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Apramycin treatment a�ects selection 
and spread of a multidrug-resistant Escherichia 

coli strain able to colonize the human gut  
in the intestinal microbiota of pigs
Ana Herrero-Fresno1*, Camilla Zachariasen1, Monica Hegstad Hansen1, Alexander Nielsen1, 

Rene S. Hendriksen2, Søren Saxmose Nielsen3 and John Elmerdahl Olsen1

Abstract 

The effect of apramycin treatment on transfer and selection of an Escherichia coli strain (E. coli 912) in the intestine 

of pigs was analyzed through an in vivo experiment. The strain was sequenced and assigned to the sequence type 

ST101 and serotype O11. It carried resistance genes to apramycin/gentamicin, sulphonamide, tetracycline, hygromy-

cin B, β-lactams and streptomycin [aac(3)-IV, sul2, tet(X), aph(4), blaTEM-1 and strA/B], with all but tet(X) located on the 

same conjugative plasmid. Nineteen pigs were randomly allocated into two inoculation groups, one treated with 

apramycin (pen 2) and one non-treated (pen 3), along with a non-inoculated control group (pen 1). Two pigs of pen 

2 and 3 were inoculated intragastrically with a rifampicin resistant variant of the strain. Apramycin treatment in pen 

2 was initiated immediately after inoculation. Strain colonization was assessed in the feces from all pigs. E. coli 912 

was shown to spread to non-inoculated pigs in both groups. The selective effect did not persist beyond 3 days post-

treatment, and the strain was not detected from this time point in pen 2. We demonstrated that E. coli 912 was able 

to spread between pigs in the same pen irrespective of treatment, and apramycin treatment resulted in significantly 

higher counts compared to the non-treated group. This represents the first demonstration of how antimicrobial treat-

ment affects spread of resistant bacteria in pig production. The use of apramycin may lead to enhanced spread of 

gentamicin-resistant E. coli. Since gentamicin is a first-choice drug for human bacteremia, this is of concern.

© 2016 Herrero-Fresno et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
During the last 50  years, antibiotics have been used to 

treat infections in both human and veterinary medicine. 

In this period, use of antimicrobials has caused selec-

tive evolutionary pressures, resulting in the emergence 

of antimicrobial resistant bacteria [1], which in turn 

have caused treatment failure and increased morbidity 

[2]. �e natural gut microbiota, consisting of commen-

sal bacteria, represents an important reservoir for the 

development of antimicrobial resistance (resistome), and 

continuous antibiotic use could lead to the emergence of 

clinically problematic strains [3].

Multi-drug resistant E. coli isolates from humans and 

pigs have been reported worldwide [4–7]. �ese multi-

drug resistant isolates harbor antimicrobial resistance 

(AMR) genes either on the chromosome or on mobile 

genetic elements, such as plasmids [8]. �e presence of 

AMR genes on plasmids, and their subsequent horizontal 

transfer via conjugation, can result in their rapid spread 

among the susceptible bacterial populations [9]. One 

of the main concerns is the potential transfer of these 

resistant determinants to pathogenic bacteria which pro-

longs infections and decreases treatment options as a 

consequence.

Use of antibiotics in livestock is considered one of the 

main reasons leading to development of AMR, and such 
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resistant bacteria can be potentially transmitted to the 

food chain [2]. �e role of pigs in AMR transmission 

to the food chain must be better understood in order 

to prevent dissemination of multidrug-resistant strains 

from pigs to humans. In a previous study a multi-drug 

resistant strain of E. coli isolated from a healthy pig (E. 

coli 912) [10] was proven to be able to colonize the gut of 

human volunteers for 35  days [11]. �e strain harbored 

the resistance gene aac(3)-IV conferring resistance to 

gentamicin/apramycin [11].

Apramycin, which is only approved for animal use, was 

introduced into veterinary therapy in the early 1980s in 

several European countries [12]. Several apramycin prod-

ucts were authorized for oral use in production animals 

in 1998 [13]. �e gene aac(3)-IV is the only identified 

gene causing enzymatic cross-resistance between gen-

tamicin and apramycin [12]. Apramycin resistance asso-

ciated with the aac(3)-IV gene was initially reported in 

1981 in France, and the gene was only found in the ani-

mal reservoir [14]. Over the next years aac(3)-IV dis-

seminated rapidly in the animal reservoir in France, 

Belgium and Great Britain [14]. In 1986, the gene was 

first detected in Enterobacteriaceae isolated from human 

patients [15].

Nowadays, apramycin is widely used in farm animals, 

and resistant E. coli are commonly isolated from diseased 

pigs [10]. E. coli from pigs may be an important reservoir 

for transfer of apramycin/gentamicin resistance genes or 

bacteria to humans. Furthermore, resistance to apramy-

cin and other aminoglycosides is usually transmissible, 

encoded on conjugative R-plasmids, and often linked to 

resistance to other antimicrobials [12].

In Denmark, detailed information on aminoglycoside 

use in food-producing animals is registered in the Dan-

ish veterinary drug-monitoring programme, VetStat [16]. 

�is database contains information on consumption of 

all prescription drugs purchased by animal owners or 

used by veterinarians at farm level, including information 

on animal species, age group, disease group and farm 

identity. Importantly, gentamicin is a first-choice drug (in 

combination with β-lactams) for severe human infections 

(e.g. sepsis and endocarditis) in Danish Hospitals [17]. 

�erefore, spread of gentamicin-resistant E. coli strains 

to humans is of great concern.

Several studies have evaluated the impacts of antimi-

crobial treatment on selection for resistance [18–23], 

however, only a few reports have considered the impact 

of treatment on the spread of resistant microorganisms 

among animals [24, 25]. Here, we quantify for the first 

time the effect of treatment on the transmission of resist-

ant strains among pigs in  vivo. In this study, the effect 

of apramycin treatment on the selection of the E. coli 

912 inoculated into nursery pigs was assessed. Derived 

results provided information of the consequence of anti-

biotic treatment in the development and spread of resist-

ant bacteria between pigs in production-like conditions 

(regular farm conditions), where pigs are housed closely 

together.

Materials and methods
Animals, housing conditions, and ethical issues

�ree to 4 weeks nursery cross-bred sex-mixed pigs with 

weights ranging from 6 to 9  kg were purchased from 

a specific-pathogen-free farm in Denmark. �e ani-

mals were housed in a level 1 isolation unit (individual 

disinfected pens in a same room of the building) at the 

Faculty of Health and Medical Sciences, University of 

Copenhagen and weighed at least once a week. All pro-

cedures regarding the animal experiments were carried 

out in agreement with the Animals Scientific Act and 

performed under the license and approval of the Dan-

ish National Animal Experiment Inspectorate (license 

no. 2009/561-1675). Occurrence of any clinical sign, 

such as changes in behavior and decrease in food and 

water intake, was surveyed twice a day. At the end of 

the experiment (3 weeks of duration), the animals were 

euthanized by captive bolt pistol penetration followed by 

exsanguination.

Bacterial strain

�e bacterial strain E. coli 912 used to inoculate the pigs 

was previously proven to be resistant to gentamicin/

apramycin and sulphonamide by determination of mini-

mum inhibitory concentration [10, 11]. It was isolated 

from the feces of a healthy pig [10, 11]. �e strain har-

bored the genes aac(3)-IV and sul2 on a conjugative 

plasmid (not shown) [11]. A rifampicin (RIF) resistant 

mutant was obtained by serial plating on nutrient agar 

with rifampicin. �e RIF-resistance (MIC ≥ 250 μg/mL) 

was used as a marker to distinguish the inoculated strain 

from gentamicin/sulphonamide-resistant coliforms 

that could preexist in the intestinal microbiota or that 

emerged during the experiment as a result of horizontal 

gene transfer. Growth of both wild-type and the isogenic 

RIF-resistant mutant strain was analysed and compared. 

�e isolates were grown at 37  °C, 200  rpm for 16  h in 

Luria–Bertani broth before sub-culturing into fresh 

media at a 40 fold dilution and further grown with assess-

ments every 15 min for 18 h using Bioscreen C. Growth 

curves were obtained (Additional file 1).

Whole genome sequencing, analysis of genome sequence 

for virulence, resistance, serotype, plasmid associated 

genes, and multilocus sequence typing (MLST)

Genomic DNA was extracted from the isolate E. coli 912 

using the Invitrogen Easy-DNATM Kit (Invitrogen) and 
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DNA concentrations were determined using the Qubit 

dsDNA BR assay kit (Invitrogen). �e genomic DNA was 

prepared for Illumina pair-end sequencing using the Illu-

mina (Illumina) NexteraXT® Guide 150319425031942 

following the protocol revision C [26]. A sample of the 

pooled NexteraXT Libraries was loaded onto an Illumina 

MiSeq reagent cartridge using MiSeq Reagent Kit v2 and 

500 cycles with a Standard Flow Cell. �e libraries were 

sequenced using an Illumina platform and MiSeq Con-

trol Software 2.3.0.3. �e isolate was pair-end sequenced.

�e raw reads were assembled using the Assem-

ble pipeline (version 1.0) available from the Center for 

Genomic Epidemiology (CGE) [27] which is based on 

the Velvet algorithms for de novo short reads assembly. 

�e assembled genome was submitted and annotated at 

NCBI [28] under accession number JWJM00000000.

�e assembled sequences were analyzed to confirm 

the species and E. coli serotype using the CGE pipe-

lines; K-merFinder (version 2) [29] and SeroTypeFinder 

(version 1.1). Following the confirmation, the MLST 

sequence type (ST) for E. coli, plasmid replicons, and 

acquired antimicrobial resistance genes, and virulence 

genes were identified with a selected threshold equal to 

98% identity using the pipelines; MLST (version 1.8) [30], 

PlasmidFinder (version 1.3) [31], ResFinder (version 2.1) 

[32], and VirulenceFinder (version 1.4) [33] also available 

from CGE.

Plasmid analysis and Southern blot

Plasmid DNA from E. coli 912 was isolated with the 

MidiPrep plasmid kit (Invitrogen) following the proto-

col suggested by the manufacturer. DIG-labelled DNA 

molecular weight marker II (Roche) was used as molec-

ular size standard and control in Southern blot hybridi-

zation. �e obtained plasmid profile was subsequently 

hybridized with probes specific for the sul2, aac(3)-IV, 

tet(X), blaTEM-1 and strA/B genes by using the kit DIG 

wash and block buffer set (Roche) and manufacturers 

indications from the DIG application manual for filter 

hybridization. �e probes were obtained from E. coli 912 

by PCR amplification using the PCR DIG labelling mix 

(Roche). �e sequences of the primers used for PCR are 

listed in Table 1.

Challenge experimental setup

Pigs were divided into three groups housed in three well-

separated pens avoiding any contact among pigs from 

different pens. Only airflow between pens was possi-

ble. �e untreated control group (n = 3) was isolated in 

pen 1. �e two inoculated groups, group 2 (pen 2) and 

group 3 (pen 3) included eight pigs each. After 1 week 

of acclimatization, two pigs from each of groups 2 and 

3 were inoculated with 109 CFU/mL of the E. coli 912 

strain suspended in 10  mL of a saline suspension using 

an endogastric tube after sedation. �e four inoculated 

pigs were isolated in an individual pen for 2 days in order 

to allow the bacterial colonization of the gut and then 

replaced in their original groups.

�e antimicrobial drug, Apralan Vet 10% solution, 

was purchased as veterinary medical product. All pigs 

in group 2 were individually treated with 5  mg/kg of 

the antibiotic after the replacement of the two previ-

ously inoculated pigs, and the antimicrobial product was 

administered once a day for 3 days orally in nutri-drink 

ensuring that everything was taken up. �e administra-

tion was performed according to the standard treatment 

recommended when administering the drug product in 

pigs.

Collection and microbiological analysis of fecal samples

Fecal samples of about 5 g were collected from the rec-

tum of all the pigs prior to inoculation of the strain (day 

−2), 1 day after inoculation (day −1), prior to antimicro-

bial treatment in pen 2 (day 0) and on days 2, 4, 6, 8, and 

10 after day 0 (days corresponding last day of treatment-

day 2- and 2, 4, 6 and 8 days after the end of the treat-

ment). Except for day −1, where CFU counts were only 

performed for the four inoculated pigs, fecal samples 

were taken from all the 19 pigs and CFU counts were car-

ried out. Serial tenfold dilutions were used to count the 

numbers of colony forming (CFU) coliforms on Mac-

Conkey agar (Merck), CFU of RIF-resistant coliforms 

on MacConkey agar supplemented with 50  μg/mL RIF, 

and CFU of the inoculated sulphonamide-gentamicin/

apramycin (SUL-GEN/APRA) resistant strain on MacCo-

nkey agar supplemented with 50 μg/mL RIF, 150 μg/mL 

SUL and 25 μg/mL GEN. All counts were determined by 

the spot method [34]. Briefly, 30 μL of each dilution was 

inoculated as a spot in duplicate (on two plates contain-

ing every specific antibiotic or combination, and without 

Table 1 Primers used in this study.

Primers Sequence (3′–5′)

aac(3)-IV-F AGTTGACCCAGGGCTGTCGC

aac(3)-IV-R GTGTGCTGCTGGTCCACAGC

blaTEM-F TTTGCGGCATTTTGCCTTCCT

blaTEM-R GTTCATCCATAGTTGCCTGAC

strA-F TTG ATG TGG TGT CCC GCA ATG C

strA-R CCA ATC GCA GAT AGA AGG CAA

sul-2-F TTTCGGCATCGTCAACATAA

sul-2-R GTGTGTGCGGATGAAGTCAG

tet(X)-F TTAGCCTTACCAATGGGTGT

tet(X)-R CAAATCTGCTGTTTCACTCG
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antibiotic), followed by 24 h of incubation at 37 °C. �is 

method allowed the detection of the coliforms and the 

quantification of the coliforms at greater than or equal to 

500 CFU/g (2.7 log CFU/g) of feces.

On all days except -1, colonies were isolated from the 

selective plates containing RIF or RIF-SUL-GEN. All iso-

lates were identified as E. coli by the indole, methyl red, 

Voges-Proskauer, and citrate tests. Isolates confirmed to 

be E. coli were tested for the presence of the aac(3)-IV 

gene by PCR (Table 1). In order to enable a comparison 

of the isolates obtained at different time points and the 

inoculated strain, all the RIF or RIF-SUL-GEN resistant 

isolates obtained from each animal of each group at all 

the sampling times were further characterized by pulsed-

field gel electrophoresis (PFGE) with XbaI (Roche) diges-

tion as previously described [35].

Statistical analysis

�e log CFU counts were compared by one-way ANOVA 

with pair-wise comparison of means at the different time 

points using Tukey’s multiple comparison test, while 

accounting for repeated measurements. A P value <0.05 

was considered significant.

All occurrences in the individual pig on specific test 

days were further dichotomized (above or below detec-

tion level), which also enabled the estimation of inci-

dence and recovery rates. For each of the time periods 

0–2, 2–4, 4–6, 6–8 and 8–10 days post inoculation, the 

incidence rate (IR) was estimated using the formula [36]:

Results
Traits of the strain E. coli 912

First the inoculated strain E. coli 912 was characterized 

in order to obtain information that could explain its high 

ability to colonize the gut of humans, as reported [11]. 

�e strain was sequenced and found to contain additional 

resistance genes to the ones previously reported [11]. 

�e additional genes encoded resistance to tetracycline 

[tet(X)], hygromycin B [aph(4)], β-lactams (blaTEM-1) 

and streptomycin (strA/B). �is genotype complied 

with the phenotypic resistance results. �e strain was 

shown to belong to MLST-type ST101 and serotype 

O11:H12. E. coli 912 also harbored the virulence genes 

mchB, mchF, mcmA (involved in microcin synthesis) iroN 

(iron uptake), tsh (hemoglobin binding protease), cnf1 

(toxin synthesis), lpfA, prfB (fimbriae synthesis) and iss 

(increased serum survival) (Table  2) and two plasmids 

belonging to the incompatibility groups incF1 and incFII. 

Since genome sequencing did not reveal information 

about the location of the resistance genes, plasmid puri-

fication followed by Southern blot hybridization was per-

formed. Results showed that the genes aph(4), blaTEM-1 

and strA/B were plasmid located as it was previously 

found for sul2 and acc(3)-IV [11]. Furthermore, all the 

five genes were harbored in the same resistance plasmid 

(not shown).

A growth curve for each of the strains was obtained 

through in vitro studies and growth was not significantly 

different between the mutant and WT strains reaching 

Table 2 Features of the strain. E. coli 912.

Strain used in this study R-genes (phenotype) V-genes (phenotype) Plasmids MLST-type Serotype

E. coli 912 blaTEM-1 (β-lactams)
aac(3)-IV (aminoglycoside)
aph4 (aminoglycoside)
strA/B (aminoglycoside)
sul-2 (sulphonamide)
tetX (tetracycline)

mchB (microcin)
mchC (microcin)
mchF (microcin
mcmA (microcin)
iroN (siderophore)
tsh (serin protease autotransporter)
cnf1 (toxin)
lpfA (fimbrae)
prfB (fimbrae)
iss (increased serum survival)

IncFII
IncFIB

ST101 011:H12

IR =

no. of cases
(

no. of pigs at risk at start of study period − 0.5 × no. of pigs aquiring resistance in period
)

× time

�e recovery rates (RR) were calculated similarly:

RR =

no. of recovered
(

no. of pigs at without resistance at start of study − 0.5 × no. of pigs losing resistance in period
)

× time
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the stationary phase after approximately 6–8 h post-inoc-

ulation (Additional file 1).

The in�uence of apramycin treatment on spread 

and selection of the tested strain

All experimental animals maintained good health status 

throughout the experiment, and their weights increased 

from 6–9  kg to 12–16  kg (average daily weight gain, 

309  ±  0.052  g). �e outline of the study is shown in 

Additional file  3 with the status of the individual pig at 

each time point. No significant differences in the aver-

age counts of total coliforms were observed between the 

treated group, the non-treated group and the control 

group (Figure 1A). Prior to inoculation, the feces of the 

19 pigs did not contain neither RIF nor RIF-SUL-GEN 

resistant strains (strains growing after 18 h of growth at 

37  °C). �e counts of RIF and RIF-SUL-GEN resistant 

coliforms were significantly higher in the treated group 

(pen 2) than in the non-treated group (pen 3) from day 2 

to day 6 after day 0 (start of treatment) (Figure 1B). �e 

effect of treatment was evident until day 6 (4 days after 

the end of treatment which corresponded to day 2) and 

the highest peak was reached on the last day of treatment 

(2 days after day 0) (Figures 1B and C; Additional file 3). 

A higher number of pigs (up to seven out of eight-treated 

group vs. two out of eight-untreated group) tested posi-

tive for the strain when apramycin was administered 

(pen 2) (Additional file  3). Using plates with RIF-SUL-

GEN for detection, the strain was observed in five and 

three pigs in the treated and the untreated group (Addi-

tional file 3B), respectively, while seven vs. four pigs were 

shown to excrete the strain when only RIF was used in 

the plate (Additional file  3A). RIF-SUL-GEN-positive 

strains were not recovered after day 6 (compared to day 

0) in both groups, except that E. coli 912 was found in 

two pigs from pen 3 (untreated group) when only RIF 

was used for selection (Figure  1B; Additional file  3) on 

day 8 (with regards to day 0) but at very low numbers 

(<1 × 103 cfu/mL). �e presence of E. coli 912 was con-

firmed by PFGE. �irty-six RIF and 36 RIF-SUL-GEN 

resistant isolates from days 0 (when the treatment was 

started and corresponding only to the inoculated pigs), 2 

(last day of treatment), 4 (2 days after the end of treat-

ment), 6 (4 days after the end of treatment) and 8 (6 days 
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after the end of treatment) were identified as E. coli, and 

the presence of aac(3)-IV in all of them was confirmed 

by PCR. All isolates had the same XbaI-profile by PFGE, 

which corresponded to the profile of E. coli 912 (Addi-

tional file 2), thereby confirming that the counts on these 

selective agar plates were representative of the inoculated 

strain. None of the pigs in the unexposed groups showed 

RIF or RIF-SUL-GEN resistant bacteria.

�e resulting incidence and recovery rates are displayed 

in Figures  2A and B, respectively. �e specific rates are 

listed in Table 3. �e incidence rate was high in the first 

time step for both RIF and RIF-GEN-SUL (Figure  2A), 

but 0 in both control groups. Recovery appeared almost 

identical in all groups, irrespective of the time points 

(Figure 2B). Statistical testing was not done because there 

was only one pen with each treatment and the separa-

tion in resistant and non-resistant counts was reasonably 

clear. Even though no significant difference was identi-

fied, the spread of E. coli 912 among pigs in the Apramy-

cin treated group appeared higher than in the not treated 

group (Additional file 3).

Discussion
�ere is overwhelming evidence that the continuous use 

of antibiotics in food animals increases the number of 

resistant bacteria in their intestine [5, 6, 8, 18–23]. How-

ever, it remains to be shown whether this is caused by 

selection of resistant bacteria, already present in treated 

animals only, or whether treatment also promotes colo-

nization of more animals with resistant bacteria. �is has 

not been previously analyzed in pigs, and it represented 

the main goal of the present work.

In a previous study the strain E. coli 912, of pig origin, 

was orally administered to human volunteers and results 

showed that, even though the sulphonamide resistance 

encoded by the isolate was not found to be transferred to 

the commensal microbiota, the strain was able to colo-

nize the human gut. It was also proven that once in the 

intestine, the bacteria could survive for a long period, 

enabling the possible transfer of resistance genes to the 

commensal bacteria in the gastrointestinal human tract 

[11]. In this study we analyzed the potential spread of the 

same strain during an in vivo experiment in pigs treated 

and non-treated with apramycin in order to elucidate 

how the selection force of antibiotic treatment affects 

spread of resistant bacteria. �e plasmid-located gene 

responsible for apramycin resistance in this strain was 

aac(3)-IV. �e experiment was performed only once, 

which represents a study limitation, and therefore the 

statistical assessment carried out can be only descriptive 

in nature. �e incidence rates appeared lower in the non-

treated groups compared to the treated groups (Table 2), 

however, no statistical testing could be performed to 

confirm the trend. A larger-scale study including more 

animals per group would be required to prove whether 

the incidence rates are indeed different. Recovery did not 

appear to be different, which is an effect of the removal of 

the antimicrobial.

Results from our study revealed selection from treat-

ment with apramycin in the intestinal microbiota of 

treated pigs, leading to significantly higher counts of 

resistant strains than in pigs that did not receive the anti-

biotic. On average, selection resulted in differences in 

CFU of E. coli 912 in the feces of apramycin-treated and 
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non-treated pigs of around 100-fold. Unlike reported by 

Trobos et  al. [11] for human volunteers, we found that 

the strain was relatively poor in colonizing the gut of 

the pigs, in the sense that the peak in CFU was reached 

already on day 3 of treatment (day 2) in both groups. Sev-

eral factors might have contributed to the rapid loss of E. 

coli 912. Even though the rifampicin resistance mutation 

does not affect the fitness of the mutant strain “in vitro”, 

there could be a fitness cost “in vivo” due to this mutation 

as previously described [37]. Further experiments where 

both wild type and RIF-R strains are administered to pigs 

should be performed in order to elucidate this premise. 

It has previously been observed that predominant E. coli 

clones normally associated with the individual intesti-

nal microbiota make it difficult for introduced strains to 

establish themselves permanently [38–42]. Interestingly, 

in a previous study performed in calves, natural conju-

gative apramycin resistance plasmid isolated from com-

mensal organisms of newborn calves was found to confer 

a fitness advantage on new hosts cells [43]. However, the 

methodology in the current study did not allow for esti-

mation of plasmid transfer to other bacteria. Cavaco et al. 

[34] also demonstrated that the administration of several 

β-lactams (ceftiofur, cefquinome and amoxicillin) led 

to significantly higher counts of antimicrobial resistant 

strains compared to the control group. However, contrary 

to our results, the study which was set up very similar to 

ours, showed that the selective effects exerted by these 

antibiotics persisted for longer periods and cefotaxime-

nalidixic resistant strains were detected up to 15–20 days 

after inoculation of the strain in all the groups, no matter 

whether the antibiotic was administered or not.

In a previous study it was concluded that apramycin 

administration is most probably driving the increasing 

occurrence of apramycin/gentamicin cross-resistance 

in swine [44]. Moreover, this increasing occurrence in 

animals is of concern and should be under close surveil-

lance. Resistance to apramycin and gentamicin in Entero-

bacteriaceae and other enteric pathogens usually remains 

low in pigs at slaughter and in food at retail [44]. Notably, 

several studies from Great Britain have shown that ca. 

26% of the gentamicin-resistant pathogenic E. coli strains 

from humans were carrying the aac(3)-IV gene [45, 46].

Strain E. coli 912 has now been well characterized with 

respect to colonization of both pigs and humans, which 

might make it a suitable challenge strain in studies on 

aspects of E. coli microbiota of pigs. To deeply study 

the main features of this strain whole genome sequenc-

ing was performed. Apart from the genes aac(3)-IV and 

sul2, sequencing revealed that the strain also harbored 

the genes blaTEM-1, strA/B, aph(4) and tet(X). Southern 

blot hybridization analysis showed that all the resistance 

genes but tet(X) were carried in the same plasmid that 

was proven to be conjugative (not shown). �us, treat-

ment with any of the antibiotics for which the strain is 

resistant may co-select for the selection and spread of all 

the resistance genes as a whole since they can be trans-

mitted within the same transferable element. With this 

knowledge, this strain also constitutes a suitable candi-

date for studies of how resistance plasmids contribute 

to the distribution of resistance genes in the intestine, as 

well as for the analysis of rates and mechanisms of trans-

fer of such plasmids.

Whole genome sequencing also revealed that E. coli 

912 harbors virulence genes, encoding functions related 

to microcin synthesis (mchB/C/F and mcmA), toxin pro-

duction (cnf1), fimbriae synthesis (lpfA, prfb), iron uptake 

(iroN), increased serum survival (iss) and hemoglobin-

binding protease (tsh) (Table  2). Since virulence genes 

responsible for pathogenicity are often located on trans-

missible genetic elements [47], E. coli 912 may represent 

a source of such virulence determinants, which could 

disseminate to pathogenic subgroups of E. coli. However, 

it is important to stress that the strain has been given to 

both humans and pigs without sign of symptoms, indi-

cating that it is a well-characterized strain which can be 

safely used in future studies.

Other studies have reported that antibiotic treatment 

influences selection, spread and persistence of resistant 

bacterial members of the family Enterobacteriaceae [48, 

49]. A prospective in vivo/in situ study demonstrated that 

the administration of low-dose in-feed oxytetracycline of 

chickens and farm dwellers did not only lead to coloniza-

tion of the intestinal microbiota of chickens with tetracy-

cline-resistant E. coli strains but also acquisition of such 

resistance in E. coli in the gut of the farm family [50].

�e quantitative data generated by this study might be 

useful for assessment of the risk of acquisition of antimi-

crobial resistance from aminoglycosides use in pig pro-

duction. Besides, this is the first study providing evidence 

that the selection of resistant bacteria by treatment trans-

lates into spread between pigs and that antibiotic admin-

istration enhances the risk of transfer among treated 

animals. Further large-scale studies including more pigs 

per group, analysis of the immune status of the pigs, and 

analysis of the E. coli resistance gene pool in the gut of 

the pigs at the start of the experiments as well as analy-

sis of the variation of both aspects between piglets and 

between pens should be performed to confirm our con-

clusions. All these factors might have an impact on strain 

colonization, shedding and spread of the strain, as well as 

on emergence and spread of antimicrobial resistance. As 

mentioned, gentamicin is used for treatment of critical 

human systemic infections, such as bacteremia. Due to 

the risk of transfer of gentamicin resistance genes or gen-

tamicin-resistant E. coli from animals to humans and the 



Page 9 of 10Herrero-Fresno et al. Vet Res  (2016) 47:12 

consequent risk of difficulty in treating infections with 

gentamicin-resistant E. coli, the selective force conferred 

by apramycin for presence of gentamicin-resistant E. coli 

in animals and the potential enhanced spread among 

them is of great concern.
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