  1 ) c ) -  E c k l s ( n ' n - -  k)l" 
k=O 

As to the signless Stirling numbers, following expressions and approximations 
are known, see Moser and Wyman (1958); 

Is(n, n)l = 1 ,  

Is(n,n-1)l= (n2), 
i s ( n , n _  2) I _ ( n ) 3 ( 3 n -  1) 

24 
(n)=(n)4 

Is(n,n-3)l - 48 ' 

Is(n,n - 4)1 = (n)a(15n3 - 30n2 + 5n + 2) 
5760 

and, for n - o ( v ~ )  _< m < n, 

I~(n, m)l  -~ 

x 1 +  + ( n -  m)3 + 
6m m-~ 

1 {251(18~0m)4 5 ( n - m ) 5  
+~-~ + 6 

25(n - m)4 ~, 

J 72 

Approximations by rn,m are poor unless either n or c is small. For the birthday 
problem, the error bound in (4.3) for rn,4 is less than 0.01 only for 5 < n < 23 
and the error Ir~ - rn,al itself is less than 0.01 only for 5 _< n < 24. 
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5. Approximation of logarithms of non-coincidence probabilities 

We can give another type of approximation that is based on an asymptotic 
expansion of the logarithm of Bell polynomials. In this section, we will derive 
a formal expansion of logYN(1,2!x2,...,N!XN) for fixed {x2,x3 . . . .  }. We are 
interested in the asymptotic behavior as N ~ +co. 

For simplicity, we will use following notations. The set {1, 2 , . . . ,  K} is denoted 
by [K]. The symbol S(X) (resp. S2(X)) stands for the set of non-empty families 
of disjoint subsets of X (resp. the set of non-empty families of disjoint subsets with 
cardinality _> 2 of X). The union U~ezI for 2- E $(X) is denoted by U2-. The 
set of those Z E S(X) with U27 = X is denoted by 8*(X). For Z, J E 8(X)  the 
relation Z << J means that each I E 27 is included in some J E J and that each 
J E J includes at most one I E 27. If U2- = U J  (= Y, say), 2- < ,7 means the 
order relation that 27 is a finer partition of Y than ,:7. Let #(~, J )  be the MSbius 
function for this order, that is, 

#(27' J)  : (-1)#z+#J H # {I E Z; I C J}. 
JEJ 

If 2- E 8(X), then let r(2-) = ~ z e z ( # I -  1), and ((2-) = r I t e z ( - 1 ) # * - l ( # I -  1). 
For a sequence t = {ti}, the sum ~-~i6I ti over a subset I of indices is denoted by 
tz. If f(m) = ~aCaX a, then mindegf  is the minimum of {Iai;ca # 0}. Also let 
~(n) = ( - - 1 ) n - l ( n -  1). 

PROPOSITION 5.1. 

(5.1) log YN(1, 2!X2,..., N!XN) = 

where Ca is a polynomial of the form; 

lal 

The following formal expansion holds: 

Ca(N)(x2,x3,'",xN) a l ,  
aESN-1 

Ca(y) = y ~ ( - 1 ) k - l ( k  - 1)!Ba,k ({(Y)(b); b E SN-1 }).  
k=l 

PROOF. Let x ~-- (Xl , . . . ,  XN). From (2.3), (2.7) and (2.9) we have 

(0 /0x)  a log YN(I!Xl, 2!X2,..., N!XN)Ix=(1,0 ..... 0) 

lal 
---- ~-~(--1)k-l(k - 1)!Ba,k ({(N)llbll; b E SN}). 

k=l 

Therefore the following expansion follows: 

log YN (1!xl, 2!x2,. . . ,  N!XN) 
[" lal ] ya 

= aeSN ~ [k~--1 (-1)k-'(k-1)'Ba'a({(N)llbll}) -~'' 
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where y = (Xl - 1 ,  x2 , . . . ,  xn). If we let Xl = 1 in this expansion, then only terms 
with al = 0 remain and the right-hand side becomes as; 

E 
a 6 S N - 1  

lal ] za 
k~__l(--1)k-l(k-- 1)!B(o,a),k({(N)llbll}) -~., 

where (0, a) = (0, a l , . . . , a N - 1 )  and z = ( x 2 , . . . , x g ) .  Note that [(0, a)[ = JaJ 
and JJ(0, a)JJ = (a). Also, from (2.5), we can see easily that 

B(0,a),k ({Xb; b E SN}) = B a , k  ({X(0,b); O E S N - 1 } ) .  

Thus the proposition has been proved. 

PROPOSITION 5.2. Polynomials Ca(y) are of degree JJaJJ + 1. 

The proof of this proposition will be given after providing two lemmas. Pre- 
cisely, we will show that degVa < []a[[ + 1 first. That degCa = [[aJ[ + 1 will be 
shown in Proposition 5.3. 

LEMMA 5.1. Define functions FK,k(t), t = ( t l , . . . ,  tK), for K > 1 and k > 1 
by 

(5.2) 

k 

FK,k(t) : E ( - - 1 ) # Z - I ( # I - -  1){/cl~z(1 + t I)--1 . 
ZC$* ([K]) 

Then degCa < IJa]J + 1 for all a E SN_ 1 if mindegFg,k >_ K + k - 1 for all 
K , k _  1. 

PROOF. From (2.8) and (2.9) we can show the relation 

YN(1,2!X2,3!X2,...,N!xN) = 1+ E (N)(a)-~., 
a E S N - 1  

where x = ( x 2 , . . . ,  XN). Using this relation, we have the generating function of 
Ca from (5.1); 

{ "°} 
log l+ae~_l(y)(a)-~.  ---- aES~N_ 1 C. (y) ~ , 

Expand the left-hand 
then 

lal 
Ca(y)  = 

n=l 

side of the last relation directly and compare both sides, 

( - i )n-X E n  {a[/yi ibi[}{l~i(Y)(b~) } ' 
bl  _}_. , . + bn  _~ a 
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where the innermost summat ion is taken over unordered ( b l , . . . ,  bn). From the 
polynomial expansion formula, see Roman ((1984), Chapter  4), 

(y)k 
co(y) = Z {co(0)} k! 

k>_0 

( - 1 ) " - i  E a' Ub" A k (O)(b,) k' E 
k>0_ Ln=l n bl+...+bn= a 

V ' c  -=/__, ~,k ~ , say, 
k_>0 

where A is the forward difference operator A f ( x )  = f ( x  + 1 ) -  f ( x )  and Akf(0)  = 

Akf(x) l==o.  
It is convenient to associate a multi-index a = ( a l , . . .  , aN)  • {2 , . . .  , N }  K, 

a l  ~ a2 _< " "  _< aK,  with each a • SN-1  so that  K = [a I and # { i ; a i  = j + 1} -- 
aj ,  1 < j _< N - 1. Note that  (a) = [a[. For example, if N -- 5 and a = (1, 3, 2, 1), 
then K = 7 and a -- (2, 3, 3, 3, 4, 4, 5). Under  this correspondence between a 
and a,  each decomposition bl + . . .  + bn -- a of a corresponds to a part i t ion 
Z = { I1 , . . . ,  In} E $*([K]) such tha t  (bi) = aI , .  Moreover it can be shown tha t  

where the left-hand sum is taken over every different permuta t ion  {c~} of {bi} and 
the r ight-hand sum is taken over every parti t ion ZT = { J 1 , . . . ,  Jn} E $*([K]) with 
{ a j } j e j ,  = { a j } j c i ,  for each i. Therefore, if we let, for a • SK,  

(5.3) C~*, k =  E ( - 1 ) # z - l ( # Z - 1 ) ' A k { H ( 0 ) ~ } '  
ZES*([K]) IEZ 

then  C*,k = C~,k if a • {2, 3 . . . .  , N }  K corresponds to a • SN-1 .  We should let 

(x)0 -~ 1. 
Let A = 1-[iez(1 + t i)  for a fixed Z E S*([K]). Then  it can be shown tha t  

A X 

Since AkA x = AX(A - 1) k, 

E 
(~=(C~ I ,-..,OIK)ESK 

I }t° H(xlo, 
k lEI 

/II (A-  1) k-- E Z~k (O)a, O~--T" 
aESK klEZ 

From this relation, we can see easily that  FK,k is the generating function of {C~.*,k}, 
that  is, 

t a 
= 

aESK 
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Now the proof of Proposition 5.2 is finished if we can show Ca,k = 0 for k > Ilall+l. 
But, since Ilall = l a l -  K,  this results from C~, k = 0 for Ic~l < K + k - 1, which, 
in turn, is a result of mindeg FK,k > K + k - 1. Therefore Lemma 5.1 has proved. 

LEMMA 5.2. Functions {FK,k} satisfy the following recurrence relation for 
every K, k >_ 1: 

(5.4) FK,k(t)  -- (i+td- I F K a _ , ( t )  

= ~ <(z)P~(t) 
ZeSt([K]) 

X [E#(Z ,J )FK-r (J ) , k - l  ( { tJ} je j  U {ti}iCuJ) ] , 
k J  

where the innermost summation is taken over those ,7 ~ S* (u:/) with g <_ ,7, and 

Pz( t )= l-I ti x l-I ( l + t i ) .  
ieU' /  i6[K]\u:Z 

PROOF. We use notations like FK,k ({ t i } ieI )  which have a natural meaning 
since Fg,k's are symmetric functions. From the identity 

E ( - 1 ) # a - i ( # J -  1) = -1 
JcL,#J>I 

for a fixed L C [K], we have the following relation for each fixed I C [K], 

Hence for 2- E 8" (K) 

K 

H(1 +t,)- H(1 +t{) = ~ <(j)Pj(t). 
IEZ /=1 Je,52([K]),J<<Z 

Using the last equality we can show the left-hand side of (5.4) is equal to 

Z6S2([K]) ~CS* ([K]),Z<<J 

Let fix a Z 6 S2([K]) and let X = OZ. For each £ 6 S*(X), let 

k-1  

7~.e S* ([KI),L;<<T¢. 
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Also let/{(b/),/% C 8*(X), be the sum of H(£)  for £ E 8*(X) with b/_< £. Then 

~I(U) ---- FK_r(ld),k_ 1 ( ( tu}uEld [-J {ti}i~Old) . 

From the MSbius inversion formula, see Comtet ((1974), Chapter 4, Supplement 
15), 

H(/:) = E //(/:, g/)/)(//). 
ues*(x),L<u 

Therefore the assertion follows. 

PROOF OF PROPOSITION 5.2. Let us prove the assertion by induction on k 
for each K _> 1. First note that Fl,k(tl) = t~. Therefore Proposition 5.2 is valid for 
K = 1 and k _> 1. Also note that A {(0)n  f ( 0 ) }  = 0 if n >_ 2 and = f(1) if n = 1. 
Hence, from (5.3), C~*,1 = 0 if a # 1 -- (1, 1 , . . . ,  1) and C~, 1 = ( - 1 ) K - I ( K  - 1)!. 

Therefore FK,1 = ( - 1 )  g - 1  ( K  - 1)! 1-II<i<g ti and mindeg Fg ,1  = K.  Now assume 
that K _> 2 and mindeg FK,k-1 _> K + k - 2. Then the mindeg of the second term 
of the left-hand side of (5.4) is K + k - 1. Also, the mindeg of each summand of 
the right-hand side of (5.4) is equal to 

mindeg {PzFK-~(J) ,k-1 } = mindeg Pz + mindeg FK_r(J ) , k_  1 

> #(Uf l )  + {K - q-(fl) + k - 2} 

= K + k - 2 + # f l > _ K + k - 1 ,  

where we should note that r ( J )  -- #(OiT)  - # J .  Therefore the induction is 
completed. 

PROPOSITION 5.3. The exact form of Ca,ilaiI+ 1 for a E SN-1 is 

(5.5) Ca,Hall+l = ( -1 ) la l - l ( (a )  - 1)!(2, 3 , . . . ,  N) a. 

For the proof of this proposition, we need the following lemma. 

LEMMA 5.3. Define ~(n), n > 2, by 

~(~)-- Z (#z- 1)~ H (#~- 1). 
z~s*(M)ns~([~]) Iez 

Then x(n) = ( n -  1)!. 

PRoof  o f  LEMMA 5.3. The number of partitions Z of [HI with # { I  e 
Z ; # I  = i} = xi, 1 <_ i < n, is n!/{H~xi!  × H~(i!)x,}, see Comtet ((1974), 
Chapter 5). Therefore 

[{ (5.6) ~(~)= Z n!(k-1)!  x,! T 
k = l  - -  i = 2  ) --  

n 

= Z ( k -  1)!B~,k(0, 1,. , n -  k), 
k = l  
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where the innermost summat ion  of the middle term is taken under conditions 
~-~2<i<~ xi = k and ~ 2 < i < n  ix~ = n. From (2.1) we have 

e x p ( u { l + ( t - 1 ) e t } )  = I + E  u k B n ' k ( O ' l " ' " n - k )  n--~." 
n > l  ~ ,k=l  

Multiply e -u  to both  sides of this equality and integrate them over (0, oo), then 

E t n t ~ 
= 

n_>2 n>_l 

by (5.6). Therefore the assertion follows. 

PROOF OF PROPOSITION 5.3. As we have seen, degrees of non-zero terms of 
FK,k are at least K + k - 1. Let GK,k be the sum of those terms of FK,k with 
degree K + k - 1. Then, extracting terms with degree K + k - 1 from both sides 
of (2.2), we can derive the recurrence relation; 

(5 .7)  GK,k(t)= {i=~lti}GK,k_l(t ) 
K 

+ E ( - X ) n - l ~ ( n )  
n=2 

Now we will prove by induction on both K and k tha t  

for all K,  k > 1, where Cg(k)  are constants determined later. From the proof of 
Proposit ion 5.2, GK,1 for all K > 1 has the form (5.8) with Cg(1) = ( K  - 1)!. If 
(5.8) is valid for k = m - 1 and K = 1, 2 , . . . ,  M - 1, then, by (5.7), it follows in 
fact after some manipulations tha t  

/ GM,m(t )  -= ( - -1 )M- lCM(rn)  H t i  ti , 
k i = l  ) i = I  

where we have set 

M 

n~2 
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Again, we can show by induction, using Lemma 5.3 and the last recurrence relation, 
that CK(k) = (K + k - 2)!/(k - 1)!. Thus we have proved that GK, k is equal to 

( - -1)K-I(K + k - 2)! E ai  
aC{1,2,...}K,Iotl=K+k-1 i = l  

that is, for a = (o~1, . . .  , OLK) E {1, 2 , . . . } K  with tal = K + k - 1, 

K 

C~*,k = ( - -1)K-I(K + k - 2)! r I  ai. 
i=1 

But, from the correspondence a E {2, . . . ,  N} u -+ a E SK-1 and C~, k = Ca,k, 
the last relation implies 

Ca,Hall+l = ( - ] . ) l a l - l ( ( a )  - 1 ) ! (2 ,  3 , . . . ,  N )  a 

for a E SN-1 ,  which is the assertion. 

Now we can give approximations of r~ based on (5.1) and (5.5). Let 
xi = ( - 1 ) i - l p i / i  in (5.1) and approximate Ca(n)  by its highest order term 
Ca,llall+l(n)llall+l/(lla[[ + 1)!. Then we get 

(5.9) 1 log Yn(1 , -P2 , . . . ,  ( -1) i -1(  i - 1)!Pi , . . . ,  (-1)'~-1 (n - 1)!P,~) 
n 

-~ E ( - 1 ) ( a ) - l ( ( a ) -  1 ) ! ( n -  1)llall ( P 2 ' ' ' " P ~ ) a  

aesn-1 ([[a[[ + 1)! a! 

Note that (n - 1)llali ~- nll<l as n --+ co and (P2, . . . ,  P~)= = O(cllalt), and, hence, 
summands in the right-hand side of (5.9) with large Ilall are negligible as far as 
cn remains small. Selecting appropriate terms, we have following approximations 
to rn: 

Pn,z = exp { -  ~ -~P2  

Pn,2 = Pn,1 exp { (n)a 

Pn,3 = pn,2 exp {(n)4 

Pn,4 = Pn,3  exp { (n)5 + 3P p3 - P P4 + 

The approximant Pn,1 with P2 = 1/365 is well-known in the birthday problem, 
see Feller (1968). Actually, in the birthday problem, maximas of lr~ - Pn,ml for 
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Fig. 1. Birthday problem: approximation of rn by Pn,m. Curves of log10 Irn - pn,ml 

for m = 1,2,3,4.  

5 _< n < 100, m = 1,2, 3, 4, are about 0.01034684, 0.00090218, 0.00055420 and 
0.00054270 respectively, showing excellent agreements, see Fig. 1. 

Remark. Note that the approximation (5.9) is formal. It seems very difficult 
to give a rigorous error bound. Even if there were such a bound, it would be 
probably effective only asymptotically as n -~ oc while P~ ~ 0. If so, it would 
not be of use in our case where we are interested in fairly small n. Arratia et 
al. (1989) showed that the approximant Pn,1 results from the Chen-Stein Poisson 
approximation of the distribution of a sum of Bernoulli random variables and gave 
an exact bound for approximation error Ir,~ - Pn,1 I" However their bound has a 

meaning only if n is large and, on the contrary, ( 2 )  P2 remains moderate in size. 

For example, their bound for the birthday problem is less than 0.01 only for n _< 9. 

6. Surname problem 

We now apply the preceding results to the real surname problem. To this 
end, we must know the distribution of surnames in Japan. But this is a difficult 
problem. There are extremely many surnames in Japan and no one knows exactly 
how many kinds there are. Niwa (1978) records 110,867 different surnames. Niwa, 
a researcher of Japanese surnames, has collected about 120,000 kinds, see Niwa 
(1980). There are many reasons for this abundance, which are historical, cultural 
and linguistical. Also there are only two surveys of the global distribution of 
surnames in Japan. The first such study was done by the Univac Japan Co. in 
order to computerize the handling of names by "kanji", see Tanaka (1972). In 
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Japan  an ideogram of Chinese origin, called kanji, and two types of phonograms,  
called kana, are used simultaneously. Names are fundamenta l ly  denoted  by kanji. 
By the way, this is one of main reasons why there  are so many surnames. Names 
that  axe identical phonologically, therefore have the same kana notat ion,  may  have 
completely different kanji notations.  

Sources of two existing surveys were computer  record files of insurants  of life 
insurance companies. Among them, tha t  of Daiiti  Life Insurance Co. is the biggest 
in da ta  size and we will use it in the sequel, see Daiiti  Life Insurance Co. (1987). 
It is based on about  8,320,000 insurants and their  11,098,833 insurances in 1986, 
when Japanese to ta l  popula t ion was about  121,000,000. However the published 
da ta  are only percentages of surnames till the 200th rank, see Table 1. 

Table 1. Typical Japanese surnames up to 21th rank: a part of Daiiti Life Insurance data. 

Sato Suzuki Takahashi 
1.583% 1.332% 1.132% 

Yamamoto Kobayashi Saito 
0.856% 0 . 8 1 2 %  0.799% 

Matsumoto Yamaguchi Kimura 
0.527% 0 . 5 1 9 %  0.476% 

Tanaka Watanabe 
1.061% 1.007% 
Kato Yoshida 

0.720% 0.670% 
Inoue Abe 

0.470% 0.464% 

Ito Nakamura 
0.950% 0.864% 
Yamada Sasaki 
0.661% 0.590% 
Hayashi Shimizu 
0.425% 0.412% 

We can point out  several problems about  this data.  Clearly this is not da ta  of 
random sampling and, moreover,  actual percentage numbers  is not  calculated by 
number  of insurants but  by number  of insurances, so there  are many  duplications. 
Probably  these two points do not cause a serious bias. Also the dis tr ibut ion of sur- 
names varies locally, but  the local distr ibution of insurants is roughly propor t ional  
to actual  local populations.  The  most  annoying feature of this da t a  is the fact 
tha t  computer  files record insurant  names by kana, tha t  is, phonologically because 
computers  could not handle kanji characters for a long time. For example,  "Ito", 
the surname of famous probabilist  K. Ito, has the 6th rank. But  actual ly there  
axe two major  I to 's  which have different kanji notat ions and have different origins 
and, in addition, there  are more than  16 rare Ito~s with different kanji notations.  

But ,  since we have no alternative,  we will simply neglect this point  and assume 
a family of names with the same kana nota t ion as a unit .  We show in Table 2 
cumulative percentages according to ranks which is a par t  of the Univac study, see 
Tanaka (1972). This was calculated by computer  files of Daihyaku Life Insurance 
Co. It is smaller in da ta  size, based on 715,815 insurances, but  we see immediately 
that  the distr ibution has an exceptionally long tail  even if we do not  take too  rare 
names into account. Therefore  it seems hopeless to fit ordinary distr ibut ions to this 
data.  From some experiments  we knew tha t  a function of the form f (n )  -- d in  a, 
where a is about  0.7, shows a good fitting at least within the range of ranks < 200. 
If a > 1, this is the zeta, or Zipf, distr ibution if normalized. On this account it 
may be suggestive to  note  tha t  the Zipf dis tr ibut ion can be the dis t r ibut ion of 
rank-frequency of sizes approximate ly  as shown in Hill (1974). But ,  if a ~ 1 this is 
a divergent series and in order  to get a convergent series we modify this function 
by multiplying a convergence factor c ~ with c < 1. The  convergence factor c must 
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Table 2. Cumulative distr ibutions of Japanese surnames: Daihyaku Life Insurance da ta  A (%) 

and es t imated distr ibutions B (%). 

rank 50 100 200 300 500 1000 2000 3000 5000 10000 20000 25000 

A 27.81 37.21 48.40 55.35 63.80 74.59 83.61 87.89 92.30 96.60 99.21 99.91 

B 25.27 34.46 45.28 52.31 61.75 74.95!87.01 92.58 97.26 99.70 99.98 99.99 

be near to 1 in order to have a long-tailed distribution. As a result we chose the 
function 

C n 
(6.1) f ( n : a , b , c , d ) = d ( n + b ) a  , n =  1 , 2 , 3 , . . . .  

The function defined by the sum ~ - - 0  f (n  : a, b, c, 1) is equal to  (I)(c, a, b) where (~ 
is the generalized (Riemann's) zeta function, see Gradshteyn and Ryzhik (1980). 
Finally, since it is difficult to compute the infinite sum ¢(c, a, b) numerically we 
t runcate  the summation range as 

c n 

(6.2) p(n : a, b, c) = ~(a, b, c) -1 - , a '  1 < n < 120,000, 
(n + o) 

where ~(a, b, c) is the normalized constant  

120,000 

~(a,b,c)--  E 
n = l  

C n 

(n + b) ~" 

Actually, bias caused by truncat ion is seen to be negligible. Next we tried 
to fit the function by a non-linear regression method.  A straightforward fitting 
based on the three-parameter  probability function (6.2) failed because of the in- 
accuracy of calculated values and the long computa t ion  t ime of ~. If we fit the 
four-parameter function (6.1), we get values a -- 0.9474, b = 5.798, c -- 1.002 
and d = 0.09464. Although these parameters  give a fairly good fitt ing with the 
coefficient of determinat ion R 2 = 99.38%, the value c which is larger than  1 makes 
the extrapolat ion beyond n > 200 absurd. As a result, we took the s trategy to fit 
parameters  (a, b, d) of the function (6.1) for each trial value c < 1 and to choose c 
so tha t  the sum of resulting function (6.1) for 1 < n < 120,000 is as near to 1 as 
possible. Thus we obtained values a = 0.7570, b -- 3.648 and c = 0.9996. Finally 
we subst i tuted these values into the function (6.2), ~(a, b, c) = 19.80427, and es- 
t imated  the distr ibution of Japanese surnames. The coefficient of determinat ion 
is R 2 -- 99.27%. If we fit the same function to the Daihyaku Life Insurance data,  
the coefficient of determinat ion is R 2 -- 97.98%. We show est imated cumulative 
distributions in Table 2. By the way, the calculation of ~ and power sums Pa, in 
fact all computat ions  except non-linear regressions, were done using UBASIC, a 
BASIC interpreter on MS-DOS based personal computers, developed by Profes- 
sor U. Kida of Rikkyo University which is capable of making ari thmetics of 2,600 
digits fixed point numbers (8th version). 
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Now we can calculate the surname probabilities Rn. First we use the recur- 
rence relation (3.2) directly. The result is tabulated in Table 3, see also Fig. 2. 
The coincidence probability exceeds 50% at n = 27, R27 = 51.153%. Also typ- 
ical cases are R18 = 27.327%, R38 = 75.332%, R41 = 80.250%, R50 = 90.727%, 
R57 -= 95.289% and -RT1 - 99.028%. In Fig. 3 the degree of approximations to the 
surname probability rn by approximants fin,m, m = 1, 2, 3, 4, is shown. The cusp 
in the curve of Pn,3 is due to the fact that r3 and pn,3 happen to be very close at 
that point. 

Table 3. Probabilities (%) of coincidence of surnames. 

R5 RIO R15 R20 R25 /:/30 R35 R4o R45 Rso 

2.14 9.14 19.81 32.60 45.95 58.60 69.65 78.70 85.66 90.73 

R55 //6o R65 RTo R75 R8o R85 Rgo R95 Rio0 
94.24 96.56 98.02 98.90 99.41 99.70 99.85 99.93 99.97 99.99 

7. True birthday problem 

As the second application we evaluate the true birthday coincidence probabil- 
ities in Japan. The true distribution of birthdays shows a considerable seasonal 
variation. Also it varies with generations. For example, the maximal monthly 
birth number was 154,114 (January) and the minimal was 85,469 (June) in 1900. 
The proportion is 180:100. On the other hand, the maximal monthly birth num- 
ber was 134,734 (August) and the minimal was 116,152 (February) in 1980. The 
proportion is 116:100. Also the annual birth number varies from generation to 
generation. We dare not to refer to false registrations of birthdays due to prefer- 
ence or avoidance of certain calendar days. Klotz (1979) believed that physician's 
convenience is an important factor. 

The author could not get daily birth number data and had to estimate them 
from partial data taken from existing literature. The basic data of the subse- 
quent work are monthly birth numbers for 1900(5)1940,1947,1950(5)1980, and 
1982(1) 1987, see Ministry of Health and Welfare (1988), and populations in 1988 of 
Japanese born in 1900(1)1988, see Management and Coordination Agency (1990). 
We use a simple piecewise linear interpolation. Let M(i),  1 < i < 12, be monthly 
birth numbers of a year. We divide M(i)  by both the annual birth number and 
the number of days of the month i and get the ratio re(i). Let d(i) be the mid- 
dle day of the month i. Next we make a piecewise linear interpolation of points 
P(i)  = (d(i) ,m(i)) ,  0 <<_ i <<_ 13, where points are arranged cyclically so that  
P(0) = (d(12)-  365, m(12)), P(13) = (d(1)+365, re(l)),  and, after normalization, 
get daily birth rates n(j) ,  1 < j <_ 365. We neglect the 29th of February of leap 
years. As to daily birth rates of those years for which monthly birth numbers are 
not available, we make the linear interpolation between corresponding daily birth 
rates of two adjacent years for which we know monthly birth numbers. Finally, 
we multiply living population of each generation in 1988 to each estimated daily 
birth rate for each generation born in 1900(1)1987. 
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Thus, obtained daily birth rates for total Japanese population show also a con- 
siderable fluctuation. The maximal rate is 0.343% (January 16) and the minimal is 
0.236% (June 15). Recall that 1/365=0.274%. Their proportions are 125:100:86. 
Now we can evaluate the true birthday probabilities. Although birth rates are 
far from uniform, we find that corresponding birthday probabilities axe almost 
unchanged. The maximal discrepancy is 0.370% at n = 27. Klotz (1979) observed 
the same phenomenon. By the way, it is known that birthday probabilities axe 
smallest for the uniform birth rate case, see Bloom (1973) and Munford (1977). 
Munford stated that this fact explains why in practice coincidental birthdays axe 
observed more frequently than the uniform theory predicts. But our example 
and Klotz's example contradict to his belief. Presumably Munford generalized his 
personal observation too hastily. 

This stableness of coincidence probabilities may be explained as follows. From 
the previous discussions, we see that r n can be already approximated fairly well 
by Pn,1 which depends only on P2. Let Pi = (1 + e~)/365. Then ~ i  ei = 0 and 

1 / 2  1 2 

i i i 

That is, a fluctuation of birthday rates from 1/365 results ia the change of the 
value P2 from 1/365 to (1 + a2)/365 where a 2 is the variance of {ei}. Hence the 
relative difference between two values of pn,1 is approximately equal to 

n)2 ~T 2 

2 365 

In our example cr 2 /365 is about 0.00003, which explains why birthday probabilities 
are almost unchanged. We could use more sophisticated interpolation techniques 
to estimate daily birth rates. Nevertheless our result suggests that the true birth- 
day probabilities axe not so different from idealized ones. 
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