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Nonlinear mixed effects models have received a great deal of attention in the statistical

literature in recent years because of the flexibility they offer in handling unbalanced repeated

measures data that arise in different areas of investigation, such as pharmacokinetics and

economics. Several different methods for estimating the parameters in nonlinear mixed

effects model have been proposed. We concentrate here on two of them: maximum

likelihood and restricted maximum likelihood. A rather complex numerical issue for

(restricted) maximum likelihood estimation is the evaluation of the loglikelihood function

of the data, since it involves the evaluation of a multiple integral that in most cases does

not have a closed form expression. We consider here four different approximations to the

loglikelihood, comparing their computational and statistical properties. We conclude that

the alternating approximation suggested by Lindstrom and Bates (1990), the Laplacian

approximation, and Gaussian quadrature centered at the conditional modes of the random

effects are quite accurate and computationally efficient. Gaussian quadrature centered at the

expected value of the random effects is quite inaccurate for a smaller number of abscissas

and computationally inefficient for a larger number of abscissas. Importance sampling is

accurate but quite inefficient computationally.

Keywords: Nonlinear mixed effects models, maximum likelihood estimation, Laplacian approximation,

Gaussian quadrature, importance sampling.

1 Introduction.

Several different nonlinear mixed effects models and estimation methods for their parameters have been

proposed in recent years (Sheiner and Beal, 1980; Mallet, Mentre, Steimer and Lokiek, 1988; Lindstrom

and Bates, 1990; Vonesh and Carter, 1992; Davidian and Gallant, 1992; Wakefield, Smith, Racine-Poon

and Gelfand, 1994). We consider here a slightly modified version of the model proposed in Lindstrom
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and Bates (1990). This model can be viewed as a hierarchical model that in some ways generalizes both

the linear mixed effects model of Laird and Ware (1982) and the usual nonlinear model for independent

data (Bates and Watts, 1988). In the first stage the jth observation on the ith cluster is modeled asyij = f(�ij;xij) + �ij; i = 1; : : : ;M; j = 1; : : : ; ni (1)

where f is a nonlinear function of a cluster-specific parameter vector �ij and the predictor vector xij ,�ij is a normally distributed noise term, M is the total number of clusters, and ni is the number of

observations in the ith cluster. In the second stage the cluster-specific parameter vector is modeled as�ij = Aij� +Bijbi; bi � N (0; �2D);
where � is a p-dimensional vector of fixed population parameters, bi is a q-dimensional random effects

vector associated with the ith cluster (not varying with j), Aij and Bij are design matrices for the

fixed and random effects respectively, and �2D is a (general) variance-covariance matrix. It is further

assumed that observations made on different clusters are independent and that the �ij are i.i.d. N (0; �2)
and independent of the bi.

We consider estimation of the model’s parameters by either maximum likelihood, or restricted

maximum likelihood, based on the marginal density of yp(y j �;D; �2) = Z p(y j b;�;D; �2) p(b) db (2)

In general this integral does not have a closed-form expression when the model function f is nonlinear

in b so different approximations have been proposed for estimating it. Some of these methods consist of

taking a first order Taylor expansion of the model function f around the expected value of the random

effects (Sheiner and Beal, 1980; Vonesh and Carter, 1992), or around the conditional (on D) modes of

the random effects (Lindstrom and Bates, 1990). Others have proposed the use of Gaussian quadrature

rules (Davidian and Gallant, 1992).

We consider here four different approximations to the loglikelihood (2): Lindstrom and Bates

(1990)’s alternating method, a modified Laplacian approximation (Tierney and Kadane, 1986), impor-

tance sampling (Geweke, 1989), and Gaussian quadrature (Davidian and Gallant, 1992). We compare
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them based on their computational and statistical properties, using both real data examples and simulation

results. Section 2 contains a description of the different approximations to the loglikelihood as applied to

the nonlinear mixed effects model (1). Section 3 presents a comparison of the different approximations

based on real and simulated data. Our conclusions and suggestions for further investigation are given in

section 4.

2 Approximations to the Loglikelihood

In this section we describe four different approximations to the loglikelihood of y in the nonlinear mixed

effects model (1). We show that there exists a close relation between the Laplacian approximation,

importance sampling and a Gaussian quadrature rule centered around the conditional modes of the

random effects b.

2.1 Alternating Approximation

Lindstrom and Bates (1990) propose an alternating algorithm for estimating the parameters in model (1).

Based on the current estimates of D (the scaled variance-covariance matrix of the random effects), the

conditional modes of the random effects b and the conditional estimates of the fixed effects � are

obtained by minimizing a penalized nonlinear least squares (PNLS) objective functionMXi=1 �kyi � f i(�; bi)k2 + bTi D�1bi� (3)

where [f i (�; bi)]j = f ��ij;xij� ; i = 1; : : : ;M; j = 1; : : : ; ni.
To update the estimate of D at the wth iteration, Lindstrom and Bates use a first order Taylor

expansion of the model function around the current estimates of � and the conditional modes of the

random effects b, which we will denote by b�(w)
and bb(w) respectively. LettingcZ i = @f i@bTi �����b�;bb ; dX i = @f i@�T �����b�;bb ; andbw(w)i = yi � f i(b�(w); bb(w)i ) + cX (w)i b�(w) + bZ(w)i bb(w)i
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the approximate loglikelihood used for the estimation of D is`A ��; �2;D j y� = �12 MXi=1 �log �����2�I + bZ(w)i D bZ(w)Ti ����� (4)+ ��2 � bw(w)i � cX (w)i ��T �I + bZ(w)i D bZ(w)Ti ��1 � bw(w)i � cX(w)i ��)
This loglikelihood is identical to that of a linear mixed effects (LME) model (Laird and Ware, 1982)

in which the response vector is given by bw(w) and the fixed and random effects design matrices are

given by cX (w)
and bZ(w)

. Using the results in Lindstrom and Bates (1988) one can express the optimal

values of � and �2 as functions ofD and work with the profile loglikelihood of D, greatly simplifying

the optimization problem. Lindstrom and Bates (1990) have also proposed an approximate restricted

loglikelihood for the estimation ofD`RA ��; �2;D j y� = �12 MXi=1 log �����2cX(w)T �I + bZ (w)i D bZ(w)Ti �cX(w)����+ `A ��; �2;D j y� (5)

Their estimation algorithm alternates between the PNLS and LME steps until some convergence

criterion is met. Such alternating algorithms tend to be more efficient when the estimates of the variance-

covariance components (D and �2) are not highly correlated with the estimates of the fixed effects (�).

Pinheiro and Bates (1993) have demonstrated that, in the linear mixed effects model, the (restricted)

maximum likelihood estimates ofD and �2 are asymptotically independent of the (restricted) maximum

likelihood estimates of � . These results have not yet been extended to the nonlinear mixed effects

model (1).

It can be shown that the maximum likelihood estimate of� and the conditional modes of the random

effects bi corresponding to the approximate loglikelihood (4) are the values obtained in the first iteration

of the Gauss-Newton algorithm used to minimize the PNLS objective function (3). Therefore, at the

converged value of cD, the estimates of � and bi obtained from the LME and PNLS steps coincide. We

will use `A when comparing the different approximations at the optimal values in section 3, but we do

note that in Lindstrom and Bates (1990) approximation (4) is used only to update the estimates of D
and not for estimating �.
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2.2 Laplacian Approximation

Laplacian approximations are frequently used in Bayesian inference to estimate marginal posterior

densities and predictive distributions (Tierney and Kadane, 1986; Leonard, Hsu and Tsui, 1989). These

techniques can also be used for the integration considered here.

The integral that we want to estimate for the marginal distribution of yi in model (1) can be written

as p(yi j �;D; �2) = Z �2��2��(ni+q)=2 jDj�1=2 exp ��g(�;D;yi; bi)=2�2�dbi; whereg(�;D;yi; bi) = kyi � f i(�; bi)k2 + bTi D�1bi
Let bbi = bbi (�;D;yi) = argminbi g(�;D;yi; bi)g0 (�;D;yi; bi) = @g(�;D;yi; bi)@big00 (�;D;yi; bi) = @2g(�;D;yi; bi)@bi@bTi

and consider a second order Taylor expansion of g around bbig (�;D;yi; bi) ' g ��;D;yi; bbi�+ 12 hbi � bbiiT g00 ��;D;yi; bbi� hbi � bbii (6)

where the linear term of the approximation vanishes since g0(�;D;yi; bbi) = 0. The Laplacian

approximation is defined asp �y j �;D; �2� ' �2��2��N=2 jDj�M=2 exp "� 12�2 MXi=1 g ��;D;yi; bbi�#� Z �2��2�q=2 exp(� 12�2 MXi=1 hbi � bbiiT g00 ��;D;yi; bbi� hbi � bbii)dbi= �2��2��N=2 jDj�M=2 MYi=1 ���g00 ��;D;yi; bbi�����1=2 exp h�g ��;D;yi; bbi� =2�2i
where N = PMi=1 ni.

Now we consider an approximation to g00 similar to the one used in Gauss-Newton optimization.

5



We haveg00 ��;D;yi; bbi� = @2f(�; bi)@bi@bTi �����bi=bbi hyi � f(�; bbi)i+ @f(�; bi)@bTi �����bi=bbi @f(�; bi)@bi ����bi=bbi +D�1
At bbi, the contribution of @2f(�; bi)=@bi@bTi ���bi=bbi hyi � f(�; bbi)i is usually negligible compared to

that of @f(�; bi)=@bTi ���bi=bbi @f(�; bi)=@bijbi=bbi (Bates and Watts, 1980) so we use the approximationg00 ��;D;yi; bbi� ' G (�;D;yi) = @f(�; bi)@bTi �����bi=bbi @f(�; bi)@bi ����bi=bbi +D�1
This has the advantage of requiring only the first order partial derivatives of the model function with

respect to the random effects, which are usually available from the estimation of bbi. This estimation ofbbi is a penalized least squares problem, for which standard and reliable code is available.

The modified Laplacian approximation to the loglikelihood of model (1) is then given by`LA ��;D; �2 j y� = (7)� 12 (N log �2��2�+M log jDj+ MXi=1 log [G (�;D;yi)] + ��2 MXi=1 g ��;D;yi; bbi�)
Since bbi does not depend upon �2, for given � and D the maximum likelihood estimate of �2

(based upon `LA) is b�2 = b�2 (�;D;y) = MXi=1 g ��;D;yi; bbi� =N
We can profile `LA on �2 to reduce the dimension of the optimization problem, obtaining`LAp = �12 (N �1 + log (2�) + log �b�2�� +M log jDj+ MXi=1 log [G (�;D;yi)]) (8)

We note that if f is linear in b then the modified Laplacian approximation is exact because the

second order Taylor expansion in (6) is exact when f (�; b) = f (�) +Z (�)b..

There does not yet seem to be a straightforward generalization of the concept of restricted maximum

likelihood (Harville, 1974) to nonlinear mixed effects models. The difficulty is that restricted maximum

likelihood depends heavily upon the linearity of the fixed effects in the model function, which does

not occur in nonlinear models. Lindstrom and Bates (1990) circumvented that problem by using an
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approximation to the model function f in which the fixed effects � occur linearly. This cannot be done

for the Laplacian approximation, unless we consider yet another Taylor expansion of the model function,

what would lead us back to something very similar to Lindstrom and Bates’ approach. We will return to

this topic later in section 4.

2.3 Importance Sampling

Importance sampling provides a simple and efficient way of performing Monte Carlo integration. The

critical step for the success of this method is the choice of an importance distribution from which the

sample is drawn and the importance weights calculated. Ideally this distribution corresponds to the

density that we are trying to integrate, but in practice one uses an easily sampled approximation. For the

nonlinear mixed effects model the function that we want to integrate is, up to a multiplicative constant,

equal to exp [�g (�;D;yi; bi) =2�2]. As shown in subsection 2.2, by taking a second order Taylor

expansion of g(�;D;yi; bi) around bbi the integrand is, up to a multiplicative constant, approximately

equal to a N �bbi; �2 [G(�;D;yi)]�1� density. This gives us a natural choice for the importance

distribution.

Let NIS denote the number of importance samples to be drawn. In practice one such sample can

be generated by selecting a vector z� with distribution N (0; I) and calculating the sample of random

effects as b�i = bbi + � [G (�;D;yi)]�1=2 z�, where [G (�;D;yi)]�1=2 denotes the inverse of the

Cholesky factor of G (�;D;yi). The importance sampling approximation to the loglikelihood of y is

then defined as`IS ��;D; �2 j y� = �12 "N log �2��2� +M log jDj+ MXi=1 log jG (�;D;yi)j# (9)+ MXi=1 log8<:NISXj=1 exp h�g ��;D;yi; b�ij� =2�2 + kz�jk2=2i =NIS9=;
Note that we cannot in general obtain a closed form expression for the MLE of �2 for fixed � and D,

so that profiling on �2 is no longer reasonable.

As in the modified Laplacian approximation, importance sampling gives exact results when the
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model function is linear in b because in this casep(yi j bi;�;D; �2) p(bi) = p �yi j �;D; �2� � N �bbi; �2 [G (�;D;yi)]�1�
so that the importance weights are equal to p (yi j �;D; �2).
2.4 Gaussian quadrature

Gaussian quadrature is used to approximate integrals of functions with respect to a given kernel by a

weighted average of the integrand evaluated at pre-determined abscissas. The weights and abscissas

used in Gaussian quadrature rules for the most common kernels can be obtained from the tables of

Abramowitz and Stegun (1964) or by using an algorithm proposed by Golub (1973) (see also Golub and

Welsch (1969)). Gaussian quadrature rules for multiple integrals are known to be numerically complex

(Davis and Rabinowitz, 1984), but using the structure of the integrand in the nonlinear mixed effects

model we can transform the problem into successive applications of simple one dimensional Gaussian

quadrature rules. Letting z�j ; wj j = 1; : : : ; NGQ denote respectively the abscissas and the weights for

the (one dimensional) Gaussian quadrature rule with NGQ points based on the N (0; 1) kernel, we getZ (2��2)�q=2 jDj�1=2 exp h�kyi � f (�; bi)k2 =2�2i exp ��bTi D�1b=2�2�dbi (10)= Z (2�)�q=2 exp �� yi � f ��; �DT=2z��2 =2�2� exp ��kz�k2 =2�dz�' NGQXj1=1 � � �NGQXjq=1 exp �� yi � f ��; �DT=2z�j1;:::;jq�2 =2�2� qYk=1wjk
where z�j1;:::;jq = �z�j1 ; : : : ; z�jq�T . The corresponding approximation to the loglikelihood function is`GQ ��;D; �2 j y� = (11)�N log(2��2)=2 + MXi=1 log8<:NGQXj exp �� yi � f ��; �DT=2z�j�2 =2�2� qYk=1wjk9=;
where j = (j1; : : : ; jq)T .

The Gaussian quadrature rule in this case can be viewed as a deterministic version of Monte Carlo

integration in which random samples of bi are generated from theN (0; �2D) distribution. The samples
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(z�j) and the weights (wj) are fixed beforehand, while in Monte Carlo integration they are left to random

choice. Since importance sampling tends to be much more efficient than simple Monte Carlo integration,

we also consider the equivalent of importance sampling in the Gaussian quadrature context, which we

will denote by adaptive Gaussian quadrature. In this approach the grid of abscissas in the bi scale is

centered around the conditional modes bbi rather than 0, as in (10). Another modification is the use ofG (�;D;yi) instead ofD in the scaling of the z�. The adaptive Gaussian quadrature is then given byZ (2��2)�q=2 jDj�1=2 exp h�kyi � f (�; bi)k2 =2�2i exp ��bTi D�1b=2�2�dbi= Z (2�)�q=2 jG (�;D;yi)Dj�1=2 exp ��g n�;D;yi; bbi + � [G (�;D;yi)]�1=2 z�o =2�2+ kz�k2 =2� exp ��kz�k2 =2�dz�' NGQXj1=1 � � �NGQXjq=1 exp��g n�;D;yi; bbi + � [G (�;D;yi)]�1=2 z�j1;:::;jqo =2�2 + z�j1;:::;jq2 =2� qYk=1wjk
The corresponding approximation to the loglikelihood is then`AGQ ��;D; �2 j y� = � "N log �2��2�+M log jDj+ MXi=1 log jG (�;D;yi)j# =2 (12)+ MXi=1 log24NGQXj exp��g n�;D;yi; bbi + � [G (�;D;yi)]�1=2 z�jo =2�2 + z�j2 =2� qYk=1wjk35
The adaptive Gaussian quadrature approximation very closely resembles that obtained for importance

sampling. The basic difference is that the former uses fixed abscissas and weights, while the latter

allows them to be determined by a pseudo-random mechanism. It is also interesting to note that the

one point (i.e. NGQ = 1) adaptive Gaussian quadrature approximation is simply the modified Laplacian

approximation (8), since in this case z�1 = 0 and w1 = 1. The adaptive Gaussian quadrature also gives

the exact loglikelihood when the model function is linear in b, but that is not true in general for the

Gaussian quadrature approximation (10). Like the importance sampling approximation, the Gaussian

quadrature approximation cannot be profiled on �2 to reduce the dimensionality of the optimization

problem.
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3 Comparing the Approximations

In this section we present a comparison of the different approximations to the loglikelihood of model (1)

described in section 2. Two real data examples, the orange trees and Theophylline data sets, and simula-

tion results are used to compare the statistical and computational aspects of the various approximations.

3.1 Orange Trees

The data are presented on Figure 1 and consist of seven measurements of the trunk circumference (in

millimeters) on each of five orange trees, taken over a period of 1600 days. These data were originally

presented in Draper and Smith (1981, p. 524) and were described in Lindstrom and Bates (1990).
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Figure 1: Trunk circumference (in millimeters) of five orange trees: Data and individual fitted curves
from maximum likelihood estimation using the exact loglikelihood. The dashed line represents the mean
curve.

The logistic model y = �1= f1 + exp [� (t � �2) =�3]g seems to fit the data well. Lindstrom and

Bates (1990) concluded in their analysis that only the asymptotic circumference �1 needs a random
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effect to account for tree to tree variation and suggested the following nonlinear mixed effects modelyij = �1 + bi11 + exp [� (tij � �2) =�3] + "ij (13)

where yij represents the jth circumference measurement on the ith tree, tij represents the day cor-

responding to the jth measurement on the ith tree, bi1; i = 1; : : : ; 5 are i.i.d. N (0; �2D), and"ij ; i = 1; : : : ; 5; j = 1; : : : ; 7 are i.i.d. N (0; �2) and independent of the bi1. Note that the single ran-

dom effect occurs linearly in (13) and therefore the modified Laplacian (8), the importance sampling (9),

and the adaptive Gaussian quadrature (12) approximations are all exact.

Table 1 presents the results of estimation using the alternating approximation, Gaussian quadrature

with 10 and 200 abscissas, and the exact loglikelihood. Since only the alternating approximation provides

a version of restricted maximum loglikelihood, we will just consider maximum likelihood estimation in

this and the next subsection. The subscript on Gaussian refers to the number of abscissas used in the

approximation and the scalar L is
pD, the square root of the scaled variance of the random effects. In

general this is a matrix but there is only one random effect here.

Table 1: Estimation Results – Orange Trees Data
Approximation log(L) �1 �2 �3 log(�2) `
Alternating 1.389 191.049 722.556 344.164 4.120 -131.585
Gaussian10 1.123 194.325 727.490 348.065 4.102 -130.497
Gaussian200 1.396 192.293 727.074 348.074 4.119 -131.571
Exact 1.395 192.053 727.906 348.073 4.119 -131.572

The estimation results in Table 1 indicate that the different approximations produce similar fits. The

Gaussian approximation with only 10 abscissas gives the worst approximation, in terms of the value

of the loglikelihood, but even that is not far from the exact value. The Gaussian quadrature with 200

abscissas is almost identical to the exact loglikelihood. The alternating approximation is also very close

to the exact value.

Another important issue regarding the different approximations is how well they behave in a neigh-

borhood of the optimal value, since this behavior is often used to assess the variability of maximum

likelihood estimates. Figure 2 displays the profile traces and contours (Bates and Watts, 1988) for the

exact loglikelihood and the alternating approximation. This plot could not be obtained for the Gaussian

approximation because the objective function presented several local optima during the profiling algo-
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rithm. We believe that this is related to the fact that the Gaussian approximation is centered at bi = 0
and not at the conditional modes of the random effects, where the integrand in (2) takes its highest

values.
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Figure 2: Profile traces and profile contour plots for the orange trees data based on the exact loglikelihood
(solid line) and the alternating approximation (dashed line). Plots below the diagonal are in the original
scale and plots above the diagonal are in the zeta scale (Bates and Watts, 1988). Interpolated contours
correspond approximately to joint confidence levels of 68%, 87%, and 95%.

It can be seen from Figure 2 that the alternating method gives a good approximation to the loglike-

lihood in a neighborhood of the optimal values. It is interesting to note that the profile traces for the

variance-covariance components (D and �2) and the fixed effects (�) meet almost perpendicularly. This

indicates a local uncorrelation between the variance-covariance components and the fixed effects, which

explains why the alternating method was so successful in approximating the loglikelihood. The same

pattern was observed in several other data sets that we have analyzed, leading us to conjecture that the

asymptotic uncorrelation between the estimators of the variance-covariance components and the fixed
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effects verified in the linear mixed effects model also holds, at least approximately, for the nonlinear

mixed effects model.

To compare the computational efficiency of the different approximations we consider the number of

function evaluations needed until convergence. For the alternating approximation there are two different

functions being evaluated during the iterations: the objective function (3) within the PNLS step and the

approximate loglikelihood `A (4) within the LME step. We will use here the total number of evaluations

of either (3) or `A, multiplied by the number of clusters. For the other approximations we will use

the total number of calls to g (�;D;yi; bi). Even though the number of function evaluations used for

the alternating approximation is not directly comparable to the number of function evaluations of the

remaining approximations, it gives a good idea of the relative computational efficiency of this algorithm.

Table 2 presents the number of function evaluations for the different approximations in the orange

trees example. The Gaussian quadrature approximations are considerably less efficient than either the

alternating approximation or the exact loglikelihood. As expected the alternating approximation is the

most computationally efficient.

Table 2: Number of Function Evaluations to Convergence – Orange Trees Data
Approximation Function Evaluations
Alternating 200
Exact 420
Gaussian10 8,150
Gaussian200 101,000

3.2 Theophylline Kinetics

The data considered here are courtesy of Dr. Robert A. Upton of the University of California, San

Francisco. Theophylline was administered orally to 12 subjects whose serum concentrations were

measured at 11 times over the next 25 hours. This is an example of a laboratory pharmacokinetic study

characterized by many observations on a moderate number of individuals (clusters). Figure 3 displays

the data and the individual fits obtained through maximum likelihood using the adaptive Gaussian

approximation with 10 abscissas.

A common model for such data is a first order compartment model with absorption in a peripheral
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Figure 3: Theophylline concentrations (in mg/L) of twelve patients: Data and individual fitted curves
from maximum likelihood estimation using the adaptive Gaussian approximation.

compartment Ct = DKka
Cl(ka �K) [exp (�Kt)� exp (�kat)] (14)

whereCt is the observed concentration at time t (mg/L), t is the time (hr),D is the dose (mg/kg),Cl is the

clearance (L/kg), K is the elimination rate constant (1/hr), and ka is the absorption rate constant (1/hr).

In order to ensure positivity of the rate constants and the clearance, the logarithms of these quantities

were used in the fit. Analysis of the Theophylline data using model (14) indicated that only log(Cl) andlog(ka) needed random effects to account for the patient-to-patient variability. The nonlinear mixed

effects model used for the Theophylline data isCt = D exp [� (�1 + bi1) + (�2 + bi2) + �3]exp (�2 + bi2)� exp (�3) fexp [� exp (�3) t]� exp [� exp (�2 + bi2) t]g
(15)

Table 3 presents the estimation results from the various approximations to the loglikelihood. Only

maximum likelihood estimation is considered. The subscripts on Gaussian and on Adap. Gaussian
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refer to the number of abscissas used in the Gaussian and adaptive Gaussian approximations, while the

subscript on Imp. Sampling refers to the number of importance samples used in this approximation. L
denotes the vector with elements given by the upper triangular half of the Cholesky decomposition ofD, stacked by columns.

Table 3: Estimation Results – Theophylline Data
Approximation log(L1) L2 log(L3) �1 �2 �3 log(�2) `
Alternating -1.44661 0.00271 -0.09992 -3.22719 0.46548 -2.45464 -0.68660 -177.0237
Laplacian -1.44376 0.00271 -0.09973 -3.22946 0.46876 -2.46432 -0.68658 -176.9995
Imp. Sampling1000 -1.44380 0.00271 -0.09877 -3.22682 0.47614 -2.45851 -0.68747 -177.7689
Gaussian5 -1.55539 0.00241 -0.39687 -3.30411 0.50046 -2.48743 -0.48395 -182.4680
Gaussian10 -1.56422 0.00232 -0.20432 -3.23814 0.59525 -2.46872 -0.70276 -176.1008
Gaussian100 -1.44572 0.00271 -0.09820 -3.22684 0.47947 -2.45893 -0.68539 -177.7293
Adap. Gaussian5 -1.44600 0.00271 -0.09905 -3.22503 0.47566 -2.45788 -0.68677 -177.7499
Adap. Gaussian10 -1.44750 0.00271 -0.09937 -3.22705 0.47377 -2.45942 -0.68533 -177.7473

We can see from Table 3 that the alternating approximation, the Laplacian approximation, the

importance sampling approximation, and the adaptive Gaussian approximation all give similar estimation

results. The Gaussian approximation only approaches the other approximations when the number of

abscissas is increased considerably. Note that the actual number of points used in the grid that defines

the Gaussian approximation for this example is the square of the number of abscissas. The adaptive

Gaussian approximations for 1 (Laplacian), 5, and 10 abscissas give similar results, indicating that just

a few points are needed for this approximation to be accurate. The importance sampling approximation

caused some numerical difficulties for the optimization algorithm (the ms() function in S (Chambers

and Hastie, 1992)) used to obtain the maximum likelihood estimates, since the stochastic variability

associated with different importance samples overwhelmed the numerical variability of the loglikelihood

for small changes in the parameter values (used to calculate numerical derivatives). We ended up having

to keep the random number generator seed fixed during the optimization process, thus using the same

importance samples throughout the calculations. Since the results obtained using importance sampling

were very similar to those of the adaptive Gaussian approximation, we concluded that the latter is to be

preferred for its greater simplicity and computational efficiency.

Table 4 gives the number of function evaluations until convergence for the different approximations.

The alternating approximation is the most efficient, followed by the Laplacian and adaptive Gaussian

approximations. Gaussian quadrature with 5 abscissas is efficient compared to the adaptive Gaussian,

but is quite inaccurate. The more reliable Gaussian approximation with 100 abscissas takes about 100
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times more function evaluations than the adaptive Gaussian with 10 abscissas. The importance sampling

approximation had the worst performance in terms of function evaluations.

Table 4: Number of Function Evaluations to Convergence – Theophylline Data
Approximation Function Evaluations
Alternating 1,512
Laplacian 7,683
Adap. Gaussian5 30,020
Adap. Gaussian10 96,784
Gaussian5 47,700
Gaussian10 318,000
Gaussian100 10,200,000
Imp. Sampling1000 11,211,284

Next we consider the approximations in a neighborhood of the optimal value. We will restrict

ourselves here to the alternating, the Laplacian, and the adaptive Gaussian approximation, as the

Gaussian approximation for a moderate number of abscissas is not reliable, and both the Gaussian

approximation with a larger number of abscissas and the importance sampling approximation are very

inefficient computationally and give results quite similar to the adaptive Gaussian approximation. We

used five abscissas for the adaptive Gaussian quadrature, as this gives roughly the same precision as the

ten-abscissa quadrature rule.

The alternating approximation gives results very similar to the adaptive Gaussian quadrature. As

in the orange trees example, the profile traces of the variance-covariance components and the fixed

effects meet almost perpendicularly, indicating a local uncorrelation between these estimates. The

Laplacian and the adaptive Gaussian approximations give virtually identical plots (not included here).

This suggests there is little to be gained by increasing the number of abscissas past one in the quadrature

rule. The major gain in precision is obtained by centering the grid at the conditional modes and scaling

it using the approximate Hessian.

3.3 Simulation Results

In this section we include a comparison of the approximations to the loglikelihood in model (1) using

simulation. We restrict ourselves to the alternating, the Laplacian, and the (five-abscissa) adaptive

Gaussian approximations as these seem to be more accurate and/or more efficient than the Gaussian

and the importance sampling approximations. Two models were used in the simulation analysis: a
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Figure 4: Profile traces and profile contour plots for the Theophylline data based on the adaptive Gaussian
approximation with 5 abscissas (solid line) and the alternating approximation (dashed line). Plots below
the diagonal are in the original scale and plots above the diagonal are in the zeta scale (Bates and Watts,
1988). Interpolated contours correspond approximately to joint confidence levels of 68%, 87%, and
95%.

logistic model similar to the one used for the orange trees data and a first order open compartment model

similar to the one used for the Theophylline example. For both models 1000 samples were generated and

maximum likelihood (ML) estimates based on the different approximations obtained. For the alternating

approximation, restricted maximum likelihood (RML) estimates were also obtained.
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3.3.1 Logistic Model

A logistic model similar to (13), but with two random effects instead of one, was used to generate the

data. The model is given byyij = �1 + bi11 + exp f� [tij � (�2 + bi2)] =�3g + "ij; i = 1; : : : ;M; j = 1; : : : ; ni (16)

where the bi are i.i.d. N (0; �2D), and the "ij are i.i.d. N (0; �2) and independent of the bi. We usedM = 15, ni = 10; i; : : : ; 15, �2 = 25, � = (200; 700; 350)T , and D = 264 4 �2�2 25 375.

Table 5 summarizes the simulation results for the variance-covariance components (MSE denotes

the mean square error of the estimators). The different approximations to the loglikelihood give similar

simulation results for all the parameters involved. The cluster specific variance (�2) is estimated with

more relative precision than the elements of the scaled variance-covariance matrix of the random effects

(D). This is probably because the precision of the estimate of �2 (as well as the estimates of �) is

determined by the total number of observations, while the precision of the estimates ofD is determined

by the number of clusters. We can also see a tendency for the restricted maximum likelihood to give

positively biased estimates of D11 and D22, while the other approximations give negatively biased

estimates. The rationale for restricted maximum likelihood is to reduce bias in estimating variance

components. It does not seem to do so in this case; it just changes its direction.

Table 5: Simulation results for the variance-covariance components in the logistic modelD11 D12
Approximation Mean Bias MSE Mean Bias MSE
Alternating – RML 4.2000 0.2000 3.9161 -1.9460 0.0540 18.4208
Alternating – ML 3.9218 -0.0782 3.4370 -1.9947 0.0053 16.1845
Laplacian 3.9349 -0.0651 3.3748 -1.9781 0.0219 15.7242
Adap. Gaussian 3.9408 -0.0592 3.4081 -1.9651 0.0349 15.7540D22 �2
Approximation Mean Bias MSE Mean Bias MSE
Alternating – RML 26.0890 1.0890 360.9847 24.8849 -0.1151 9.7557
Alternating – ML 23.3216 -1.6784 314.5025 24.6511 -0.3489 9.6473
Laplacian 23.8638 -1.1362 310.0535 24.6252 -0.3748 9.5700
Adap. Gaussian 23.9337 -1.0662 312.4221 24.6168 -0.3832 9.5671

Figure 5 presents the scatter plots of the variance-covariance component (�2 and D) estimates for
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the alternating RML, the alternating ML, and the Laplacian approximations versus the adaptive Gaussian

approximation. We see that, except for the alternating RML approximation, all methods lead to very

similar estimates. In general the alternating RML approximation gives larger values for the estimates

of the variance components (especially D11 andD22) than the other methods. The higher mean square

error for D12 from the alternating ML and RML methods is visible in the plot, as each of the panels

comparing these estimates to those from the adaptive Gaussian method has a vertical clump of points at

the true value.
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Figure 5: Scatter plots of variance-covariance components estimates for the alternating (RML and ML),
Laplacian, and adaptive Gaussian approximations in the logistic model (16). The dashed lines indicate
the true values of the parameters.

Table 6 presents the simulation results for the fixed effects estimates. The results are very similar

for all approximations considered. We also note that the relative variability of the fixed effects estimates

19



is much smaller than those of the estimates of the elements ofD. There is very little, if any, bias in the

fixed effects estimates.

Table 6: Simulation results for the fixed effects in the logistic model�1 �2 �3
Approximation Mean Bias MSE Mean Bias MSE Mean Bias MSE
Alternating – RML 199.6097 -0.3903 10.1830 698.4286 -1.5714 138.2153 348.8091 -1.1909 57.1686
Alternating – ML 199.6081 -0.3919 10.1836 698.4292 -1.5707 138.2237 348.8224 -1.1776 57.1297
Laplacian 199.9275 -0.0725 10.2012 700.0317 0.0317 138.3760 350.2019 0.2019 56.9361
Adap. Gaussian 199.9229 -0.0771 10.1561 699.9082 -0.0918 138.4409 350.0640 0.0640 57.0550

Figure 6 presents the scatter plots of the fixed effects estimates for the alternating RML, alternating

ML, and Laplacian approximations versus the adaptive Gaussian approximation. Again we observe

a strong agreement in the estimates obtained through the various approximations. The alternating

approximations tend to give estimates slightly smaller than the Laplacian and adaptive Gaussian, but the

differences are minor.

3.3.2 First Order Compartment Model

The model used in the simulation is identical to (15). As in the Theophylline example we set M = 12
and ni = 11; i = 1; : : : ; 12. The parameter values used were �2 = 0:25, � = (�3:0; 0:5;�2:5)T ,

andD = 264 0:2 00 1 375.

Table 7 summarizes the simulation results for the variance-covariance components estimates. As in

the logistic model analysis, we observe that the elements ofD are estimated with less relative precision

than �2. The alternating ML, Laplacian, and adaptive Gaussian approximations seem to lead to slightly

downward biased estimates of D11 and D22, while the alternating RML approximation appears to give

unbiased estimates (thus achieving its main purpose). Note however that the unbiasedeness of the RML

estimates does not translate into smaller mean square error – all four estimation methods lead to similar

MSE, for all parameters.

Figure 7 presents the scatter plots of the variance-covariance estimates for the alternating RML,

alternating ML, and Laplacian approximations versus the adaptive Gaussian approximation. The al-

ternating RML approximation tends to give larger values for D11 and D22, and larger absolute values

for D12, while the remaining approximations lead to very similar estimates. There was one sample for

which the alternating approximations apparently converged to a different solution than the Laplacian and
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Figure 6: Scatter plots of fixed effects estimates for the alternating (RML and ML), Laplacian, and
adaptive Gaussian approximations in the logistic model (16). The dashed lines indicate the true values
of the parameters.

adaptive Gaussian. Overall there were no major differences between the approximations in estimating

the variance-covariance components.

Table 6 gives the simulation results for the fixed effects estimates. All four approximations give

virtually identical results for the estimation of the fixed effects. They all show very little bias and smaller

relative variability when compared to the estimates of the variance-covariance components.

The scatter plots of the fixed effects estimates, not included here, show practically identical results

for the alternating RML and ML, the Laplacian , and the adaptive Gaussian approximations.
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Table 7: Simulation results for the variance-covariance components in the first order compartment modelD11 D12
Approximation Mean Bias MSE Mean Bias MSE
Alternating – RML 0.1996 -0.0004 0.0089 -0.0013 -0.0013 0.0210
Alternating – ML 0.1840 -0.0160 0.0078 -0.0023 -0.0023 0.0179
Laplacian 0.1862 -0.0138 0.0078 -0.0011 -0.0011 0.0178
Adap. Gaussian 0.1860 -0.0140 0.0077 0.0002 0.0002 0.0180D22 �2
Approximation Mean Bias MSE Mean Bias MSE
Alternating – RML 1.0095 0.0095 0.2565 0.2508 0.0008 0.0012
Alternating – ML 0.9249 -0.0751 0.2240 0.2486 -0.0014 0.0011
Laplacian 0.9388 -0.0612 0.2276 0.2480 -0.0020 0.0011
Adap. Gaussian 0.9476 -0.0524 0.2332 0.2481 -0.0019 0.0011

Table 8: Simulation results for the fixed effects in the first order compartment model�1 �2 �3
Approximation Mean Bias MSE Mean Bias MSE Mean Bias MSE
Alternating – RML -2.9989 0.0011 0.0053 0.4876 -0.0124 0.0244 -2.4965 0.0035 0.0020
Alternating – ML -2.9992 0.0008 0.0053 0.4869 -0.0131 0.0244 -2.4965 0.0035 0.0020
Laplacian -3.0009 -0.0009 0.0053 0.4983 -0.0017 0.0242 -2.5045 -0.0045 0.0020
Adap. Gaussian -2.9987 0.0013 0.0053 0.4984 -0.0016 0.0246 -2.5008 -0.0008 0.0020

4 Conclusions

The results of section 3 indicate that the alternating approximation (4) to the loglikelihood function

in the nonlinear mixed effects model (1) proposed by Lindstrom and Bates (1990) gives accurate and

reliable estimation results. The main advantages of this approximation are its computational efficiency

(allowing the use of linear mixed effects techniques to estimate the scaled variance-covariance matrix

of the random effects D) and the availability of a restricted likelihood version of it, which is not yet

defined for other approximations/estimation methods. With regard to the restricted maximum likelihood

estimation though, the results of section 3 suggest that the bias correction ability of this method depends

on the nonlinear model that is being considered: RML estimation achieved its purpose for the first order

compartment model (15), but it increased the bias in the logistic model (16). More research is needed

in this area. Since it is simpler computationally the alternating approximation should be used to provide

starting values for the more accurate approximations (e.g. Laplacian and adaptive Gaussian) if they are

preferred.

The Gaussian quadrature approximation (11) only seems to give accurate results for large number of
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Figure 7: Scatter plots of variance-covariance components estimates for the alternating (RML and ML),
Laplacian, and adaptive Gaussian approximations in the first order compartment model (15). The dashed
lines indicate the true values of the parameters.

abscissa (> 100), what makes it very inefficient computationally. The basic problem is that it centers the

grid of abscissas at 0 (the expected value of the random effects) and scales it according to D, while the

highest values of the integrand in (2) are concentrated around the posterior modes of the random effects

(bb) and scaled according to g00 ��;D;y; bb�. The advantages of this approximation are that it does not

require the estimation of the posterior modes of the random effects at each iteration and it admits closed

form partial derivatives with respect to the parameters of interest (�;D; and �2), provided these are

available for the model function f (Davidian and Gallant, 1992). We feel that these advantages do not

compensate for the inaccuracy or computational inefficiency of the Gaussian approximation.

The importance sampling approximation (9) gives reliable estimation results, comparable to those of
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the adaptive Gaussian and Laplacian approximations, but is considerably less efficient computationally

than these approximations. Also, the stochastic variability associated with the different importance

samples may overwhelm the numerical variability of the loglikelihood for small changes in the parameter

values, making it difficult to calculate numerical derivatives. The main advantage of the importance

sampling approximation is its versatility in handling distributions other than the normal, for both the

random effects and the cluster-specific error term (�). For example it would be rather straightforward to

adapt the importance sampling integration to handle a multivariate t distribution for the random effects,

but that would not be a trivial task for either the alternating, the Laplacian, or the adaptive Gaussian

approximations. Wakefield et al. (1994) use the similar property of Gibbs sampler methods to check for

outliers in nonlinear mixed effects models. If one is willing to stick with the normal distribution for b
and � in the nonlinear mixed effects model (1) then the importance sampling approximation is not the

most efficient choice.

Of all approximations considered here, the Laplacian and adaptive Gaussian approximations prob-

ably give the best mix of efficiency and accuracy. The former can be regarded as a particular case of

the latter, where just one abscissa is used. Both approximations (and the importance sampling approx-

imation as well) give the exact loglikelihood when the model function f in (1) is a linear function of

the random effects. In the examples that we analyzed not much was gained by going from a one-point

adaptive Gaussian quadrature (Laplacian) approximation to approximations with a larger number of

abscissas. It appears that the major gain in adaptive Gaussian approximations is related to the centering

and scaling of the abscissas. Increasing the number of points in the evaluation grid only gives marginal

improvement. The Laplacian approximation has the additional advantage over the adaptive Gaussian

approximation with more than one abscissa of allowing profiling of the loglikelihood over �2, thus

reducing the dimensionality of the optimization problem.

For statistical analysis purpose we would recommend using a hybrid scheme in which the alternating

algorithm would be used to get good initial values for the more refined Laplacian approximation to the

loglikelihood of model (1). This way the computational efficiency of the alternating algorithm would

be combined with the greater accuracy of the Laplacian approximation.
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