
 

 

 
Abstract—This paper is devoted to the construction of local 

approximations of functions of one and two variables using the 

polynomial, the trigonometric, and the exponential splines. These 

splines are useful for visualizing flows of graphic information. 
Here, we also discuss the parallelization of computations. Some 

attention is paid to obtaining two-sided estimates of the 

approximations using interval analysis methods. Particular 

attention is paid to solving the boundary value problem by using 

the polynomial splines and the trigonometric splines of the third 

and fourth order approximation. Using the considered splines, 

formulas for a numerical differentiation are constructed. These 

formulas are used to construct computational schemes for solving 

a parabolic problem. Questions of approximation and stability of 

the obtained schemes are considered. Numerical examples are 

presented. 

 

Keywords— Boundary value problem, exponential splines, 

interpolation, interval estimation, polynomial splines, 

trigonometric splines, exponential splines.  

I. INTRODUCTION 

 UITE often, interval analysis is used to verify the result. 
 In papers [1]–[4] an overview on applications of interval 

arithmetic is given and verification methods for solving linear 
systems of equations, nonlinear systems, the algebraic 
eigenvalue problem and initial value problems are discussed. In 
paper [3] interval estimation is used in epidemiological 
analysis.  

It is an important task to determine the upper and lower 
boundaries of solutions (see [5]-[6]). Two-sided estimates 
allow the verification to solve the problem. In paper [5] an 
approach for solving non-linear systems of equations is 
proposed. This approach is based on the Interval-Newton and 
Interval-Krawczyk operators and B-splines. The proposed 
algorithm is making great benefits of the geometric properties 
of B-spline functions to avoid unnecessary computations. For 
eigenvalue problems of self-adjoint differential operators, a 
universal framework is proposed to give explicit lower and 

 
 

upper bounds for the eigenvalues (see [6]). 
An important aspect of solving the problem is to improve the 
calculation accuracy (see [7]-[8]). The interval analysis 
technique and radial point interpolation method are adopted in 
[7] in order to improve the calculation accuracy and reduce the 
computational cost. The corresponding formulations of the 
structural acoustic system for the interval response analysis are 
deduced in [7] too. When processing flows of graphic 
information, great importance is often given to the compression 
and subsequent recovery of this information. The problems of 
data compression and visualization using radial basis functions 
are discussed in [8]. When solving various problems, various 
splines are very often used. Splines have proven themselves 
well in solving problems of approximation and functions, in 
visualizing the results of calculations. They often provide a 
solution with less error. A great contribution to the development 
of spline theory was made by J.H.Ahlberg, E.N.Nilson, 
J.L.Walsh, Carl de Boor, and other mathematicians. Currently, 
polynomial splines are widely used. Non-polynomial splines 
are less well known, but often provide a smaller approximation 
error. It should be noted that Prof. Yu.K.Demyanovich devotes 
a lot of attention to the study of quadratic polynomial splines of 
the Lagrangian type (see [9]). In paper [15], methods are given 
for constructing splines of generalized smoothness in the case 
of splines of the Lagrangian type on a differentiable manifold. 
In paper [16] methods for constructing splines of generalized 
smoothness are developed on a manifold and an application of 
the results obtained to splines of the Hermitian type of the first 
height is given.  

Recently, many authors have been trying to improve 
computational schemes for solving partial differential 
equations. When solving this problem, splines are very often 
used. Explicit formulae were developed to obtain the different 
derivatives of the linear partial differential equations in paper 
[17]. In paper [18], when solving the heat conduction problem, 
two types of basis functions are considered: B-spline and expo-
rational B-spline combined with Bernstein polynomials. Paper 
[19] presents a numerical algorithm for using radial basis 
function-generated finite differences to solve partial differential 
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equations on S2 using polyharmonic splines with added 
polynomials defined in a 2D plane. In paper [20] the hybrid 
spline difference method is used to solve the one-dimensional 
heat transfer equations. A novel multistep method based on the 
non-uniform rational basis spline curves is developed in [21] 
for the solution of a system of nonlinear differential equations. 

This paper discusses the issues of visualizing results, reducing 
counting time, and verification of calculations. This paper 
continues the series of papers on approximation with local 
polynomial and non-polynomial splines and interval estimation 
(see [10] – [14]). This paper focuses on the polynomial, the 
trigonometric and the exponential splines of the third order 
approximation. To construct the approximation, we need the 
values of the function at the grid nodes and the basis formulas 
splines. To construct the interval estimation of the 
approximation of the function or its first derivative, we need the 
function values at the grid nodes and the rules for working with 
real intervals. The proposed splines can be used to construct 
numerical methods for solving partial differential equations. In 
Section 6, we consider the application of polynomial and 
trigonometric splines to the solution of boundary value 
problems. It should be noted that different approaches lead to 
numerical differentiation formulas with different properties 

II. THE LEFT AND THE RIGHT SPLINES 

In some cases, the use of the trigonometric approximations is 
preferable to the polynomial approximations. Here we compare 
these two types of approximations. To approximate functions 
on a finite grid of nodes, we will use the left and right splines. 

Suppose 𝑎, 𝑏 are real numbers. We will apply left splines 
near the right end of the finite interval [𝑎, 𝑏]. Right splines will 
be applied near the left end of the finite interval [𝑎, 𝑏]. Let the 
set of nodes 𝑥𝑗  be such that 𝑎 < . . . < 𝑥𝑗−1 < 𝑥𝑗 < 𝑥𝑗+1 < . . . <𝑏. We construct an approximation of function 𝑓(𝑥), 𝑓 ∈𝐶(3)([𝑎, 𝑏]) with local splines, in which the support of the bases 
spline consists of three adjacent intervals. When approximating 
a function on a finite interval near the left and right boundaries 
of the interval [𝑎, 𝑏] we will use the approximation  𝐹𝐿(𝑥), 𝐺𝐿(𝑥), 𝑄𝐿(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], with the left or  𝐹𝑅(𝑥), 𝐺𝑅(𝑥), 𝑄𝑅(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]  with the right continuous 

splines: 𝐹𝐿(𝑥) = 𝑓(𝑥𝑗−1)𝑤𝑗−1𝐿 (𝑥) + 𝑓(𝑥𝑗)𝑤𝑗𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝑤𝑗+1𝐿 (𝑥), 𝐹𝑅(𝑥) = 𝑓(𝑥𝑗)𝑊𝑗𝑅(𝑥) + 𝑓(𝑥𝑗+1)𝑊𝑗+1𝑅 (𝑥) + 𝑓(𝑥𝑗+2)𝑊𝑗+2𝑅 (𝑥), 𝐺𝐿(𝑥) = 𝑓(𝑥𝑗−1)𝜔𝑗−1𝐿 (𝑥) + 𝑓(𝑥𝑗)𝜔𝑗𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝜔𝑗+1𝐿 (𝑥), 𝐺𝑅(𝑥) = 𝑓(𝑥𝑗)𝑣𝑗𝑅(𝑥) + 𝑓(𝑥𝑗+1)𝑣𝑗+1𝑅 (𝑥) + 𝑓(𝑥𝑗+2)𝑣𝑗+2𝑅 (𝑥). 𝑄𝐿(𝑥) = 𝑓(𝑥𝑗−1)𝛼𝑗−1𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛼𝑗𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛼𝑗+1𝐿 (𝑥), 𝑄𝑅(𝑥) = 𝑓(𝑥𝑗)𝛼𝑗𝑅(𝑥) + 𝑓(𝑥𝑗+1)𝛼𝑗+1𝑅 (𝑥) + 𝑓(𝑥𝑗+2)𝛼𝑗+2𝑅 (𝑥). 
 

Approximations using the trigonometric splines will be 
denoted by 𝐹𝐿(𝑥), 𝐹𝑅(𝑥). Approximations using the 
polynomial splines will be denoted by 𝐺𝐿(𝑥), 𝐺𝑅(𝑥). 
Approximations using the exponential splines will be denoted 
by 𝑄𝐿(𝑥), 𝑄𝑅(𝑥). 

The set of interpolation with the local left and right splines 
are called boundary minimal splines.  

In paper [14] it is shown that the left trigonometric basis be 
written as follows: 

𝑤𝑗𝐿(𝑥) = cos (𝑥 − 𝑥𝑗−12 − 𝑥𝑗+12 ) − cos (𝑥𝑗−12 − 𝑥𝑗+12 )2 sin (𝑥𝑗2 − 𝑥𝑗+12 ) sin (𝑥𝑗+12 − 𝑥𝑗2 ) , 
𝑤𝑗+1𝐿 (𝑥) = cos (𝑥𝑗2 − 𝑥𝑗−12 ) − cos (𝑥𝑗2 + 𝑥𝑗−12 − 𝑥)2 sin (𝑥𝑗+12 − 𝑥𝑗−12 ) sin (𝑥𝑗+12 − 𝑥𝑗2 ) , 
𝑤𝑗−1𝐿 (𝑥) = cos (𝑥𝑗2 − 𝑥𝑗+12 ) − cos (𝑥𝑗2 + 𝑥𝑗+12 − 𝑥)2 sin (𝑥𝑗−12 − 𝑥𝑗2 ) sin (𝑥𝑗−12 − 𝑥𝑗+12 ) . 

We consider that 𝑠𝑢𝑝𝑝 𝑤𝑗𝐿(𝑥) = [𝑥𝑗−2, 𝑥𝑗+1]. The left 

trigonometric basis splines we obtain from the system of 
equation 𝐹𝐿(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1, sin(𝑥) , cos(𝑥) , 𝑥 ∈[𝑥𝑗 , 𝑥𝑗+1] .  

In paper [14] it is shown that the left polynomial basis splines 
can be written as follows: 𝜔𝑗𝐿(𝑥) = (𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1), 

𝜔𝑗+1𝐿 (𝑥) = (𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗−1), 
𝜔𝑗−1𝐿 (𝑥) = (𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗). 

We consider that 𝑠𝑢𝑝𝑝 𝜔𝑗𝐿(𝑥) = [𝑥𝑗−2, 𝑥𝑗+1]. The left 

polynomial basis splines we obtain from the system of equation 𝐺𝐿(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1, 𝑥, 𝑥2, for 𝑥 ∈[𝑥𝑗 , 𝑥𝑗+1] . Using the notation 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0, 1],   𝑥𝑗+1 =𝑥𝑗 + ℎ,   𝑥𝑗−1 = 𝑥𝑗 − ℎ, we get 𝜔𝑗𝐿(𝑥𝑗 + 𝑡ℎ) = −(𝑡 − 1)(𝑡 + 1), 𝜔𝑗+1𝐿 (𝑥𝑗 + 𝑡ℎ) = 𝑡(𝑡 + 1)/2, 𝜔𝑗−1𝐿 (𝑥𝑗 + 𝑡ℎ) = 𝑡(𝑡 − 1)/2. 
The relationships 𝑤𝑗𝐿(𝑥𝑗 + 𝑡ℎ) = 𝜔𝑗𝐿(𝑥𝑗 + 𝑡ℎ) + 𝑂(ℎ2), 𝑤𝑗+1𝐿 (𝑥𝑗 + 𝑡ℎ) = 𝜔𝑗𝐿(𝑥𝑗 + 𝑡ℎ) + 𝑂(ℎ2), 𝑤𝑗−1𝐿 (𝑥𝑗 + 𝑡ℎ) =𝜔𝑗−1𝐿 (𝑥𝑗 + 𝑡ℎ) + 𝑂(ℎ2) establish the relations between left 

polynomial and trigonometric splines.  

  We consider that 𝑠𝑢𝑝𝑝 𝑊𝑗𝑅(𝑥) = [𝑥𝑗−1, 𝑥𝑗+2]. The right 

trigonometric basis splines we obtain from the system of 
equation 𝐹𝑅(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1,  sin(𝑥) ,  cos(𝑥) ,for  𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] . Formulas for right polynomial and 

trigonometric splines are given in paper [14]: 
 𝑊𝑗𝑅(𝑥) = cos (𝑥𝑗+12 − 𝑥𝑗+22 ) − cos (𝑥 − 𝑥𝑗+22 − 𝑥𝑗+12 )2 sin (𝑥𝑗2 − 𝑥𝑗+22 ) sin (𝑥𝑗2 − 𝑥𝑗+12 ) , 

𝑊𝑗+1𝑅 (𝑥) = cos (𝑥 − 𝑥𝑗+22 − 𝑥𝑗2 ) − cos (𝑥𝑗2 − 𝑥𝑗+22 )2 sin (𝑥𝑗+12 − 𝑥𝑗+22 ) sin (𝑥𝑗2 − 𝑥𝑗+12 ) , 
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𝑊𝑗+2𝑅 (𝑥) = cos (𝑥𝑗2 − 𝑥𝑗+12 ) − cos (𝑥 − 𝑥𝑗2 − 𝑥𝑗+12 )2 sin (𝑥𝑗2 − 𝑥𝑗+22 ) sin (𝑥𝑗+12 − 𝑥𝑗+22 ) . 
The formulas for the right polynomial basis splines 𝑣𝑗𝑅(𝑥), 𝑣𝑗+1𝑅 (𝑥), 𝑣𝑗+2𝑅 (𝑥) , 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], can be written as follows: 

 𝑣𝑗+2𝑅 (𝑥) = (𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗), 
𝑣𝑗+1𝑅 (𝑥) = (𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)(𝑥𝑗+1 − 𝑥𝑗), 

𝑣𝑗𝑅(𝑥) = (𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)(𝑥𝑗 − 𝑥𝑗+1). 
When 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0, 1], we obtain for 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]: 𝑣𝑗𝑅(𝑥𝑗 + 𝑡ℎ) = 1 − (3/2)𝑡 + 𝑡2/2, 𝑣𝑗+1𝑅 (𝑥𝑗 + 𝑡ℎ) = 2𝑡 − 𝑡2, 𝑣𝑗+2𝑅 (𝑥𝑗 + 𝑡ℎ) = 𝑡2/2 − 𝑡/2. 

The left (or right) exponential basis splines we obtain from the 
system of equation 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥) (or 𝑄𝑅(𝑥) = 𝑓(𝑥) ), when 𝑓(𝑥) = 1, exp (𝑥), exp (−𝑥), for 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] . For the left 

exponential splines we have: 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥𝑗−1)𝛼𝑗−1𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛼𝑗𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛼𝑗+1𝐿 (𝑥), 
where 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 𝛼𝑗−1𝐿 (𝑥) = −𝐴𝑗−1exp (𝑥𝑗+1)exp (𝑥𝑗)exp (𝑥𝑗−1)exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1), 
where 𝐴𝑗−1 = exp(𝑥𝑗 − 𝑥𝑗+1) − exp(𝑥𝑗+1 − 𝑥𝑗) + exp(𝑥 − 𝑥𝑗) −exp(𝑥 − 𝑥𝑗+1) − exp(𝑥𝑗 − 𝑥) + exp(𝑥𝑗+1 − 𝑥), 𝛼𝑗𝐿(𝑥) = −𝐴𝑗exp (𝑥𝑗+1)exp (𝑥𝑗)exp (𝑥𝑗−1)exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1), 
where 𝐴𝑗 = exp(𝑥 − 𝑥𝑗+1) − exp(𝑥𝑗+1 − 𝑥) + exp(𝑥𝑗−1 − 𝑥) + −exp(𝑥𝑗−1 − 𝑥𝑗+1) + exp(𝑥𝑗+1 − 𝑥𝑗−1) − exp(𝑥 − 𝑥𝑗−1), 𝛼𝑗+1𝐿 (𝑥) = 𝐴𝑗+1exp (𝑥𝑗+1)exp (𝑥𝑗)exp (𝑥𝑗−1)exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1), 
where 𝐴𝑗+1 = exp(𝑥 − 𝑥𝑗) − exp(𝑥𝑗 − 𝑥) − exp(𝑥𝑗−1 − 𝑥𝑗) +exp(𝑥𝑗−1 − 𝑥) − exp(𝑥 − 𝑥𝑗−1) + exp(𝑥𝑗 − 𝑥𝑗−1). 
We consider that 𝑠𝑢𝑝𝑝 𝛼𝑗𝐿(𝑥) = [𝑥𝑗−2, 𝑥𝑗+1]. The formula of 

the basis spline 𝛼𝑗𝐿(𝑥) when  𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗],   we obtain from 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1, exp (𝑥), exp (−𝑥), where 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥𝑗−2)𝛼𝑗−2𝐿 (𝑥) + 𝑓(𝑥𝑗−1)𝛼𝑗−1𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛼𝑗𝐿(𝑥). 

The formula of the basis spline 𝛼𝑗𝐿(𝑥) when  𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1], 
we obtain from 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1, exp (𝑥),exp (−𝑥), where 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥𝑗)𝛼𝑗𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛼𝑗+1𝐿 (𝑥) +𝑓(𝑥𝑗+2)𝛼𝑗+2𝐿 (𝑥). 
Combine the basis spline formulas obtained at these intervals 

we have a formula on the interval [𝑥𝑗−2, 𝑥𝑗+1]. The plot of the 

exponential basis spline 𝛼𝑗𝐿(𝑥), when ℎ = 1, 𝑗 = −1,  is given 

in Fig 1. 

 
Fig. 1. The plot of the exponential basis spline 𝛼𝑗𝐿 

Denote 𝑓𝑘 = 𝑓(𝑥𝑘). When we have the equidistant set of nodes, 𝑥𝑗+1 − 𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1 = ℎ, then the formula of the first 

derivative of the approximation at 𝑥 = 𝑥𝑗 is as follows:  (𝑄𝐿(𝑥))′|𝑥=𝑥𝑗 = (𝑓𝑗−1𝑔𝑗−1 + 𝑓𝑗𝑔𝑗 + 𝑓𝑗+1𝑔𝑗+1), 
where  𝑔𝑗 = (𝛼𝑗𝐿(𝑥))′|𝑥=𝑥𝑗 = 0,  𝑔𝑗−1 = (𝛼𝑗−1𝐿 (𝑥))′|𝑥=𝑥𝑗 = −exp (ℎ)(exp(ℎ)−1)(exp(ℎ)+1),  𝑔𝑗+1 = (𝛼𝑗+1𝐿 (𝑥))′|𝑥=𝑥𝑗 = exp(ℎ)(exp(ℎ) − 1)(exp(ℎ) + 1). 
We can obtain the formula when 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0,1]: 𝑔𝑗−1 = − 12ℎ + ℎ12 + 𝑂(ℎ3), 𝑔𝑗+1 = 12ℎ − ℎ12 + 𝑂(ℎ3), 
Thus, when we have the equidistant set of nodes, the formula 𝑓′(𝑥𝑗) = (𝑄𝐿𝛼(𝑥))′|𝑥=𝑥𝑗 + 𝑂(ℎ) can be used. 

Remark 1. We can also obtain the left (or right) exponential 
basis splines from the system of equation 𝑄𝐿𝛽(𝑥) = 𝑓(𝑥) (or 𝑄𝑅𝛽(𝑥) = 𝑓(𝑥) ), when 𝑓(𝑥) = 1, exp (−𝑥), exp (−2𝑥), 𝑥 ∈[𝑥𝑗 , 𝑥𝑗+1] . For the left exponential splines we have: 𝑄𝐿𝛽(𝑥) = 𝑓(𝑥𝑗−1)𝛽𝑗−1𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛽𝑗𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛽𝑗+1𝐿 (𝑥), 
where 𝛽𝑗−1𝐿 (𝑥) = 𝐵𝑗−1exp (2𝑥𝑗+1)exp (2𝑥𝑗)exp (2𝑥𝑗−1)exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1), 𝐵𝑗−1 = exp(−𝑥𝑗 − 2𝑥𝑗+1) − exp(−𝑥𝑗+1 − 2𝑥𝑗) + exp(−𝑥 − 2𝑥𝑗) − exp(−𝑥 − 2𝑥𝑗+1) + exp(−𝑥𝑗+1 − 2𝑥) − exp(−𝑥𝑗 − 2𝑥), 
 𝛽𝑗𝐿(𝑥) = 𝐵𝑗exp (2𝑥𝑗+1)exp (2𝑥𝑗)exp (2𝑥𝑗−1)exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1), 
where 𝐵𝑗 = exp(−𝑥 − 2𝑥𝑗+1) − exp(−𝑥𝑗+1 − 2𝑥) −exp(−𝑥𝑗−1 − 2𝑥𝑗+1) + exp(−𝑥𝑗+1 − 2𝑥𝑗−1) − exp(−2𝑥𝑗−1 − 𝑥) + exp(−2𝑥 − 𝑥𝑗−1), 
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 𝛽𝑗+1𝐿 (𝑥) = 𝐵𝑗+1exp (2𝑥𝑗+1)exp (2𝑥𝑗)exp (2𝑥𝑗−1)exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1), 
where  𝐵𝑗+1 = exp(−𝑥 − 2𝑥𝑗) − exp(−𝑥𝑗 − 2𝑥) −exp(−𝑥𝑗−1 − 2𝑥𝑗) + exp(−𝑥𝑗−1 − 2𝑥) − exp(−2𝑥𝑗−1 − 𝑥) + exp(−2𝑥𝑗−1 − 𝑥𝑗). 

The plot of the exponential basis spline 𝛽𝑗𝐿(𝑥), when ℎ = 1, 𝑗 =−1,  is given in Fig 2. 

 

Fig. 2. The plot of the exponential basis spline 𝛽𝑗𝐿  

   When we have the equidistant set of nodes, when 𝑥𝑗+1 − 𝑥𝑗 =𝑥𝑗 − 𝑥𝑗−1 = ℎ, then the formula of the first derivative of the 

approximation at 𝑥 = 𝑥𝑗 is as follows:  𝑄𝐿𝛽(𝑥))′|𝑥=𝑥𝑗 = (𝑓𝑗−1𝑔𝑗−1 + 𝑓𝑗𝑔𝑗 + 𝑓𝑗+1𝑔𝑗+1), 
where  𝑔𝑗 = (𝛽𝑗𝐿(𝑥))′|𝑥=𝑥𝑗 = −1,  𝑔𝑗−1 = (𝛽𝑗−1𝐿 (𝑥))′|𝑥=𝑥𝑗 = −1(exp(ℎ)−1)(exp(ℎ)+1),  𝑔𝑗+1 = (𝛽𝑗+1𝐿 (𝑥))′|𝑥=𝑥𝑗 = exp (2ℎ)(exp(ℎ)−1)(exp(ℎ)+1). 
We can obtain that when 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0,1]: 

 𝑔𝑗−1 = − 12ℎ + 12 + 𝑂(ℎ), 𝑔𝑗+1 = 12ℎ + 12 + 𝑂(ℎ). 
Thus, this variant of the approximation of the first derivative 
with 𝑄𝐿𝛽 is not very good and is not recommended for the 
calculation of the first derivative of the function.  

 

Remark 2. We can also obtain the left (or right) exponential 
basis splines from the system of equation 𝑄𝐿𝛾(𝑥) = 𝑓(𝑥)(or 𝑄𝑅𝛾(𝑥) = 𝑓(𝑥) ), when 𝑓(𝑥) = 1, exp (𝑥), exp (2𝑥), 𝑥 ∈[𝑥𝑗 , 𝑥𝑗+1] . For the left exponential splines we have: 𝑄𝐿𝛾(𝑥) = 𝑓(𝑥𝑗−1)𝛾𝑗−1𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛾𝑗𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛾𝑗+1𝐿 (𝑥), 
where 𝛾𝑗−1𝐿 (𝑥) = 𝐶𝑗−1exp(𝑥𝑗−1 − 𝑥𝑗+1) exp (𝑥𝑗−1 − 𝑥𝑗)exp (𝑥𝑗 − 𝑥𝑗+1), 
where 𝐶𝑗−1 = exp(𝑥𝑗 + 2𝑥𝑗+1) − exp(𝑥𝑗+1 + 2𝑥𝑗) + exp(𝑥 + 2𝑥𝑗) − exp(𝑥 + 2𝑥𝑗+1) − exp(𝑥𝑗 + 2𝑥) + exp(𝑥𝑗+1 + 2𝑥), 

 𝛾𝑗𝐿(𝑥) = −𝐶𝑗exp(𝑥𝑗−1 − 𝑥𝑗+1) exp (𝑥𝑗−1 − 𝑥𝑗)exp (𝑥𝑗 − 𝑥𝑗+1), 

where 𝐶𝑗 = exp(𝑥 + 2𝑥𝑗+1) − exp(2𝑥 + 𝑥𝑗+1) + exp(2𝑥 + 𝑥𝑗−1) − exp(𝑥𝑗−1 + 2𝑥𝑗+1) + exp(𝑥𝑗+1 + 2𝑥𝑗−1) − exp(2𝑥𝑗−1 + 𝑥), 
 𝛾𝑗+1𝐿 (𝑥) = −𝐶𝑗+1exp(𝑥𝑗−1 − 𝑥𝑗+1) exp (𝑥𝑗−1 − 𝑥𝑗)exp (𝑥𝑗 − 𝑥𝑗+1), 

where 𝐶𝑗+1 = exp(2𝑥 + 𝑥𝑗) − exp(𝑥 + 2𝑥𝑗) + exp(𝑥𝑗−1 + 2𝑥𝑗) − exp(2𝑥 + 2𝑥𝑗−1) + exp(𝑥 + 2𝑥𝑗−1) − exp(2𝑥𝑗−1 + 𝑥𝑗) . 

The plot of the exponential basis spline 𝛾𝑗𝐿(𝑥), when ℎ = 1, 𝑗 =−1, is given in Fig 3. 
   When we have the equidistant set of nodes, when 𝑥𝑗+1 − 𝑥𝑗 =𝑥𝑗 − 𝑥𝑗−1 = ℎ, then the formula of the first derivative of the 

approximation at 𝑥 = 𝑥𝑗 is as follows:  𝑄𝐿𝛾(𝑥))′|𝑥=𝑥𝑗 = (𝑓𝑗−1𝑔𝑗−1 + 𝑓𝑗𝑔𝑗 + 𝑓𝑗+1𝑔𝑗+1), 
where  𝑔𝑗 = (𝛾𝑗𝐿(𝑥))′|𝑥=𝑥𝑗 = 1,  𝑔𝑗−1 = (𝛾𝑗−1𝐿 (𝑥))′|𝑥=𝑥𝑗 = −exp (2ℎ)(exp(ℎ)−1)(exp(ℎ)+1),  𝑔𝑗+1 = (𝛾𝑗+1𝐿 (𝑥))′|𝑥=𝑥𝑗 = 1(exp(ℎ)−1)(exp(ℎ)+1). 
We can obtain that when 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0, 1]. 

 𝑔𝑗−1 = − 12ℎ − 12 + 𝑂(ℎ), 𝑔𝑗+1 = 12ℎ + 12 + 𝑂(ℎ). 
Thus, this variant of the approximation of the first derivative of 
the function 𝑓(𝑥) with (𝑄𝐿𝛾)′ is not very good and is not 
recommended for the calculation of the first derivative of the 
function.  

 

Fig. 3. The plot of the basis spline 𝛾𝑗𝐿 

Theorem 1. Let function 𝑓(𝑥) be such that 𝑓 ∈𝐶(3)([𝛼, 𝛽]), [𝛼, 𝛽] ⊂ [𝑎, 𝑏]. The set of nodes such that 𝑥𝑗+1 −𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1 = ℎ. Then for 𝑥 ∊ [𝑥𝑗 , 𝑥𝑗+1] we have  

1) ‖𝑓 − 𝐺𝐿‖[𝑥𝑗, 𝑥𝑗+1] ≤ 𝐾1ℎ3‖𝑓′′′‖ [ 𝑥𝑗−1,𝑥𝑗+1], 
2) ‖𝑓 − 𝐺𝑅‖[𝑥𝑗, 𝑥𝑗+1] ≤ 𝐾1ℎ3‖𝑓′′′‖ [ 𝑥𝑗,𝑥𝑗+2], 
3) ‖𝑓 − 𝐹𝐿‖[𝑥𝑗, 𝑥𝑗+1] ≤ 𝐾2ℎ3‖𝑓′′′ + 𝑓′′‖ [ 𝑥𝑗−1,𝑥𝑗+1], 
4) ‖𝑓 − 𝐹𝑅‖[𝑥𝑗, 𝑥𝑗+1] ≤ 𝐾2ℎ3‖𝑓′′′ + 𝑓′′‖[𝑥𝑗, 𝑥𝑗+2], 
5) ‖𝑓 − 𝑄𝐿𝛼‖[𝑥𝑗, 𝑋𝑗+1] ≤ 𝐾3ℎ3‖𝑓′′′ − 𝑓′‖ [ 𝑥𝑗−1,𝑥𝑗+1], 

where 𝐾1 = 0.3853! ≈ 0.0642, 𝐾2 = 0.0835, 𝐾3 =0.12. 

Proof. The method of the proof of the statements 1)-5) is given 
in [12]. The proofs of the statements 1)-4) can be seen in paper 
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[14]. In short we explain the estimation 5) when the basis 

functions are constructed from the condition f = QLα,  𝑓 =1, exp(𝑥), exp(−𝑥). Function 𝑓(𝑥) can be written, as follows:  𝑓(𝑥) = ∫ (𝑓′′′ − 𝑓′)(−2 + 𝑒𝑡−𝑥 + 𝑒𝑥−𝑡)𝑑𝑡𝑥𝑥𝑗 . 

The method of the construction this representation of  𝑓(𝑥) can 
be seen in [12]. Using this formula we construct the estimation 
5). 
The plots of the errors of approximations of functions and the 
first derivatives of these functions are given in Figures 4-7. 
Fig.4 (left) shows the error of the approximation of function 𝑓 = sin(3𝑥) which was obtained with the use the exponential 
spline 𝑄𝐿𝛼. Fig.4 (right) shows the error of the approximation 
of the first derivative of the function 𝑓 = sin(3𝑥) which was 
obtained with the use the exponential spline 𝑄𝐿𝛼. Here ℎ = 0.1. 

 

Fig.4. The error of the approximation of function 𝑓 = 𝑠𝑖𝑛(3𝑥) (left), 
and the error of the approximation of 𝑓’(𝑥) obtained with the use the 

exponential spline 𝑄𝐿𝛼 (right) 

Fig.5 (left) shows the error of the approximation of function 𝑓 = sin(3𝑥) which was obtained with the use the exponential 
spline 𝑄𝐿𝛽. Fig.5 (right) shows the error of the approximation 
of the first derivative of the function 𝑓 = sin(3𝑥) which was 
obtained with the use the exponential spline 𝑄𝐿𝛽. Here ℎ = 0.1. 

    

Fig.5. The error of the approximation of function 𝑓 = sin(3𝑥) (left) 
and the error of the approximation of 𝑓’(𝑥) with the use the 

exponential spline 𝑄𝐿𝛽(right) 

Fig.6 (left) shows the error of the approximation of function 𝑓 = sin(3𝑥) which was obtained with the use the exponential 
spline 𝑄𝐿𝛾. Fig.6 (right) shows the error of the approximation 
of the first derivative of the function 𝑓 = sin(3𝑥) which was 
obtained with the use the exponential spline 𝑄𝐿𝛾. Here ℎ = 0.1. 
Table 1 shows the theoretical and actual errors of 
approximation with the trigonometrical splines in the interval [−1,1] with the grid step of ℎ = 0.1. Table 2 shows the 
theoretical and actual errors of approximation with the 
exponential splines 𝑄𝐿𝛼 in the interval [−1,1] with the grid step 
of ℎ = 0.1. 

   

Fig.6. The error of the approximation of function 𝑓 = 𝑠𝑖𝑛(3𝑥) (left) 
and the error of the approximation of 𝑓’(𝑥) with the use the 

exponential spline 𝑄𝐿𝛾(right) 

Table 3 shows the theoretical and actual errors of 
approximation with the polynomial splines in the interval [−1,1] with the grid step of ℎ = 0.1. Table 4 shows the actual 

errors of approximation with the exponential splines 𝑄𝐿𝛽 and 𝑄𝐿𝛾(𝑥) in the interval [−1,1] with the grid step of ℎ = 0.1.  
 

Table 1. The theoretical and actual errors of approximation 
with the trigonometrical splines 𝑓(𝑥) actual err. theoret. err. sin𝑥1 + 25𝑥2 

0.71 · 10−2 0.13 · 10−1 

sin (2𝑥25)cos ( 225 + 𝑥2) 
0.12 · 10−5 0.16 · 10−5 

sin (2𝑥25)cos (2𝑥 + 150) 
0.56 · 10−4 0.74 · 10−4 

 

Table 2. The theoretical and actual errors of approximation 
with the exponential splines  𝑄𝐿𝛼 𝑓 actual err. theoret. err. sin (𝑥)1 + 25𝑥2 

0.72 · 10−2 0.18 · 10−1 

sin (2𝑥25)cos ( 225 + 𝑥2) 
0.90 · 10−5 0.17 · 10−4 

sin (2𝑥25)cos (2𝑥 + 150) 
0.71 · 10−4 0.12 · 10−3 

 

Table 3. The theoretical and actual errors of approximation 
with the polynomial splines 𝑓(𝑥) Actual err. Theoret. 

err. sin𝑥1 + 25𝑥2 
0.72 · 10−2 0.97 · 10−2 

sin (2𝑥25)cos ( 225 + 𝑥2) 
0.39 · 10−5 0.39 · 10−5 

sin (2𝑥25)cos (2𝑥 + 150) 
0.61 · 10−4 0.62 · 10−4 
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Table 4. The actual errors of approximation with the 
exponential splines  𝑄𝐿𝛾and . 𝑄𝐿𝛽 𝑓(𝑥) actual 

err.𝑄𝐿𝛾 
actual 

err. 𝑄𝐿𝛽 sin𝑥1 + 25𝑥2 
0.71 · 10−2 0.71 · 10−2 

sin (2𝑥25)cos ( 225 + 𝑥2) 
0.15 · 10−4 0.13 · 10−4 

sin (2𝑥25)cos (2𝑥 + 150) 
0.95 · 10−4 0.86 · 10−4 

 

III. INTERVAL EXTENSION 

As is known, the task of interval estimation is to find the 
narrowest possible estimation interval. 

For interval estimation of approximation with splines, we 
will use operations on intervals (see, for example, book [1]). 
Interval result over real intervals 𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] 
can be obtained using the formulas:  

1. 𝐴 + 𝐵 = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2], 
2. 𝐴 − 𝐵 = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1] = 𝐴 + [−1,1] ∙ 𝐵, 
3. 𝐴 ∙ 𝐵 = min {𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2}, max {𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2}], 
4. 𝐴 ∶ 𝐵 = [𝑎1, 𝑎2, ] · [1/𝑏2, 1/𝑏1], 0 ∉ 𝐵. 

For a unary operation we use the rule: 

5. 𝑟(𝐴) = [min𝑥∈𝐴 (𝑟(𝑥)) , max𝑥∈𝐴 (𝑟(𝑥))], where 𝑟(𝐴) is 

the unary operation. 

   Theorem 1 helps us to choose the correct length ℎ = 𝑥𝑗+1 −𝑥𝑗  of the interval [𝑥𝑗 ,  𝑥𝑗+1]. 

Suppose we know the values of function 𝑓(𝑥) at nodes {𝑥𝑘}. Using formulas of trigonometrical splines and the 

technique of interval analysis [1] we can construct the upper 

and lower boundaries for every interval  𝑌𝑗 = [𝑥𝑗 ,  𝑥𝑗+1]. Thus, 

we avoid the calculations of approximation 𝑓(𝑥) in many 

points of every interval   [𝑥𝑗 ,  𝑥𝑗+1] if we need to know the 

boundaries of the interval, where the function 𝑓(𝑥) varieties. 

In order to obtain the boundaries of variety 𝑓(𝑥)  we construct 

the approximation 𝐹(𝑥), 𝑥 ∈ 𝑌𝑗  and consider 𝐹(𝑌𝑗). 
In order to get the narrowest estimation interval we consider 

formulas for the left and the right basis trigonometric splines. 
First, we consider the estimate of the lower bound of the 
estimating interval of the basis spline 𝑤𝑗−1(𝑥). 
Let 𝑥𝑗−1𝑚𝑎𝑥 be the maximum 𝑥𝑗−1𝑚𝑎𝑥 = max𝑥∈[𝑥𝑗,𝑥𝑗+1](cos (𝑥𝑗2 − 𝑥 + 𝑥𝑗+12 ) . 

Then the upper boundary of 𝑤𝑗−1(𝑥) will be the following  𝑤𝑗−1𝑀𝐴 = 2 sin (𝑥𝑗/2 − 𝑥𝑗+1/2)/sin(𝑥𝑗 − 𝑥𝑗−1) − sin(𝑥𝑗 −𝑥𝑗−1) − sin(𝑥𝑗 − 𝑥𝑗−1)𝑥𝑗−1𝑚𝑎𝑥 + 𝑤𝑗−1𝐴 , 

 where      𝑤𝑗−1𝐴 = sin(𝑥𝑗+1 − 𝑥𝑗)/sin (𝑥𝑗 − 𝑥𝑗−1) −sin(𝑥𝑗+1 − 𝑥𝑗−1) − sin(𝑥𝑗 − 𝑥𝑗+1). 
After calculating the upper boundaries of 𝑤𝑗−1(𝑥), 𝑤𝑗(𝑥) and 𝑤𝑗+1(𝑥) we can calculate the upper boundary of 𝐹(𝑥). Now the 

upper boundary of 𝐹(𝑥) will be the following: 𝐹𝑀𝐴𝑋 = 𝑓(𝑥𝑗−1)𝑤𝑗−1𝑀𝐴 + 𝑓(𝑥𝑗)𝑤𝑗𝑀𝐴 + 𝑓(𝑥𝑗+1)𝑤𝑗+1𝑀𝐴. 
 
A program was developed in the MAPLE environment to 

visualize the interval estimation of the variation of a function 
and its first derivative. To obtain an interval estimate of the 
function or its first derivative, values of the function in grid 
nodes are required. The program uses trigonometric basic 
splines. Directional machine rounding is not used in this version 
of the program. 

Note that in the case of applying a similar method of 
interval estimation using polynomial quadratic splines resulting 
evaluating the interval is wider than in the case of trigonometric 
splines. As shown in Alefeld’s book [1], a polynomial of the 
second degree 𝑥2 + 𝑏(1)𝑥 + 𝑏(0) should be reduced to (𝑥 +𝑎(1))2 + 𝑎(0), where  𝑎(1) = 𝑏(1)/2,  𝑎(0) = 𝑏(0) − (𝑏(1))2/4. 
Fig. 7 shows the estimation interval for the function 𝑥2/625 
after applying polynomial splines. Fig. 8 shows the estimation 
interval for the function 𝑥2/625 after applying trigonometric 
splines. 

 
Fig. 7. The estimation interval for the function 𝑥2/625 after 

applying polynomial splines 

 

 
Fig. 8. The estimation interval for the function 𝑥2/625 after 

applying trigonometric splines 
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IV. FUNCTIONS OF SEVERAL VARIABLES AND INTERVAL 

ESTIMATION 

Suppose that a function of several variables is specified at 
grid nodes.  

First consider a function of two variables. Suppose, for 
example, that the function is 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦) cos(2𝑥 +𝑦/2) (see Fig. 9). We fix one of the variables and use the 
proposed interval estimation technique. 

Let us put 𝑦 = 1/25 in 𝑆(𝑥, 𝑦) = sin((2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function  𝑄1(𝑥) = 𝑆(𝑥, 1/25). The plots of 𝑄1(𝑥)and the result of the 
interval estimation are given in Fig. 10. The plot of the error of 
the approximation of the function  𝑄1(𝑥) = 𝑆(𝑥, 1/25) is given 
in Fig. 11. 

Let us put  𝑥 = 1/25 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function  𝑄2(𝑦) = 𝑆(1/25, 𝑦). The plots of 𝑄2(𝑦) and the result of the 
interval estimation are given in Fig. 12. 

 
Fig. 9. The plot of the function  𝑆(𝑥, 𝑦) = sin((2𝑥𝑦)cos(2𝑥 + 𝑦/2) 

 

 
Fig. 10. The plot of the function  𝑄1(𝑥) = 𝑆(𝑥, 1/25)and the 

result of the interval estimation 
 

 
Fig. 11. The plot of the error of the approximation of the function  𝑄1(𝑥) = 𝑆(𝑥, 1/25) 

 
Fig. 12. The plot of the function 𝑄2(𝑦) = 𝑆(1/25, 𝑦) and the 

result of the interval estimation  

Let us put 𝑦 = 1 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). Now 
we can determine the interval estimation of the function  𝑄3(𝑥) = 𝑆(𝑥, 1). The plots of 𝑄3(𝑥)and the result of the 
interval estimation are given in Fig. 13. The plot of the error of 
the approximation of the function  𝑄3(𝑥) = 𝑆(𝑥, 1) is given in 
Fig. 14. 

 Let us put  𝑥 = 1 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function  𝑄4(𝑦) = 𝑆(1, 𝑦). The plots of 𝑄4(𝑦) and the result of the 
interval estimation are given in Fig. 15. 

 
Fig. 13. The plot of the function  𝑄3(𝑥) = 𝑆(𝑥, 1) and the result of 

the interval estimation 

 
Fig. 14. The plot of the error of the approximation of the function  𝑄3(𝑥) = 𝑆(𝑥, 1) 

 

Fig. 15. The plot of the function 𝑄4(𝑦) = 𝑆(1, 𝑦) and the result of 
the interval estimation 

Let us put 𝑦 = 1/2 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function 
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 𝑄5(𝑥) = 𝑆(𝑥, 1/2). The result of the interval estimation are 
given in Fig. 16. 

Let us put  𝑥 = 1/2 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function  𝑄6(𝑦) = 𝑆(1/2, 𝑦). The result of the interval estimation are 
given in Fig. 17. 

 

Fig. 16. The plot of the function  𝑄5(𝑥) = 𝑆(𝑥, 1/2).  and the 
result of the interval estimation 

 

 

Fig. 17. The plot of the function 𝑄6(𝑦) = 𝑆(1/2, 𝑦) and the 
result of the interval estimation 

 

V. PARALLELING CALCULATIONS AT APPROXIMATION WITH THIRD-ORDER 

SPLINES 

Basic splines of the third order of approximation, 
convenient for interpolating the functions of one variable, were 
considered in detail in Sections 2-4. 

In this section, we discuss the construction of the 
interpolation of a function of two variables in a rectangular 
region on a plane. Consider the approximation of the function 
of the two variables in domain 𝐷. Suppose that two families of 
parallel lines are constructed in domain 𝐷. 𝑥0 + 𝑖ℎ, 𝑖 =0, ±1, … , 𝑦0 + 𝑘ℎ1, 𝑘 = 0, ±1, … , ℎ1, ℎ > 0. 

Let the values of the function of two variables at the grid 
nodes (the intersection points of these lines) be known. Let us 
discuss the construction of the approximation of a function in 
this domain and the parallelization of this process. Applying the 
direct (tensor) product, we can obtain the formulas for the basis 
splines of two variables. The formula of the right polynomial 
basis spline  𝛺𝑗,𝑘𝑅 = 𝛺𝑗,𝑘𝑅 (𝑥𝑗 + 𝑡ℎ, 𝑦𝑘 + 𝑡1ℎ), when 𝑠𝑢𝑝𝑝 𝛺𝑗,𝑘𝑅 =[𝑥𝑗−2, 𝑥𝑗+1] × [𝑦𝑘−2, 𝑦𝑘+1], on a uniform grid with step h, has 

the form, which is different for different position of the small 
square: 𝛺𝑗,𝑘𝑅 (𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 − 1)(𝑡1 − 2)/4,   0 ≤ 𝑡 ≤ 1 , 0 ≤ 𝑡1 ≤ 1, 𝛺𝑗,𝑘𝑅 (𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 − 1)(𝑡1 − 2)/2,   −1 ≤ 𝑡 ≤ 0, 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘𝑅 (𝑧) = (𝑡 + 1)(𝑡 + 2)(𝑡1 − 1)(𝑡1 − 2)/4,    −2 ≤ 𝑡 ≤ −1, 0 ≤ 𝑡1 ≤ 1, 𝛺𝑗,𝑘𝑅 (𝑧) = (𝑡 + 1)(𝑡 + 2)(𝑡1 + 1)(𝑡1 + 2)/4,  −2 ≤ 𝑡 ≤ −1, −2 ≤ 𝑡1 ≤ −1, 𝛺𝑗,𝑘𝑅 (𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 + 1)(𝑡1 + 2)/4,  0 ≤ 𝑡 ≤ 1, −2 ≤ 𝑡1 ≤ −1, 𝛺𝑗,𝑘𝑅 (𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 + 1)(𝑡1 + 2)/2,   −1 ≤ 𝑡 ≤ 0, −2 ≤ 𝑡1 ≤ −1, 𝛺𝑗,𝑘𝑅 (𝑧) = (𝑡 + 1)(𝑡 − 1)(𝑡1 + 1)(𝑡1 − 1),  −1 ≤ 𝑡 ≤ 0, −1 ≤ 𝑡1 ≤ 0, 𝛺𝑗,𝑘𝑅 (𝑧) = −(𝑡 − 1)(𝑡 − 2)(𝑡1 + 1)(𝑡1 − 1)/2,  0 ≤ 𝑡 ≤ 1, −1 ≤ 𝑡1 ≤ 0, 𝛺𝑗,𝑘𝑅 (𝑧) = −(𝑡 + 1)(𝑡 + 2)(𝑡1 + 1)(𝑡1 − 1)/2,   −2 ≤ 𝑡 ≤ −1, −1 ≤ 𝑡1 ≤ 0, 
where 𝑧 = (𝑥𝑗 + 𝑡ℎ, 𝑦𝑘 + 𝑡1ℎ). The image of this spline is 

shown in Fig. 18.  

 

Fig. 18. The plot of the right basis function 𝛺𝑗,𝑘𝑅 (𝑧). 
The formula of the left polynomial basis spline 𝛺𝑗,𝑘𝐿 =𝛺𝑗,𝑘𝐿 (𝑥𝑗 + 𝑡ℎ, 𝑦𝑘 + 𝑡1ℎ), when 𝑠𝑢𝑝𝑝 𝛺𝑗,𝑘𝐿 = [𝑥𝑗−1, 𝑥𝑗+2] ×[𝑦𝑘−1, 𝑦𝑘+2], on a uniform grid with step ℎ along the axes has 
the form: 𝛺𝑗,𝑘𝐿 (𝑧) = (𝑡 + 1)(𝑡 − 1)(𝑡1 + 1)(𝑡1 − 1),  0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑡1 ≤ 1, 𝛺𝑗,𝑘𝐿 (𝑧) = −(𝑡 + 1)(𝑡 + 2)(𝑡1 − 1)(𝑡1 + 1)/2,  −1 ≤ 𝑡 ≤ 0, 0 ≤ 𝑡1 ≤ 1, 𝛺𝑗,𝑘𝐿 (𝑧) = −(𝑡 + 1)(𝑡 + 2)(𝑡1 − 1)(𝑡1 + 1)/2,  −1 ≤ 𝑡 ≤ 0, 0 ≤ 𝑡1 ≤ 1, 𝛺𝑗,𝑘𝐿 (𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 − 1)(𝑡1 − 2)/4,    1 ≤ 𝑡 ≤ 2, 1 ≤ 𝑡1 ≤ 2, 𝛺𝑗,𝑘𝐿 (𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 − 1)(𝑡1 − 2)/2,    0 ≤ 𝑡 ≤ 1, 1 ≤ 𝑡1 ≤ 2, 𝛺𝑗,𝑘𝐿 (𝑧) = (𝑡 + 1)(𝑡 + 2)(𝑡1 − 1)(𝑡1 − 2)/4,      −1 ≤ 𝑡 ≤ 0, 1 ≤ 𝑡1 ≤ 2, 𝛺𝑗,𝑘𝐿 (𝑧) = (𝑡 + 1)(𝑡 + 2)(𝑡1 + 1)(𝑡1 + 2)/4,      −1 ≤ 𝑡 ≤ 0, −1 ≤ 𝑡1 ≤ 0, 𝛺𝑗,𝑘𝐿 (𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 + 1)(𝑡1 + 2)/2,      0 ≤ 𝑡 ≤ 1, −1 ≤ 𝑡1 ≤ 0, 𝛺𝑗,𝑘𝐿 (𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 + 1)(𝑡1 + 2)/4,      
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1 ≤ 𝑡 ≤ 2, 1 ≤ 𝑡1 ≤ 0, 
where 𝑧 = (𝑥𝑗 + 𝑡ℎ, 𝑦𝑘 + 𝑡1ℎ). The image of this spline is 

shown in Fig. 19. 

 
Fig. 19. The plot of the right basis function 𝛺𝑗,𝑘𝐿   

 
The basic trigonometric splines of two variables can be 

similarly constructed. We construct the interpolation of the 
function 𝑢(𝑥, 𝑦) separately in each elementary rectangle, with 

vertices in nodes (𝑥𝑗 , 𝑦𝑘), (𝑥𝑗+1, 𝑦𝑘), (𝑥𝑗 , 𝑦𝑘+1), (𝑥𝑗+1, 𝑦𝑘+1).  
In the case of using the left basis splines, the approximation has 
the form:  𝑈𝐿(𝑡, 𝑡1) = 𝑢𝑗−1,𝑘−1𝜔𝑗−1𝐿 (𝑡)𝜔𝑘−1𝐿 (𝑡1) + 𝑢𝑗−1,𝑘𝜔𝑗−1𝐿 (𝑡)𝜔𝑘𝐿(𝑡1) +𝑢𝑗−1,𝑘+1𝜔𝑗−1𝐿 (𝑡)𝜔𝑘+1𝐿 (𝑡1) + 𝑢𝑗,𝑘𝜔𝑗𝐿(𝑡)𝜔𝑘𝐿(𝑡1) +𝑢𝑗+1,𝑘𝜔𝑗+1𝐿 (𝑡)𝜔𝑘𝐿(𝑡1), +𝑢𝑗,𝑘+1𝜔𝑗𝐿(𝑡)𝜔𝑘+1𝐿 (𝑡1) +𝑢𝑗+1,𝑘+1𝜔𝑗+1𝐿 (𝑡)𝜔𝑘+1𝐿 (𝑡1) + 𝑢𝑗,𝑘−1𝜔𝑗𝐿(𝑡)𝜔𝑘−1𝐿 (𝑡1) +𝑢𝑗+1,𝑘−1𝜔𝑗+1𝐿 (𝑡)𝜔𝑘−1𝐿 (𝑡1), 𝑡 ∈ [𝑡𝑗, 𝑡𝑗+1], 𝑡1 ∈ [𝑡𝑗 , 𝑡𝑗+1]. 

The nodes necessary for constructing approximations with 
the left splines in the lower left rectangle of the region are 
shown in Fig. 20. 

 
Fig. 20. The nodes that are necessary for constructing the 

approximation with the left splines 𝛺𝑗,𝑘𝐿 in the lower left elementary 

rectangle 

In the case of using the right basis splines, the 
approximation has the form: 𝑈𝑅(𝑡, 𝑡1) = 𝑢𝑗+2,𝑘+2𝑣𝑗+2𝑅 (𝑡)𝑣𝑘+2𝑅 (𝑡1) + 𝑢𝑗+2,𝑘𝑣𝑗+2𝑅 (𝑡)𝑣𝑘𝑅(𝑡1) +𝑢𝑗+2,𝑘+1𝑣𝑗+2𝑅 (𝑡)𝑣𝑘+1𝑅 (𝑡1) + 𝑢𝑗,𝑘𝑣𝑗𝑅(𝑡)𝑣𝑘𝑅(𝑡1) 

+𝑢𝑗+1,𝑘𝑣𝑗+1𝑅 (𝑡)𝑣𝑘𝑅(𝑡1) + 𝑢𝑗,𝑘+1𝑣𝑗𝑅(𝑡)𝑣𝑘+1𝑅 (𝑡1) +𝑢𝑗+1,𝑘+1𝑣𝑗+1𝑅 (𝑡)𝑣𝑘+1𝑅 (𝑡1) + 𝑢𝑗,𝑘+2𝑣𝑗𝑅(𝑡)𝑣𝑘+2𝑅 (𝑡1)  +𝑢𝑗+1,𝑘+2𝑣𝑗+1𝑅 (𝑡)𝑣𝑘+2𝑅 (𝑡1), 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑡1 ∈ [𝑡𝑗, 𝑡𝑗+1]. 
Often it is necessary to construct an approximation of a function 
in large areas. Note that using the locality property, we can 
construct an approximation simultaneously in several parts of 
the region. In parallel computing, two schemes are used: 
“parquet laying” and “Fox's wall”. The "parquet laying" scheme 
is used where calculations can be carried out, by analogy with 

parquet laying, independently, starting from any place. The 
“Fox Wall” scheme differs in that the calculations are carried 
out in parallel, but sequentially in layers. The next layer cannot 
be built if there is no previous one. We use the "parquet laying" 
scheme. 

 Using the method of geometric parallelism, the 
construction of the approximation of a function of two 
variables, if the values of the function are known at the grid 
nodes on the domain in the plane, can be significantly 
accelerated. Process data can be arranged in horizontal or 
vertical stripes (if the domain is rectangular). When distributing 
this data among the threads in order to construct interpolation, 
it is also necessary to distribute data in the resulting boundary 
band. In case of using splines of the third order of 
approximation, it is necessary to take into account the boundary 
layer with a width of one grid interval if we use basic splines of 
only one type (left or right). Thus, when using two-dimensional 
only left-side or only right-side splines, each thread must 
additionally distribute the function values in the grid nodes 
from the boundary strip (Fig. 21, (left)). If we carry out 
calculations simultaneously (at the same time), using 2 threads 
and starting from the lower left corner of the rectangular region, 
using only the left bases splines with two variables, and from 
the upper right corner (Fig. 21 (right), 22) then we have the 
acceleration. A feature of this approach is that the nodes in the 
boundary strip are located only at the vertices of the rectangles 
located in the strip on the diagonal of the rectangular region (see 
Fig.22). If using only the right (the left) basis splines from two 
variables for every thread (process), then additional process 
data will not be required for each process.  

 

 
Fig. 21. The distribution of function values in three vertical stripes 
into three threads (left), the distribution of function values into two 
triangular regions (two treads) starting from two opposite corners of 

the domain (right) 

 
To construct a parallel version of the program, we use C and 

Open MP. It is convenient to use #pragma omp parallel 

sections to parallelize computations. Let us count the number 
of multiplications and divisions necessary to calculate the 
approximation of the function of two variables at a point (𝑥, 𝑦). 
It is easy to see that there are about 50 of these operations. To 
speed up the calculations, each thread should have at least 2000 
operations. We constructed a rectangular grid of nodes in the [0,1]  ×  [0,1] area with a step of ℎ = 0.01, at the nodes of 
which we will calculate the approximate values of the function 𝑓 = 𝑥𝑦. We carry out a series of numerical experiments by 
running the program 10 times, measuring the execution time 
each time and calculate the average value of the solution time. 
Acceleration of calculations, that is, the ratio of the running 
time of a sequential program to the operating time of a 
parallelized program is 2.91. 

Let us count the number of multiplications and divisions 
necessary to calculate the approximation of the function of two 
variables at the point (𝑥, 𝑦). It is easy to see that there are about 
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50 of these operations. To speed up the calculations, each thread 
should have at least 2000 operations. If there are more than 40 
grid nodes along each axis then the time of calculations is 
reduced when we use 2 threads. 

 
Fig. 22. The two-thread computing parallelization scheme 

 

To calculate the function approach in the lower left corner 
of the region, we need the function values at the grid nodes, as 
shown in Fig. 20. 

To calculate the function approach in the upper left corner 
of the region (upper left small rectangle, see 22), the following 
values of the function in the nodes and the following basic 
functions are required:  𝛺𝑗,𝑘(𝑧) = −(𝑡 − 1)(𝑡 − 2)(𝑡1 + 1)(𝑡1 + 2)/2, 0 ≤ 𝑡 ≤ 1, −1 ≤ 𝑡1 ≤ 0, 𝛺𝑗,𝑘(𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 − 1)(𝑡1 − 2)/2,   −1 ≤ 𝑡 ≤ 0, 1 ≤ 𝑡1 ≤ 2, 𝛺𝑗,𝑘(𝑧) = −(𝑡 + 2)(𝑡 + 1)(𝑡1 − 1)(𝑡1 − 2)/4,   −2 ≤ 𝑡 ≤ −1,   1 ≤ 𝑡1 ≤ 2, 𝛺𝑗,𝑘(𝑧) = −(𝑡 + 2)(𝑡 + 1)(𝑡1 − 1)(𝑡1 + 1)/2,    −2 ≤ 𝑡 ≤ −1,     0 ≤ 𝑡1 ≤ 1, 𝛺𝑗,𝑘(𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 − 1)(𝑡1 − 2)/4,   0 ≤ 𝑡 ≤ 1, 1 ≤ 𝑡1 ≤ 2, 𝛺𝑗,𝑘(𝑧) = (𝑡 − 1)(𝑡 + 1)(𝑡1 + 1)(𝑡1 − 1),   −1 ≤ 𝑡 ≤ 0, 0 ≤ 𝑡1 ≤ 1, 𝛺𝑗,𝑘(𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 + 1)(𝑡1 + 2)/2,   −1 ≤ 𝑡 ≤ 0, −1 ≤ 𝑡1 ≤ 0, 𝛺𝑗,𝑘(𝑧) = −(𝑡 − 1)(𝑡 − 2)(𝑡1 − 1)(𝑡1 + 1)/2,   0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑡1 ≤ 1, 𝛺𝑗,𝑘(𝑧) = (𝑡 + 2)(𝑡 + 1)(𝑡1 + 1)(𝑡1 + 2)/2,  −2 ≤ 𝑡 ≤ −1, −1 ≤ 𝑡1 ≤ 0. 

The image of this basis spline is presented in Fig.23. 

 
Fig. 23. The plot of the basis function    𝛺𝑗,𝑘 

 

To calculate the function approach in the upper left corner 
of the region, the following values of the function in the nodes 
and the following basic functions are required: 𝑈𝑅𝐿(𝑡, 𝑡1) = 𝑢𝑗,𝑘𝑣𝑗𝑅(𝑡)𝜔𝑘𝐿(𝑡1) + 𝑢𝑗,𝑘+1𝑣𝑗𝑅(𝑡)𝜔𝑘+1𝐿 (𝑡1) +𝑢𝑗,𝑘−1𝑣𝑗𝑅(𝑡)𝜔𝑘−1𝐿 (𝑡1) + 𝑢𝑗+1,𝑘𝑣𝑗+1𝑅 (𝑡)𝜔𝑘𝐿(𝑡1) +𝑢𝑗+1,𝑘+1𝑣𝑗+1𝑅 (𝑡)𝜔𝑘+1𝐿 (𝑡1) + 𝑢𝑗+1,𝑘−1𝑣𝑗+1𝑅 (𝑡)𝜔𝑘−1𝐿 (𝑡1) +𝑢𝑗+2,𝑘𝑣𝑗+2𝑅 (𝑡)𝜔𝑘𝐿(𝑡1) + 𝑢𝑗+2,𝑘+1𝑣𝑗+2𝑅 (𝑡)𝜔𝑘+1𝐿 (𝑡1) +𝑢𝑗+2,𝑘−1𝑣𝑗+2𝑅 (𝑡)𝜔𝑘−1𝐿 (𝑡1), 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑡1 ∈ [𝑡𝑘, 𝑡𝑘+1]. 

Similar formulas can easily be obtained for basis splines and 
approximations of the function with these basis splines along 
the main diagonal of the region, starting from the lower left 
corner of the region (lower left rectangle, see Fig. 22).  

VI. APPLICATION TO THE BOUNDARY VALUE PROBLEM 

We apply the approximation with third-order polynomial and 
non-polynomial splines to the numerical solution of partial 
differential equations. Let 𝑢 = 𝑢(𝑥, 𝑡). We consider the 
boundary value problem 𝜕𝑢𝜕𝑡 = 𝜕2𝑢𝜕𝑥2 + 𝜕𝑢𝜕𝑥 + 𝑓(𝑥, 𝑡) 

in a rectangular domain 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇 under the 
boundary conditions: 𝑢|𝑥=0 = 𝜑(𝑡), 𝑢|𝑥=1 = ѱ(𝑡),  𝑢|𝑡=0 =𝑢0. We construct a grid of nodes {(𝑥𝑗 , 𝑡𝑘)}, 𝑥𝑗 = 𝑗ℎ, 𝑡𝑘 =𝑘𝜏,   𝑘 = 0,1,2 … 𝑀, 𝑗 = 0,1,2, … 𝑁.  Let 𝑢𝑗𝑘 = 𝑢(𝑥𝑗 , 𝑡𝑘). We 

apply the polynomial approximations of partial derivatives of 
the following type: 𝜕𝑢𝜕𝑡 = 𝑢𝑗𝑘+1 − 𝑢𝑗𝑘𝜏 + 𝑂(𝜏), 𝜕𝑢𝜕𝑥 ≈ (𝑢𝑗−1𝑘+1𝑔′𝑗−1 + 𝑢𝑗𝑘+1 𝑔′𝑗 + 𝑢𝑗+1𝑘+1𝑔′𝑗+1), 
where 𝑔′𝑗−1 = 𝑥𝑗 − 𝑥𝑗+1(𝑥𝑗−1 − 𝑥𝑗)(𝑥𝑗−1 − 𝑥𝑗+1), 𝑔′𝑗 = 1(𝑥𝑗 − 𝑥𝑗−1) + 1(𝑥𝑗 − 𝑥𝑗+1), 𝑔′𝑗−1 = 𝑥𝑗 − 𝑥𝑗−1(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗−1). 
On a uniform grid with step ℎ, we obtain 𝑔𝑗 = 0, 𝜕𝑢𝜕𝑥 = (𝑢𝑗−1𝑘+1𝑔′𝑗−1 + 𝑢𝑗+1𝑘+1𝑔′𝑗+1) + 𝑂(ℎ2), where 

  𝑔′𝑗−1 = −12ℎ, 𝑔′𝑗+1 = −𝑔′𝑗−1 = 12ℎ. 
Thus, the use of the cubic polynomial splines on a uniform grid 
of nodes to construct a formula for numerical differentiation 
leads to a well-known formula: 𝜕2𝑢𝜕𝑥2 ≈ 𝑢𝑗−1𝑘+1 − 2𝑢𝑗𝑘+1 + 𝑢𝑗+1𝑘+1ℎ2 . 
Thus, we have obtained the well-known difference equation 
[22], [23]: 𝑢𝑗𝑘+1 − 𝑢𝑗𝑘𝜏 = 𝑢𝑗−1𝑘+1 − 2𝑢𝑗𝑘+1 + 𝑢𝑗+1𝑘+1ℎ2 . 
Now let's see what formula for numerical differentiation can be 
obtained using the approximation with the trigonometric 
splines. In the trigonometric case on a non-uniform grid, we can 
use the formula  𝜕𝑢𝜕𝑥 ≈ (𝑢𝑗−1𝑘+1𝑔′𝑗−1 + 𝑢𝑗𝑘+1 𝑔′𝑗 + 𝑢𝑗+1𝑘+1𝑔′𝑗+1), 
where 
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𝑔′𝑗−1 = sin (𝑥𝑗/2 − 𝑥𝑗+1/2)2sin (𝑥𝑗−12 − 𝑥𝑗2 )sin (𝑥𝑗−12 − 𝑥𝑗+12 ), 
𝑔′𝑗+1 = sin (𝑥𝑗/2 − 𝑥𝑗−1/2)2sin (𝑥𝑗−12 − 𝑥𝑗+12 )sin (𝑥𝑗2 − 𝑥𝑗+12 ), 

𝑔′𝑗 = cos (𝑥𝑗/2 − 𝑥𝑗−1/2)2sin (𝑥𝑗2 − 𝑥𝑗−12 ) + cos (𝑥𝑗/2 − 𝑥𝑗+1/2)2sin (𝑥𝑗2 − 𝑥𝑗+12 ) . 
On a uniform grid with step ℎ, we have 𝑔𝑗 = 0. Thus, we can 

use the formula: 𝜕𝑢𝜕𝑥 = (𝑢𝑗−1𝑘+1𝑔′𝑗−1 + 𝑢𝑗+1𝑘+1𝑔′𝑗+1) + 𝑂(ℎ2), 
where  𝑔′𝑗−1 = −12 sin(ℎ), 𝑔′𝑗+1 = −𝑔′𝑗−1 = 12 sin(ℎ). 
We also need a formula for the second derivative. Let us 
construct the formula of the second derivative using 
approximation 𝑈𝑀(𝑥) of the function 𝑢(𝑥) on the grid interval [𝑥𝑖, 𝑥𝑖+1] with the trigonometric spline of the fourth order of 
approximation (see [11]): 𝑈𝑀(𝑥) = 𝑢(𝑥𝑖−1)𝑔𝑖−1 + 𝑢(𝑥𝑖)𝑔𝑖 + 𝑢(𝑥𝑖+1)𝑔𝑖+1 +𝑢(𝑥𝑖+2)𝑔𝑖+2, 
where 𝑔𝑖−1 = 𝐴𝑖−1/𝐵𝑖−1, 𝐴𝑖−1 = sin (𝑥2 − 𝑥𝑖2 ) sin (𝑥2 − 𝑥𝑖+12 ) sin (𝑥2 − 𝑥𝑖+22 ), 𝐵𝑖−1 = sin (𝑥𝑖−12 − 𝑥𝑖2 ) sin (𝑥𝑖−12 − 𝑥𝑖+12 ) sin (𝑥𝑖−12 − 𝑥𝑖+22 ), 𝑔𝑖 = 𝐴𝑖/𝐵𝑖, 𝐴𝑖 = sin (𝑥2 − 𝑥𝑖−12 ) sin (𝑥2 − 𝑥𝑖+12 ) sin (𝑥2 − 𝑥𝑖+22 ), 𝐵𝑖 = sin (𝑥𝑖2 − 𝑥𝑖−12 ) sin (𝑥𝑖2 − 𝑥𝑖+12 ) sin (𝑥𝑖2 − 𝑥𝑖+22 ), 𝑔𝑖+1 = 𝐴𝑖+1/𝐵𝑖+1, 𝐴𝑖+1 = sin (𝑥2 − 𝑥𝑖−12 ) sin (𝑥2 − 𝑥𝑖2 ) sin (𝑥2 − 𝑥𝑖+22 ), 𝐵𝑖+1 = sin (𝑥𝑖+12 − 𝑥𝑖−12 ) sin (𝑥𝑖+12 − 𝑥𝑗2 ) sin (𝑥𝑖+12 − 𝑥𝑖+22 ), 𝑔𝑖+2 = 𝐴𝑖+2/𝐵𝑖+2, 𝐴𝑖+2 = sin (𝑥2 − 𝑥𝑖−12 ) sin (𝑥2 − 𝑥𝑖+12 ) sin (𝑥2 − 𝑥𝑖2 ), 𝐵𝑖+2 = sin (𝑥𝑖+22 − 𝑥𝑖−12 ) sin (𝑥𝑖+22 − 𝑥𝑖+12 ) sin (𝑥𝑖+22 − 𝑥𝑖2 ), 
we receive the formula: (𝑈𝑀(𝑥))′′ = 𝑢(𝑥𝑖−1)𝑔′′𝑖−1(𝑥) + 𝑢(𝑥𝑖)𝑔′′𝑖(𝑥)+ 𝑢(𝑥𝑖+1)𝑔′′𝑖+1(𝑥) + 𝑢(𝑥𝑖+2)𝑔′′𝑖+2(𝑥). 

When 𝑥𝑖−1 = 𝑥𝑖 − ℎ,  𝑥𝑖+1 = 𝑥𝑖 + ℎ, 𝑥𝑖+2 = 𝑥𝑖 + 2ℎ,  it is 
not difficult to obtain the formula: (𝑈𝑀(𝑥𝑖))′′ = 𝑢(𝑥𝑖−1)𝑔′′𝑖−1(𝑥𝑖) + 𝑢(𝑥𝑖)𝑔′′𝑖(𝑥𝑖)+ 𝑢(𝑥𝑖+1)𝑔′′𝑖+1(𝑥𝑖) + 𝑢(𝑥𝑖+2)𝑔′′𝑖+2(𝑥𝑖), 
where 𝑔′′𝑖(𝑥𝑖) = − 34 − cos2(ℎ/2)2 sin2(ℎ/2), 𝑔′′𝑖−1(𝑥𝑖) = cos (ℎ/2)2 sin (ℎ2) sin (3ℎ2 ) + cos (ℎ)2 sin(ℎ) sin (3ℎ2 ), 

𝑔′′𝑖+1(𝑥𝑖) =  cos (ℎ/2)2 sin2 (ℎ2) − cos(ℎ)2sin(h) sin (ℎ2). 

Example. Let us solve the problem: 
 𝜕𝑢𝜕𝑡 = 𝜕2𝑢𝜕𝑥2 + 𝑓(𝑥, 𝑡), 𝑡 ∈ [0, 0.1], 𝑥 ∈ [0,1], 

 
where 𝑓(𝑥, 𝑡) = (2𝑡 + 0.5) cos(2𝑥 − 1) − 0.5 cos(1), 
in the domain  [0,1] ×  [0, 0.1], when  𝑢|𝑡=0 = 0, 𝑢|𝑥=1 = 0,  𝑢|𝑥=0 = 0. 
The exact solution of the problem is 𝑢 = 𝑡 sin(𝑥) sin (1 − 𝑥). 
We have constructed the right side of the equation according to 
the model solution, for debugging the program and calculating 
the actual errors. Let us construct the grid nodes with a uniform 
grid of nodes when 𝑁 = 20, 𝑀 = 30. Consider the difference 
equation in the internal nodes of the grid in the polynomial case: 
 𝑢𝑗𝑘+1−𝑢𝑗𝑘 𝜏  = 𝑢𝑗−1𝑘+1−2𝑢𝑗𝑘+1 +𝑢𝑗+1𝑘+1ℎ2  + 𝑓(𝑥𝑗 , 𝑡𝑘+1), 𝑗 = 1, 2, … 𝑀 − 1, 𝑘 = 1,2, … 𝑁 − 1, 𝑢𝑗,0 = 𝑢0(𝑗ℎ), 𝑗 = 0,1, … 𝑀, 
and 𝑢0,𝑘 = 𝜑(𝑘𝜏), 𝑘 = 1,2, … 𝑁, 𝑢1,𝑘 = ѱ(𝑘𝜏), 𝑘 = 1,2, … 𝑁. 
Along the border of the domain, the values of the solution are 
known. We carry out calculations from the bottom to the top on 
the grid layers. As it is known, the implicit scheme in the 
polynomial case is stable for calculations for any ℎ, 𝜏. Thus, we 
can use the following implicit scheme using the trigonometric 
formula for numerical differentiation: 𝑢𝑗,𝑘+1 = 𝑢𝑗,𝑘 + 𝜏 (𝑢𝑗−1,𝑘+1𝑔′′𝑗−1 + 𝑢𝑗+1,𝑘+1𝑔′′𝑗+1 +𝑢𝑗,𝑘+1𝑔′′𝑗 + 𝑓(𝑥𝑗 , 𝑡𝑘+1)), 𝑗 = 1, 2, … 𝑀 − 1, 𝑘 = 1,2, … 𝑁 − 1, 
 𝑢𝑗,0 = 𝑢0(𝑗ℎ), 𝑗 = 0,1, … 𝑀, 𝑢0,𝑘 = 𝜑(𝑘𝜏), 𝑘 = 1,2, … 𝑁, 𝑢1,𝑘 = ѱ(𝑘𝜏), 𝑘 = 1,2, … 𝑁. 
On each layer we need to solve a system of linear algebraic 
equations. Let us verify that the matrix of this system of 
equations has a diagonal dominance. We write the system of 
equations in the form: 𝑎𝑗𝑣𝑗−1 + 𝑏𝑗𝑣𝑗 + 𝑐𝑗𝑣𝑗+1 = 𝑞𝑗 , 𝑣0 = 𝜑((𝑘 + 1)𝜏), 𝑣𝑀 = (ѱ(𝑘 + 1)𝜏), 
where 𝑣𝑗 = 𝑢𝑗,𝑘+1, 𝑞𝑗 = 𝜏𝑓(𝑥𝑗 , 𝑡𝑘+1) + 𝑢𝑗,𝑘, 𝑏𝑗 = 1 − 𝜏𝑔′′𝑗, 𝑎𝑗 = −𝜏𝑔′′𝑗−1, 𝑐𝑗 = −𝜏𝑔′′𝑗+1. 
It is easy to see that for | τ | <1 the inequality holds: |𝑏𝑗| > |𝑎𝑗| + |𝑐𝑗|. 
Therefore, the system has a unique solution. 

Fig.24 shows the error of the solution obtained using the 
polynomial splines. Fig.25 shows the error of the solution 
obtained using the trigonometric splines.  

Thus, the use of the trigonometric splines gives 
approximation errors less than in the case of the polynomial 
splines. The stability will be discussed in the next Section. 
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Fig.24.The plot of the errors in absolute value of the solution 

obtained using polynomial splines 
 

 

Fig.25.The plot of the errors in absolute value of the solution 
obtained using trigonometric splines 

VII. ABOUT STABILITY 

In this section, we discuss aspects related to the convergence of 
the constructed difference schemes. First of all, we recall some 
definitions. We have to solve the boundary value problem 𝐿𝑢 =𝑓 in domain D with the border Γ. Let 𝐷ℎ = {𝑀ℎ}  be the set of 
nodes in 𝐷 ∪ Γ. Let 𝑢 = 𝑢(𝑥, 𝑡)  be the solution of the problem. 

Let the function 𝑢(ℎ) be defined only in the set of nodes, so it 
will be called the mesh function. It is well-known that instead 
of solving the problem 𝐿𝑢 = 𝑓, we solve the difference scheme 𝐿ℎ𝑢(ℎ) = 𝑓(ℎ). Let 𝑈ℎ be the linear normed space with the 

elements  𝑢(ℎ). Let 𝐹ℎ be the linear normed space with the 

elements  𝑓(ℎ).  Let  ∥⋅ ∥𝑈ℎ, ∥⋅ ∥𝐹ℎ  be the norms in the spaces 𝑈ℎ, 𝐹ℎ: ∥ 𝑢(ℎ) ∥𝑈ℎ= max𝑗,𝑘 |𝑢𝑗𝑘| , 
 ∥ 𝑓(ℎ)  ∥𝐹ℎ= max (max𝑗 |𝑢0(𝑗ℎ)| , max𝑘 |𝜑(𝑘𝜏)| , max𝑘 |ѱ(𝑘𝜏)|, max𝑗,𝑘 |𝑓(𝑗ℎ, 𝑘𝜏)|). 

   First, we examine for the stability, the implicit difference 
scheme:  𝑢𝑗𝑘+1−𝑢𝑗𝑘𝜏 = 𝑢𝑗−1,𝑘+1𝑔′′𝑗−1 + 𝑢𝑗+1,𝑘+1𝑔′′𝑗+1 +𝑢𝑗,𝑘+1𝑔′′𝑗+ 𝑓(𝑥𝑗 , 𝑡𝑘+1). 

We first discuss the stability of the initial value problem with 
respect to the initial data. We will look for a solution to a 

homogeneous problem (when 𝑓(𝑥𝑗 , 𝑡𝑘+1) = 0) in the form: 𝑢𝑗𝑘 = 𝜆𝑘 exp (𝐼𝑗𝑎), where 𝐼 is the imaginary unit, 𝑎 is real. 

Now we have the equation: 𝜆 − 1𝜏 = 𝜆(𝑔𝑗+1 exp(𝐼𝑎) + 𝑔𝑗−1 exp(−𝐼𝑎) + 𝑔𝑗). 

Our aim is to find out for which 𝜏 and h the following inequality 
will satisfy | 𝜆 |≤1+c 𝜏 (von Neumann stability), when 𝑐 =𝑐𝑜𝑛𝑠𝑡 does not depend on 𝜏 and h. Using the equality exp(𝐼𝑎) − 2 + exp(−𝐼𝑎) = −4sin2 (𝑎/2), we get  | 𝜆 | = | 11 − 𝜏𝑔𝑗 + 2𝜏 (2 sin2 (𝑎2) − 1)𝑔𝑗+1| ≤ 1 + 𝑐𝜏, 
when 𝑐 = 0.0565. It is not difficult to see that the inequality  
| 𝜆 |≤1+𝑐𝜏 holds for any correlation between 𝜏 and h. Now we 
consider the stability of the initial-boundary value problem. 
Multiply both sides of the difference equation by −𝜏. We get 𝜏 (𝑢𝑗−1,𝑘+1𝑔′′𝑗−1 + 𝑢𝑗+1,𝑘+1𝑔′′𝑗+1 + 𝑢𝑗,𝑘+1𝑔′′𝑗) − 𝑢𝑗𝑘+1 

=−𝜏 𝑓(𝑥𝑗 , 𝑡𝑘+1)-𝑢𝑗𝑘. 
We choose from all the values  𝑢𝑗,𝑘+1 which in absolute value 

equals to |𝑢𝑗,𝑘+1| such a value whose index 𝑗 takes the smallest 

value j=j*. Let us write the equation corresponding to this 
value: 𝜏 (𝑢𝑗∗−1,𝑘+1𝑔′′𝑗∗−1 + 𝑢𝑗∗+1,𝑘+1𝑔′′𝑗∗+1 + 𝑢𝑗∗,𝑘+1𝑔′′𝑗∗) −𝑢𝑗∗𝑘+1=−𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)-𝑢𝑗∗𝑘. 
Let 𝑢𝑗∗,𝑘+1 > 0. Consider the right side of the equation  𝜏 (𝑢𝑗∗−1,𝑘+1𝑔′′𝑗∗−1 + 𝑢𝑗∗+1,𝑘+1𝑔′′𝑗∗+1 + 𝑢𝑗∗,𝑘+1𝑔′′𝑗∗) −𝑢𝑗∗𝑘+1 = 𝜏𝑔′′𝑗∗+1(𝑢𝑗∗+1,𝑘+1 − 𝑢𝑗∗,𝑘+1) +𝜏𝑔′′𝑗∗−1(𝑢𝑗∗−1,𝑘+1 − 𝑢𝑗∗,𝑘+1)    +𝜏𝑢𝑗∗,𝑘+1 (𝑔′′𝑗∗−1 + 𝑔′′𝑗∗+1 + 𝑔′′𝑗∗  ) − 𝑢𝑗∗,𝑘+1 ≤ −𝑢𝑗∗,𝑘+1. 
Therefore  −𝑢𝑗∗,𝑘+1 ≥ −𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)-𝑢𝑗∗𝑘. 
Hence, max𝑗 | 𝑢𝑗,𝑘+1| = 𝑢𝑗∗,𝑘+1 ≤ |𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)-𝑢𝑗∗𝑘|  ≤ max𝑗 | 𝑢𝑗,𝑘+1| + 𝜏max𝑗,𝑘 | 𝑓(𝑥𝑗 , 𝑡𝑘+1)|. 
By the definition of stability, the solution of the difference 
scheme must satisfy the condition ∥ 𝑢(ℎ) ∥𝑈ℎ≤  𝐾 ∥ 𝑓(ℎ)  ∥𝐹ℎ  

for any 𝑓(ℎ). Thus, for any 𝜏 and h, the stability condition is 
satisfied for the difference scheme. Since the difference scheme 
also approximates the problem, the solution of the difference 
scheme converges to the solution of the problem. 

VIII. DISCUSSION OF RESULTS 

Section 2 discusses polynomial, trigonometric, and exponential 
local splines. These splines can be used to approximate 
functions of one or more variables. In this case, it is necessary 
to calculate the values of the function at additional nodes 
between the grid nodes. There can be a lot of these additional 
points, so it is advisable to parallelize the calculations. If the 
grid of nodes is rectangular, then it is possible to carry out 
calculations simultaneously from two opposite vertices of the 
rectangle. Simultaneous computation on different processors 
reduces the computation time. This is shown in Section 5. The 
considered splines are suitable not only for calculating the 
values of the function at the points between the grid nodes, but 
also for calculating the first derivative of this function. In 
particular, we can use these splines to construct formulas for 
numerical differentiation. Numerical differentiation formulas 
obtained on the basis of the polynomial, trigonometric, and 
exponential splines, are considered in the second section on a 
uniform grid of nodes. These splines approximate the first 
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derivative with the order 𝑂(ℎ2). Using these splines, we can 
construct a numerical differentiation formula to calculate the 
second derivative. The constructed formula will give an error  𝑂(ℎ). If we need to use the formula for numerical 
differentiation that approximate the second derivative with the 
error 𝑂(ℎ2) we need splines with the fourth order of 
approximation. Thus we need to use cubic polynomial splines 
or non-polynomial splines which provide the error of the 
approximation 𝑂(ℎ4). The trigonometric splines with this order 
of error were used in Section 6. For the convergence of the 
constructed scheme, not only a good approximation is needed, 
but also stability as shown in Section 7, the constructed method 
is stable.  
   In the proposed method, the same rules should be preserved 
as in the traditional method.  It is necessary not to forget about 
the fatal error of numerical differentiation and not to select too 
small the grid step. The next relation should be fulfilled, the 
rounding error of numbers should be much less than ℎ2. 

IX. CONCLUSION 

In this paper we discuss the approximation with the 
trigonometric and polynomial splines of the third order. The 
results of the numerical experiments show that trigonometrical 
approximation is preferred to polynomial approximation when 
we approximate a trigonometrical function. To avoid 
calculation in many points we can use interval extension if we 
need to know only the upper and the lower boundaries of 
variation of the function between the nodes. But we have to 
keep in mind the theorem of approximation. The results of 
working the program of constructing interval extension are 
presented. This program uses the trigonometric basis splines. 
The results of the program that uses the polynomial basis 
splines are not good, because of the wider interval extension. 
The parallel calculations during the approximation of the 
function of two variables in rectangular domain can be done 
using three threads: beginning from the upper right and lower 
left corners (using the right or left basis splines) and along the 
main diagonal (using mix basis splines). In this paper, new 
computational schemes are constructed to solve a parabolic 
problem. The schemes are based on approximation of partial 
derivatives by the trigonometric splines. The examples 
considered in the paper show that in this case the error in 
solving the problem turns out to be less than when using the 
traditional method.  
   In the future, other numerical schemes will be constructed for 
solving partial differential equations based on the use of other 
non-polynomial splines. 
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