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Nonlinear mixed effects models have received a great deal of attention in the statistical
literaturein recent yearsbecause of theflexibility they offer in handling unbal anced repeated
measures data that arise in different areas of investigation, such as pharmacokinetics and
economics. Several different methods for estimating the parameters in nonlinear mixed
effects model have been proposed. We concentrate here on two of them: maximum
likelihood and restricted maximum likelihood. A rather complex numerical issue for
(restricted) maximum likelihood estimation is the evaluation of the loglikelihood function
of the data, since it involves the evaluation of a multiple integral that in most cases does
not have a closed form expression. We consider here four diff erent approximations to the
loglikelihood, comparing their computational and statistical properties. We conclude that
the alternating approximation suggested by Lindstrom and Bates (1990), the Laplacian
approximation, and Gaussian quadrature centered at the conditional modes of the random
effectsare quite accurate and computationally efficient. Gaussian quadrature centered at the
expected value of the random effects is quite inaccurate for a smaller number of abscissas
and computationally inefficient for a larger number of abscissas. Importance sampling is

accurate but quite inefficient computationally.
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1 Introduction.

Severa different nonlinear mixed effects models and estimation methods for their parameters have been
proposed in recent years (Sheiner and Beal, 1980; Mallet, Mentre, Steimer and L okiek, 1988; Lindstrom
and Bates, 1990; Vonesh and Carter, 1992; Davidian and Gallant, 1992; Wakefield, Smith, Racine-Poon
and Gdfand, 1994). We consider here a dightly modified version of the model proposed in Lindstrom



and Bates (1990). Thismode can be viewed as a hierarchical model that in some ways generalizes both
the linear mixed effects model of Laird and Ware (1982) and the usual nonlinear mode! for independent
data (Bates and Watts, 1988). In the first stage the jth observation on the ith cluster is modeled as
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where f isanonlinear function of a cluster-specific parameter vector ¢,; and the predictor vector x;;,
€;; isanormally distributed noise term, M is the total number of clusters, and »; is the number of

observationsin the sth cluster. In the second stage the cluster-specific parameter vector is modeled as
¢,; = Ai;B+ Bi;jb;, b ~N(0, o’D),

where 3 isap-dimensional vector of fixed population parameters, b; is a ¢-dimensional random effects
vector associated with the 7th cluster (not varying with j), A,; and B;; are design matrices for the
fixed and random effects respectively, and 02D is a (general) variance-covariance matrix. It is further
assumed that observations made on different clusters areindependent and that the ¢;; arei.i.d. A'(0, 0?)
and independent of the b;.

We consider estimation of the modd’s parameters by either maximum likelihood, or restricted

maximum likelihood, based on the margina density of y
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In general thisintegra does not have a closed-form expression when the modd function f is nonlinear
in b so different approximations have been proposed for estimating it. Some of these methods consist of
taking a first order Taylor expansion of the model function f around the expected value of the random
effects (Sheiner and Beal, 1980; Vonesh and Carter, 1992), or around the conditional (on D) modes of
the random effects (Lindstrom and Bates, 1990). Others have proposed the use of Gaussian quadrature
rules (Davidian and Gallant, 1992).

We consider here four different approximations to the loglikdihood (2): Lindstrom and Bates
(1990)’ s alternating method, a modified Laplacian approximation (Tierney and Kadane, 1986), impor-
tance sampling (Geweke, 1989), and Gaussian quadrature (Davidian and Gallant, 1992). We compare



them based on their computational and statistical properties, using both real dataexamplesand simulation
results. Section 2 contains adescription of the different approximationsto the loglikelihood as applied to
the nonlinear mixed effects model (1). Section 3 presents a comparison of the different approximations
based on real and simulated data. Our conclusions and suggestions for further investigation are givenin

section 4.

2 Approximationsto the Loglikelihood

I n this section we describe four different approximationsto theloglikelihood of ¢ in the nonlinear mixed
effects modd (1). We show that there exists a close relation between the Laplacian approximation,
importance sampling and a Gaussian quadrature rule centered around the conditional modes of the

random effects b.

2.1 Alternating Approximation

Lindstrom and Bates (1990) propose an aternating a gorithm for estimating the parametersin model (1).
Based on the current estimates of D (the scaled variance-covariance matrix of the random effects), the
conditional modes of the random effects b and the conditiona estimates of the fixed effects 3 are

obtained by minimizing a penaized nonlinear least squares (PNLS) objective function
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where[f, (8, b)), = f (i), i=1,., M, j=1,....m.
To update the estimate of D at the wth iteration, Lindstrom and Bates use a first order Taylor
expansion of the model function around the current estimates of 3 and the conditional modes of the

random effects b, which wewill denoteby 3" and b respectively. Letting
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the approximate loglikelihood used for the estimation of D is
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This loglikelihood is identical to that of a linear mixed effects (LME) model (Laird and Ware, 1982)
in which the response vector is given by @™ and the fixed and random effects design matrices are
given by X ) and Z (w). Using the results in Lindstrom and Bates (1988) one can express the optimal
values of 3 and 0% asfunctions of D and work with the profile loglikelihood of D, greatly simplifying
the optimization problem. Lindstrom and Bates (1990) have also proposed an approximate restricted
loglikelihood for the estimation of D
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Their estimation algorithm aternates between the PNLS and LME steps until some convergence
criterionismet. Such alternating algorithmstend to be mor e efficient when the estimates of the variance-
covariance components (D and o?) are not highly correlated with the estimates of the fixed effects (3).
Pinheiro and Bates (1993) have demonstrated that, in the linear mixed effects model, the (restricted)
maximum likelihood estimates of D and o2 areasymptotically independent of the (restricted) maximum
likelihood estimates of 3 . These results have not yet been extended to the nonlinear mixed effects
model (1).

It can be shown that the maximum likelihood estimate of 3 and the conditional modes of the random
effects b; corresponding to the approximate loglikelihood (4) are the values obtained in thefirst iteration
of the Gauss-Newton algorithm used to minimize the PNLS objective function (3). Therefore, at the
converged value of D, the estimates of 3 and b; obtained from the LME and PNLS steps coincide. We
will use £, when comparing the different approximations at the optimal values in section 3, but we do
note that in Lindstrom and Bates (1990) approximation (4) is used only to update the estimates of D
and not for estimating 3.



2.2 Laplacian Approximation

Laplacian approximations are frequently used in Bayesian inference to estimate margina posterior
densities and predictive distributions (Tierney and Kadane, 1986; L eonard, Hsu and Tsui, 1989). These
techniques can also be used for the integration considered here.

Theintegra that we want to estimate for the marginal distribution of v, in model (1) can be written
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Let
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and consider a second order Taylor expansion of ¢ around b,
9(8,D,y;, b))~ g (ﬂ, D,y li) + % [bi - IZ]Tg” ([i D7yi7l;i) [bi - lﬂ (6)

where the linear term of the approximation vanishes since ¢'(3, D,yi,l;i) = 0. The Laplacian

approximation is defined as
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where N = S ;.

Now we consider an approximation to ¢’ similar to the one used in Gauss-Newton optimization.



We have
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This has the advantage of requiring only the first order partial derivatives of the model function with
respect to the random effects, which are usually available from the estimation of I;Z This estimation of
l;i isapenalized least squares problem, for which standard and reliable code is available.

The modified Laplacian approximation to the loglikelihood of modd (1) is then given by
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Since I;Z does not depend upon o2, for given 3 and D the maximum likelihood estimate of o

(based upon £ 4) is
7' =56"(B,D,y) = Zg(ﬁiDy” ) IN

We can profile (1 , on o to reduce the dimension of the optimization problem, obtaining
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We note that if f islinear in b then the modified Laplacian approximation is exact because the
second order Taylor expansion in (6) isexact when f (3,b) = f (8) + Z (8) b..

There does not yet seem to be astraightforward generalizati on of the concept of restricted maximum
likelihood (Harville, 1974) to nonlinear mixed effects models. Thedifficulty isthat restricted maximum
likelihood depends heavily upon the linearity of the fixed effects in the modd function, which does

not occur in nonlinear models. Lindstrom and Bates (1990) circumvented that problem by using an



approximation to the model function f in which the fixed effects 3 occur linearly. This cannot be done
for the L aplacian approximation, unless we consider yet another Taylor expansion of the model function,
what would lead us back to something very similar to Lindstrom and Bates' approach. Wewill returnto

thistopic later in section 4.

2.3 Importance Sampling

Importance sampling provides a simple and efficient way of performing Monte Carlo integration. The
critical step for the success of this method is the choice of an importance distribution from which the
sample is drawn and the importance weights calculated. Ideally this distribution corresponds to the
density that we are trying to integrate, but in practice one uses an easily sampled approximation. For the
nonlinear mixed effects model the function that we want to integrate is, up to a multiplicative constant,
equal to exp [—¢ (3, D, y;,b;) /2¢*]. Asshown in subsection 2.2, by taking a second order Taylor
expansion of ¢(3, D, y,, b;) around I;Z the integrand is, up to a multiplicative constant, approximately
equal to a (l;“ o*[G(B, D, yi)]_l) density. This gives us a natura choice for the importance
distribution.

Let N;s denote the number of importance samples to be drawn. In practice one such sample can
be generated by selecting a vector z* with distribution A/ (0, I) and calculating the sample of random
effects as b = b; + o [G (B, D, y,)]” "> z*, where [G (3, D, y,)]”"/* denotes the inverse of the
Cholesky factor of G (3, D, y,). Theimportance sampling approximation to the loglikelihood of y is
then defined as

M
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i=1

M Nrs
+log {Zexp =9 (8, Dy, b)) /207 + ||2311%/2] /Nm}
i=1 j=1
Note that we cannot in general obtain a closed form expression for the MLE of o2 for fixed 3 and D,
so that profiling on o2 is no longer reasonable.

As in the modified Laplacian approximation, importance sampling gives exact results when the



model functionislinear in b because in this case
p(yz | bi7ﬁ7 D7 02) p(bz) =p (yz | ﬁv D7 Uz) N (IA)H 02 [G (ﬂv D7yi)]_1)
so that the importance weights are equa to p (y, | 3, D, o?).

24 Gaussian quadrature

Gaussian quadrature is used to approximate integrals of functions with respect to a given kernel by a
weighted average of the integrand evaluated at pre-determined abscissas. The weights and abscissas
used in Gaussian quadrature rules for the most common kernel's can be obtained from the tables of
Abramowitz and Stegun (1964) or by using an agorithm proposed by Golub (1973) (see aso Golub and
Welsch (1969)). Gaussian quadrature rules for multiple integrals are known to be numerically complex
(Davis and Rabinowitz, 1984), but using the structure of the integrand in the nonlinear mixed effects
model we can transform the problem into successive applications of simple one dimensional Gaussian
quadraturerules. Letting 27, w; j = 1,. .., N denote respectively the abscissas and the weights for

the (one dimensiona) Gaussian quadrature rule with N points based on the A'(0, 1) kernel, we get
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wherezj ., = (z’f ...,z’fq) . The corresponding approximation to the loglikelihood function is
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wherej = (j1,...,j)".
The Gaussian quadrature rule in this case can be viewed as a deterministic version of Monte Carlo

integration in which random samples of b; are generated fromthe (0, o D) distribution. The samples



(27) and the weights (w;) arefixed beforehand, whilein Monte Carlo integration they areleft to random
choice. Sinceimportance sampling tendsto be much more efficient than ssmple Monte Carlo integration,
we aso consider the equivalent of importance sampling in the Gaussian quadrature context, which we
will denote by adaptive Gaussian quadrature. In this approach the grid of abscissas in the b; scaleis
centered around the conditional modes Ei rather than 0, asin (10). Another modification is the use of

G (3, D,y,) instead of D in the scaling of the z*. The adaptive Gaussian quadrature is then given by
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The corresponding approximation to the loglikelihood is then
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Theadaptive Gaussian quadrature approximation very closely resemblesthat obtained for importance
sampling. The basic difference is that the former uses fixed abscissas and weights, while the latter
allows them to be determined by a pseudo-random mechanism. It is also interesting to note that the
onepoint (i.e. Ng = 1) adaptive Gaussian quadrature approximation is simply the modified Laplacian
approximation (8), sincein thiscase z; = 0 and w; = 1. The adaptive Gaussian quadrature also gives
the exact loglikelihood when the model function is linear in b, but that is not true in genera for the
Gaussian quadrature approximation (10). Like the importance sampling approximation, the Gaussian
quadrature approximation cannot be profiled on o2 to reduce the dimensionality of the optimization

problem.



3 Comparing the Approximations

In this section we present a comparison of the different approximationsto theloglikelihood of modd (1)
described in section 2. Tworea dataexamples, the orange trees and Theophylline data sets, and simula-

tion results are used to compare the statistical and computational aspects of the various approximations.

3.1 OrangeTrees

The data are presented on Figure 1 and consist of seven measurements of the trunk circumference (in
millimeters) on each of five orange trees, taken over a period of 1600 days. These data were originaly

presented in Draper and Smith (1981, p. 524) and were described in Lindstrom and Bates (1990).
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Figure 1. Trunk circumference (in millimeters) of five orange trees. Data and individua fitted curves
from maximum likelihood estimation using the exact loglikelihood. The dashed line represents the mean
curve.

Thelogisticmodel y = ¢, /{1 + exp[— (t — ¢2) /¢3]} seemsto fit the datawell. Lindstrom and

Bates (1990) concluded in their analysis that only the asymptotic circumference ¢, needs a random
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effect to account for tree to tree variation and suggested the following nonlinear mixed effects model

_ B1 4 bi
L+ exp[— (ti; — B2) /5]

Yij +¢&ij (13)
where y;; represents the jth circumference measurement on the ith tree, ¢;; represents the day cor-
responding to the jth measurement on the ith treg, b;;, ¢ = 1,...,5 arei.i.d. A(0,02D), and
gij, i=1,...,5, j=1,...,Taeiid AN(0,0?) andindependent of theb,,. Notethat thesingleran-
dom effect occurslinearly in (13) and therefore the modified Laplacian (8), the importance sampling (9),
and the adaptive Gaussian quadrature (12) approximations are all exact.

Table 1 presents the results of estimation using the alternating approximation, Gaussian quadrature
with 10 and 200 abscissas, and theexact loglikdlihood. Sinceonly thealternating approximation provides
aversion of restricted maximum loglikelihood, we will just consider maximum likelihood estimation in
this and the next subsection. The subscript on Gaussian refers to the number of abscissas used in the
approximation and the scalar L is /D, the square root of the scaled variance of the random effects. In

genera thisisamatrix but there is only one random effect here.

Table 1. Estimation Results— Orange Trees Data

Approximation log(L) B B4 Bs  log(o?) l
Alternating 1389 191.049 722556 344.164 4120 -131.585
Gaussian, 1123 194.325 727.490 348.065 4.102 -130.497
Gaussian,g 1.396 192.293 727.074 348.074 4119 -131.571
Exact 1.395 192.053 727.906 348.073 4119 -131.572

The estimation resultsin Table 1 indicate that the different approximations produce similar fits. The
Gaussian approximation with only 10 abscissas gives the worst approximation, in terms of the value
of the loglikelihood, but even that is not far from the exact value. The Gaussian quadrature with 200
abscissas isamost identical to the exact loglikelihood. The alternating approximation isaso very close
to the exact value.

Ancther important issue regarding the different approximationsis how well they behave in aneigh-
borhood of the optimal value, since this behavior is often used to assess the variability of maximum
likelihood estimates. Figure 2 displays the profile traces and contours (Bates and Watts, 1988) for the
exact loglikelihood and the aternating approximation. This plot could not be obtained for the Gaussian

approximation because the objective function presented severa local optima during the profiling algo-
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rithm. We believe that thisis related to the fact that the Gaussian approximation is centered at b; = 0
and not at the conditional modes of the random effects, where the integrand in (2) takes its highest

values.
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Figure 2: Profile tracesand profile contour plotsfor the orange trees data based on the exact loglikelihood
(solid line) and the alternating approximation (dashed line). Plots below the diagonal arein the origina
scale and plots above the diagonal are in the zeta scale (Bates and Watts, 1988). Interpolated contours
correspond approximately to joint confidence levels of 68%, 87%, and 95%.

It can be seen from Figure 2 that the aternating method gives a good approximation to the loglike-
lihood in a neighborhood of the optimal values. It is interesting to note that the profile traces for the
variance-covariance components (D and o?) and the fixed effects (3) meet almost perpendicularly. This
indicates aloca uncorréation between the variance-covariance components and the fixed effects, which
explains why the aternating method was so successful in approximating the loglikelihood. The same
pattern was observed in severd other data sets that we have analyzed, leading us to conjecture that the

asymptotic uncorrelation between the estimators of the variance-covariance components and the fixed
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effects verified in the linear mixed effects model also holds, at least approximately, for the nonlinear
mixed effects mode!.

To compare the computational efficiency of the different approximations we consider the number of
function eval uations needed until convergence. For the aternating approximation there are two different
functions being evaluated during theiterations: the objective function (3) within the PNLS step and the
approximate loglikelihood £ 4 (4) withinthe LME step. We will use here the total number of evaluations
of either (3) or ¢, multiplied by the number of clusters. For the other approxi mations we will use
the total number of calsto ¢ (3, D, y,, b;). Even though the number of function eva uations used for
the alternating approximation is not directly comparable to the number of function evaluations of the
remaining approximations, it gives agood idea of the relative computationa efficiency of thisagorithm.

Table 2 presents the number of function evaluations for the different approximations in the orange
trees example. The Gaussian quadrature approximations are considerably less efficient than either the
alternating approximation or the exact loglikelihood. As expected the aternating approximation is the

most computationally efficient.

Table 2: Number of Function Eva uations to Convergence — Orange Trees Data
Approximation  Function Evaluations

Alternating 200
Exact 420
Gaussian; 8,150
Gaussiana g 101,000

3.2 TheophyllineKinetics

The data considered here are courtesy of Dr. Robert A. Upton of the University of California, San
Francisco. Theophylline was administered orally to 12 subjects whose serum concentrations were
measured at 11 times over the next 25 hours. Thisis an example of alaboratory pharmacokinetic study
characterized by many observations on a moderate number of individuals (clusters). Figure 3 displays
the data and the individual fits obtained through maximum likelihood using the adaptive Gaussian
approximation with 10 abscissas.

A common model for such data is afirst order compartment model with absorption in a peripheral
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Figure 3: Theophylline concentrations (in mg/L) of twelve patients: Data and individua fitted curves
from maximum likelihood estimation using the adaptive Gaussian approximation.

compartment

= CI(%—I%I() [exp (—Kt) — exp (—k,t)] (14)
where (', isthe observed concentration at time¢ (mg/L), ¢ isthetime (hr), D isthedose(mg/kg), C'l isthe
clearance (L/kg), K isthe dimination rate constant (1/hr), and k&, is the absorption rate constant (1/hr).
In order to ensure positivity of the rate constants and the clearance, the logarithms of these quantities
were used in thefit. Analysisof the Theophylline data using model (14) indicated that only log(Cl) and
log(k,) needed random effects to account for the patient-to-patient variability. The nonlinear mixed

effects modd used for the Theophylline datais

C, = Dexp[— (81 4 bi1) + (82 4 bio) + O]
t exp (B2 + bia) — exp (8)

{exp[—exp (03) t] — exp [— exp (B2 + bi2) t]}
(15)
Table 3 presents the estimation results from the various approximations to the loglikelihood. Only

maximum likelihood estimation is considered. The subscripts on Gaussian and on Adap. Gaussian
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refer to the number of abscissas used in the Gaussian and adaptive Gaussian approximations, while the
subscript on Imp. Sampling refersto the number of importance samples used in this approximation. L
denotes the vector with elements given by the upper triangular half of the Cholesky decomposition of

D, stacked by columns.

Table 3: Estimation Results — Theophylline Data

Approximation log(L1) Ly log(Ls) B1 Bs B3  log(c?) ¢
Alternating -1.44661 0.00271 -0.09992 -3.22719 0.46548 -2.45464 -0.68660 -177.0237
Laplacian -1.44376 0.00271 -0.09973 -3.22946 0.46876 -2.46432 -0.68658 -176.9995
Imp. Sampling,,,, -1.44380 0.00271 -0.09877 -3.22682 0.47614 -2.45851 -0.68747 -177.7689
Gaussians -1.55539 0.00241 -0.39687 -3.30411 0.50046 -2.48743 -0.48395 -182.4680
Gaussian, g -1.56422 0.00232 -0.20432 -3.23814 0.59525 -2.46872 -0.70276 -176.1008
Gaussian, g -1.44572 0.00271 -0.09820 -3.22684 0.47947 -2.45893 -0.68539 -177.7293
Adap. Gaussian; -1.44600 0.00271 -0.09905 -3.22503 0.47566 -2.45788 -0.68677 -177.7499
Adap. Gaussian, -1.44750 0.00271 -0.09937 -3.22705 0.47377 -2.45942 -0.68533 -177.7473

We can see from Table 3 that the aternating approximation, the Laplacian approximation, the
importance sampling approximation, and the adaptive Gaussian approximation all give similar estimation
results. The Gaussian approximation only approaches the other approximations when the number of
abscissas is increased considerably. Note that the actual number of points used in the grid that defines
the Gaussian approximation for this example is the square of the number of abscissas. The adaptive
Gaussian approximations for 1 (Laplacian), 5, and 10 abscissas give similar results, indicating that just
afew points are needed for this approximation to be accurate. The importance sampling approximation
caused some numerical difficulties for the optimization algorithm (the s () function in S (Chambers
and Hastie, 1992)) used to obtain the maximum likelihood estimates, since the stochastic variability
associated with different importance sampl es overwhelmed the numerical variability of theloglikelihood
for small changesin the parameter val ues (used to calculate numerical derivatives). We ended up having
to keep the random number generator seed fixed during the opti mization process, thus using the same
importance samples throughout the calculations. Since the results obtained using importance sampling
were very similar to those of the adaptive Gaussian approximation, we concluded that the latter isto be
preferred for its greater simplicity and computational effi ciency.

Table 4 givesthe number of function evaluations until convergence for the different approximations.
The dternating approximation is the most efficient, followed by the Laplacian and adaptive Gaussian
approximations. Gaussian quadrature with 5 abscissas is efficient compared to the adaptive Gaussian,

but is quite inaccurate. The more reliable Gaussian approxi mation with 100 abscissas takes about 100
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times more function eval uations than the adaptive Gaussian with 10 abscissas. Theimportance sampling

approximation had the worst performance in terms of function evaluations.

Table 4: Number of Function Evaluations to Convergence — Theophylline Data

Approximation Function Evaluations
Alternating 1,512
Laplacian 7,683
Adap. Gaussian, 30,020
Adap. Gaussian,, 96,784
Gaussian; 47,700
Gaussian 318,000
Gaussian oo 10,200,000
Imp. Sampling, ,,, 11,211,284

Next we consider the approximations in a neighborhood of the optimal value. We will restrict
ourselves here to the alternating, the Laplacian, and the adaptive Gaussian approximation, as the
Gaussian approximation for a moderate number of abscissas is not reliable, and both the Gaussian
approximation with a larger number of abscissas and the importance sampling approximation are very
inefficient computationally and give results quite similar to the adaptive Gaussian approximation. We
used five abscissas for the adaptive Gaussian quadrature, as this gives roughly the same precision as the
ten-abscissa quadrature rule.

The aternating approximation gives results very similar to the adaptive Gaussian quadrature. As
in the orange trees example, the profile traces of the variance-covariance components and the fixed
effects meet amost perpendicularly, indicating a local uncorrelation between these estimates. The
Laplacian and the adaptive Gaussian approximations give virtualy identica plots (not included here).
This suggeststhereislittle to be gained by increasing the number of abscissas past onein the quadrature
rule. The mgjor gain in precision is obtained by centering the grid at the conditional modes and scaling

it using the approximate Hessian.

3.3 Simulation Results

In this section we include a comparison of the approximations to the loglikelihood in model (1) using
simulation. We restrict ourselves to the aternating, the Laplacian, and the (five-abscissa) adaptive
Gaussian approximations as these seem to be more accurate and/or more efficient than the Gaussian

and the importance sampling approximations. Two models were used in the simulation anaysis. a

16



2

1
1

0

&

-2

0.5
012 -2

00 04 -05
01 2 -2

-1.0 07 -0.4-06
012 -2

012 -2

012 -2

ENEEE
Nelolge

C

o
=)
o
IS
o
@
N
o
a

Eleleile

-240 00 04 08 -335 -3.20

012 -2

G

-2

-1.8 -1.2 -0.5 05 -0.6 00 04-10 -07 -04-335 -3.20

-2.55

-2.40

Figure4: Profiletracesand profilecontour plotsfor the Theophylline databased on the adaptive Gaussian
approximation with 5 abscissas (solid line) and the alternating approximation (dashed line). Plots below
the diagonal arein the original scale and plots above the diagona are in the zeta scale (Bates and Watts,
1988). Interpolated contours correspond approximately to joint confidence levels of 68%, 87%, and
95%.

logistic model similar to the one used for the orange trees data and afirst order open compartment model
similar to the one used for the Theophylline example. For both models 1000 samples were generated and
maximum likelihood (ML) estimates based on the different approximations obtained. For the alternating

approximation, restricted maximum likelihood (RML) estimates were also obtained.

17



3.3.1 Logistic Modd

A logistic modd similar to (13), but with two random effects instead of one, was used to generate the

data. The modd is given by

o B+ bi
Vi = +exp{—[ti; — (B2 + bi2)] /Bs}

teij, t=1,... .M, j=1,...,n (16)

wherethe b; arei.i.d. N'(0,0°D), and thee;; arei.i.d. A (0, ¢?) and independent of the b;. We used
4 =2

M =15,n; = 10, 4,...,15,02 = 25,3 = (200, 700, 350)" ,and D =
-2 25

Table 5 summarizes the ssimulation results for the variance-covariance components (MSE denotes

the mean square error of the estimators). The different approximations to the loglikelihood give similar
simulation results for al the parameters involved. The cluster specific variance (o?) is estimated with
more relative precision than the elements of the scal ed vari ance-covariance matrix of the random effects
(D). Thisis probably because the precision of the estimate of ¢ (as well as the estimates of 3) is
determined by the total number of observations, while the precision of the estimates of D is determined
by the number of clusters. We can also see atendency for the restricted maximum likelihood to give
positively biased estimates of D;; and D,,, while the other approximations give negatively biased
estimates. The rationale for restricted maximum likelihood is to reduce bias in estimating variance

components. It does not seem to do so in this caseg; it just changes its direction.

Table 5: Simulation results for the variance-covariance components in the logistic model
Dl 1 Dl 2
Approximation Mean Bias MSE Mean Bias MSE
Alternating—RML | 4.2000 0.2000 3.9161 | -1.9460 0.0540 18.4208
Alternating — ML 3.9218 -0.0782 3.4370 | -1.9947 0.0053 16.1845

Laplacian 3.9349 -0.0651 3.3748 | -1.9781 0.0219 15.7242

Adap. Gaussian 3.9408 -0.0592 3.4081 | -1.9651 0.0349 15.7540
D o?

Approximation Mean Bias MSE Mean Bias MSE

Alternating— RML | 26.0890 1.0890 360.9847 | 24.8849 -0.1151  9.7557
Alternating — ML 23.3216 -1.6784 3145025 | 24.6511 -0.3489 9.6473
Laplacian 23.8638 -1.1362 310.0535 | 24.6252 -0.3748 9.5700
Adap. Gaussian 239337 -1.0662 3124221 | 24.6168 -0.3832 9.5671

Figure 5 presents the scatter plots of the variance-covariance component (o and D) estimates for
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thealternating RML, thealternating ML, and the L aplacian approximations versus the adaptive Gaussian
approximation. We see that, except for the alternating RML approximation, all methods lead to very
similar estimates. In general the dternating RML approximation gives larger values for the estimates
of the variance components (especiadly D, and D,,) than the other methods. The higher mean square
error for D, from the alternating ML and RML methods is visible in the plot, as each of the panels

comparing these estimates to those from the adaptive Gaussian method has avertical clump of points at
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Figure 5: Scatter plots of variance-covariance components estimates for the alternating (RML and ML),
Laplacian, and adaptive Gaussian approximations in the logistic model (16). The dashed lines indicate
the true values of the parameters.

Table 6 presents the ssimulation results for the fixed effects estimates. The results are very similar

for all approximations considered. We also note that the rel ative variability of the fixed effects estimates
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is much smaller than those of the estimates of the elements of D. Thereisvery little, if any, biasin the

fixed effects estimates.

Table 6: Simulation results for the fixed effects in the logistic model

B B2 B3
Approximation Mean Bias MSE Mean Bias MSE Mean Bias MSE
Alternating— RML | 199.6097 -0.3903 10.1830 | 698.4286 -1.5714 138.2153 | 348.8091 -1.1909 57.1686
Alternating — ML 199.6081 -0.3919 10.1836 | 698.4292 -1.5707 138.2237 | 348.8224 -1.1776 57.1297
Laplacian 199.9275 -0.0725 10.2012 | 700.0317 0.0317 138.3760 | 350.2019 0.2019 56.9361
Adap. Gaussian 199.9229 -0.0771 10.1561 | 699.9082 -0.0918 138.4409 | 350.0640 0.0640 57.0550

Figure 6 presents the scatter plots of the fixed effects estimates for the dternating RML, aternating
ML, and Laplacian approximations versus the adaptive Gaussian approximation. Again we observe
a strong agreement in the estimates obtained through the various approximations. The aternating
approximations tend to give estimates slightly smaller than the Laplacian and adaptive Gaussian, but the

differences are minor.

3.3.2 First Order Compartment Model

The model used in the smulation is identical to (15). Asinthe Theophylline example we set M = 12
andn; = 11, 7+ = 1,...,12. The parameter values used were o = 0.25, 3 = (3.0, 0.5, —2.5)T,
0.2 0

0 1
Table 7 summarizes the simulation results for the variance-covariance components estimates. Asin

and D

the logistic model analysis, we observe that the elements of D are estimated with less relative precision
than o%. Theaternating ML, Laplacian, and adaptive Gaussian approximations seem to lead to slightly
downward biased estimates of D, and D-., while the aternating RML approximation appears to give
unbiased estimates (thus achieving its main purpose). Note however that the unbiasedeness of the RML
estimates does not trandate into smaller mean square error — al four estimation methods lead to similar
MSE, for al parameters.

Figure 7 presents the scatter plots of the variance-covariance estimates for the aternating RML,
aternating ML, and Laplacian approximations versus the adaptive Gaussian approximation. The a-
ternating RML approximation tends to give larger values for D,; and D--, and larger absolute values
for D1, while the remaining approximations lead to very similar estimates. There was one sample for

which the alternating approximations apparently converged to a different solution than the L aplacian and
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Figure 6. Scatter plots of fixed effects estimates for the aternating (RML and ML), Laplacian, and
adaptive Gaussian approximations in the logistic model (16). The dashed lines indicate the true values
of the parameters.

adaptive Gaussian. Overall there were no mgjor differences between the approximations in estimating
the variance-covariance components.

Table 6 gives the simulation results for the fixed effects estimates. All four approximations give
virtually identical resultsfor the estimation of the fixed effects. They all show very little biasand smaller
relative variability when compared to the estimates of the variance-covariance components.

The scatter plots of the fixed effects estimates, not included here, show practically identical results

for the dternating RML and ML, the Laplacian , and the adaptive Gaussian approximations.
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Table 7: Simulation resultsfor the variance-covariance componentsin the first order compartment model
Dy, Dy,

Approximation Mean Bias MSE Mean Bias MSE
Alternating— RML | 0.1996 -0.0004 0.0089 | -0.0013 -0.0013 0.0210
Alternating—ML | 0.1840 -0.0160 0.0078 | -0.0023 -0.0023 0.0179

Laplacian 0.1862 -0.0138 0.0078 | -0.0011 -0.0011 0.0178

Adap. Gaussian 0.1860 -0.0140 0.0077 | 0.0002 0.0002 0.0180
Dy, o?

Approximation Mean Bias MSE Mean Bias MSE

Alternating— RML | 1.0095 0.0095 0.2565 | 0.2508 0.0008 0.0012
Alternating — ML 09249 -0.0751 0.2240 | 0.2486 -0.0014 0.0011
Laplacian 0.9388 -0.0612 0.2276 | 0.2480 -0.0020 0.0011
Adap. Gaussian 09476 -0.0524 0.2332 | 0.2481 -0.0019 0.0011

Table 8: Simulation results for the fixed effects in the first order compartment model

B B2 Jis

Approximation Mean Bias MSE | Mean Bias MSE Mean Bias MSE

Alternating— RML | -2.9989  0.0011 0.0053 | 0.4876 -0.0124 0.0244 | -2.4965 0.0035 0.0020
Alternating — ML -2.9992 0.0008 0.0053 | 0.4869 -0.0131 0.0244 | -2.4965 0.0035 0.0020
Laplacian -3.0009 -0.0009 0.0053 | 0.4983 -0.0017 0.0242 | -2.5045 -0.0045 0.0020
Adap. Gaussian -2.9987 0.0013 0.0053 | 0.4984 -0.0016 0.0246 | -2.5008 -0.0008 0.0020

4 Conclusions

The results of section 3 indicate that the dternating approximation (4) to the loglikelihood function
in the nonlinear mixed effects model (1) proposed by Lindstrom and Bates (1990) gives accurate and
reliable estimation results. The main advantages of this approximation are its computational efficiency
(allowing the use of linear mixed effects techniques to estimate the scaled variance-covariance matrix
of the random effects D) and the availability of arestricted likelihood version of it, which is not yet
defined for other approximations/estimation methods. With regard to the restricted maximum likelihood
estimation though, the results of section 3 suggest that the bias correction ability of this method depends
on the nonlinear model that isbeing considered: RML estimation achieved its purposefor the first order
compartment model (15), but it increased the bias in the logistic model (16). More research is needed
inthisarea. Sinceit issimpler computationally the alternating approximation should be used to provide
starting values for the more accurate approximations (e.g. Laplacian and adaptive Gaussian) if they are
preferred.

The Gaussian quadrature approximation (11) only seemsto give accurate results for large number of
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Figure 7: Scatter plots of variance-covariance components estimates for the alternating (RML and ML),
L aplacian, and adaptive Gaussian approximationsin thefirst order compartment model (15). The dashed
lines indicate the true values of the parameters.

abscissa (> 100), what makesit very inefficient computationally. Thebasic problemisthat it centersthe
grid of abscissas a 0 (the expected value of the random effects) and scales it according to D, while the
highest values of the integrand in (2) are concentrated around the posterior modes of the random effects
(5) and scaled according to ¢” (ﬂ, D, y, 5) . The advantages of this approximation are that it does not
require the estimation of the posterior modes of the random effects at each iteration and it admits closed
form partia derivatives with respect to the parameters of interest (3, D, and ¢2), provided these are
available for the model function f (Davidian and Gallant, 1992). We fed that these advantages do not
compensate for the inaccuracy or computational inefficiency of the Gaussian approximation.

Theimportance sampling approximation (9) givesreliable estimation results, comparabl e to those of




the adaptive Gaussian and Laplacian approximations, but is considerably less efficient computationally
than these approximations. Also, the stochastic variability associated with the different importance
samples may overwhelm the numerical variability of theloglikelihood for small changesin the parameter
values, making it difficult to calculate numerica derivatives. The main advantage of the importance
sampling approximation is its versatility in handling distributions other than the normal, for both the
random effects and the cluster-specific error term (€). For example it would be rather straightforward to
adapt the importance sampling integration to handle a multivariate ¢ distribution for the random effects,
but that would not be a trivia task for either the aternating, the Laplacian, or the adaptive Gaussian
approximations. Wakefield et a. (1994) usethe similar property of Gibbs sampler methods to check for
outliers in nonlinear mixed effects models. If oneis willing to stick with the normal distribution for b
and e in the nonlinear mixed effects model (1) then the importance sampling approximation is not the
most efficient choice.

Of dl approximations considered here, the Laplacian and adaptive Gaussian approximations prob-
ably give the best mix of efficiency and accuracy. The former can be regarded as a particular case of
the latter, where just one abscissa is used. Both approximations (and the importance sampling approx-
imation as well) give the exact loglikelihood when the modd function f in (1) is alinear function of
the random effects. In the examples that we analyzed not much was gained by going from a one-point
adaptive Gaussian quadrature (Laplacian) approximation to approximations with a larger number of
abscissas. It appears that the major gain in adaptive Gaussian approximationsis related to the centering
and scaling of the abscissas. Increasing the number of points in the evaluation grid only gives margina
improvement. The Laplacian approximation has the additional advantage over the adaptive Gaussian
approximation with more than one abscissa of alowing profiling of the loglikelihood over &2, thus
reducing the dimensionality of the optimization problem.

For statistical analysis purpose we would recommend using a hybrid scheme in which the alternating
algorithm would be used to get good initia values for the more refined Laplacian approximation to the
loglikelihood of model (1). Thisway the computational efficiency of the alternating agorithm would

be combined with the greater accuracy of the Laplacian approximation.
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