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Abstract

Apricot aphid, Myzus mumecola (Matsumura) (Homoptera: Aphididae), was recorded as a new pest of apricot in Hungary 
in the spring of 2020. Identification was based on morphological and genetical (mitochondrial COI region) characteristics. 
M. mumecola most likely arrived in Hungary in the last 2–3 years and has quickly become a widespread pest causing sig-
nificant damage to young apricot trees. Colony development, damage and differences in susceptibility between cultivars are 
described. The presence of Plum pox virus in M. mumecola samples was detected, and all isolates belonged to the PPV-D 
subgroup. Illustrations of the most important diagnostic characters of M. mumecola are provided.
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Introduction

Apricot (Prunus armeniaca L.) is an economically impor-
tant crop in Europe, especially in the Mediterranean Region 
(FAOSTAT 2020). Although the presence of several aphid 
species was recorded in apricot orchards in Europe (Avinent 
et al. 1993; Mosco et al. 1997; Holman 2009Jeremovic et al. 
2016), their most significant economic impact was not their 
direct damage caused on the yield, but the transmission of 
Plum pox potyvirus (PPV) (Avinent et al. 1993; Labonne 
et al. 1994; García et al. 2014). The most common aphid 
species landing on the foliage of apricot trees in Spain were 
Aphis gossypii Glover and A. spiraecola (Avinent et al. 
1993). On the other hand, from the West Palearctic Region, 
the Hyalopterus pruni species complex, Myzus persicae 
Sulzer and Rhopalosiphum nymphaeae L. have been most 
commonly reported to form large colonies on apricot trees 
(Blackman and Eastop, 1984; Mosco et al. 1997; Lozier 
et al. 2008; Rakauskas et al. 2013). In Italy, Panini et al. 

(2017) recorded the appearance and rapid spread of an aphid 
species on apricot, which was identified as Myzus mumecola 
(Hemiptera: Aphididae), a new aphid species for Europe. 
Myzus mumecola originates from Eastern Asia where its 
main host plant is Prunus mume Siebold (Blackman and 
Eastop, 1984). The species has been recorded in Japan on P. 

ansu Maxim, P. armeniaca and P. mume (Takahashi, 1965; 
Miyazaki, 1971), in Taiwan (Mondor et al. 2007; Lai 2020) 
on Prunus sp., in China on P. armeniaca (Zhang et al. 1985), 
in East Russia on Prunus sp. (Pashchenko 1988), in India 
on Prunus cornuta Steudel (Basu and Raychaudhuri, 1976) 
and in the Himalayas on P. armeniaca and P. mume (Chakra-
barti et al. 1970; Chakrabarti and Sarkar 2001). Based on 
the laboratory tests of Kimura et al. (2016), M. mumecola 
has the ability to transmit Plum pox virus (PPV) on P. mume, 
albeit it does not belong to the abundant aphid species in the 
P. mume orchards in Japan.

Materials and methods

Morphological identification

Aphid samples were collected from apricot trees (P. arme-

niaca) of different ages at six different locations in Hun-
gary in April and May 2020: Győr (lat. 47.699717 N; long. 
17.748146 E) and Győrszentiván (lat. 47.676328 N; long. 
17.662642 E) in Western Transdanubia, Balatonalmádi (lat. 
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47.024892 N; long. 18.008070 E) in Central Transdanubia, 
Budapest Budafok (lat. 47.422926 N; long. 19.032137 E) 
and Pomáz (lat. 47.652329 N; long. 19.012668 E) in Central 
Hungary, and Gönc (lat. 48.468253 N; long. 21.282107 E) 
in Northern Hungary (Supplementary Fig. 1). The studied 
home garden trees and orchards received no pesticides. The 
aphid individuals were collected in 1.5-ml Eppendorf tubes 
with fine painting brush and were preserved in 70 V/V% 
ethanol for morphological and in 98 V/V % ethanol for 
molecular identification. From the collected aphids, 12–48 
individuals per site were selected for identification. The 
aphid specimens were mounted after a 15-min soaking in 
hot (~ 95 °C) 20% KOH solution. The body content was 
dissolved by distilled water, and the clean cuticle of the 
aphids was fixed on microscope slides in glycerine jelly. 
The morphological identification of the aphid samples was 
performed by stereo- (Leica MZ6) and light (Euromex 
iScope 1153-PLi) microscopy, using the keys of Basu and 
Raychaudhuri (1976) and Blackman and Eastop (1984).

Molecular identification

The morphological identification was supported by the 
sequence analysis of the DNA mitochondrial cytochrome 
c oxidase subunit 1 gene (COI fragment) barcode (Hebert 
et al. 2003; Panini et al. 2017). Six aphid individuals (one 
specimen per site) were sequenced from the samples col-
lected for morphological identification. Total genomic DNA 
was extracted from a single aphid with DNeasy blood and 
tissue kit (QIAGEN, Hilden, Germany) according to the 
manufacturer’s instruction. Amplification of the COI bar-
code was performed in 20 μl reaction volume containing 
20–80 ng DNA, 5 × Phire Reaction Buffer, 0.4 μl of Phire 
Hot Start II DNA Polymerase (Thermo Scientific, Hungary), 
0.2 mM dNTP mix, 3% DMSO, 2.5 μmol of each 5′ and 
3′ end primers (LCO 1490: 5′ GGT CAA CAA ATC ATA 
AAG ATA TTG G 3′ and HCO 2198: 5′ TAA ACT TCA GGG 
TGA CCA AAA AAT CA 3′ (Folmer et al. 1994)) and ster-
ile distilled water. PCR was carried out in a Swift MaxPro 
thermocycler (ESCO Healthcare, Singapore). The cycling 
parameters were as follows: initial denaturation at 98 °C for 
30 s, then 30 cycles of denaturation at 98 °C for 5 s, anneal-
ing at 49 °C for 5 s, extension at 72 °C for 15 s and a final 
extension for 1 min at 72 °C. Amplification was verified on 
a 1% (w/v) ethidium bromide‐stained agarose gel in 1 × TBE 
buffer. Fragment size was estimated by comparison with the 
1 kb DNA ladder (Fermentas, Waltham, MA, USA). The 
amplified fragments were purified using ExoSAP-IT Express 
purification kit (Thermo Scientific, Hungary) for direct 
sequencing. Sequencing was performed in an automated 
sequencer ABI PRISM 3100 Genetic Analyser (Applied 
Biosystems, Foster City, CA, USA). For each fragment, the 
nucleotide sequences were determined in both directions. 

Forward and reverse sequences were edited and assembled; 
alignment and neighbour-joining analysis were conducted in 
MEGAX (Kumar et al. 2018). DNA sequences were verified 
using the BLASTN algorithm at NCBI.

Life cycle, damage and susceptibility

The development of the M. mumecola colonies was followed 
on individual trees in home gardens to assess the presence 
of different stages and the damage caused on the foliage of 
apricot trees. Susceptibility of different apricot cultivars to 
M. mumecola was assessed in five apricot orchards in Hun-
gary in July 2020 (Supplementary Fig. 1, Supplementary 
Table 1): Orchard 1, Győrszentiván (lat. 47.686939 N, long. 
17.793228 E; cultivars ‘Bergeron’, ‘Gönci magyar kajszi’ 
and ‘Magyar kajszi C235’); Orchard 2, Szentkirályszabadja 
(lat. 47.070796 N, long. 17.939379 E; cultivars ‘Spring 
Blush’ and ‘Magyar kajszi C235’); Orchard 3, Érd-Elvi-
ramajor (lat. 47.336696 N, long. 18.864777 E; cultivars 
‘Summerland’ and mixed seedlings from Greece; Orchard 
4, Törökbálint (lat. 47.465428 N, long. 18.863759 E; culti-
vars ‘Orange Red’ and ‘Magyar kajszi C235’), and Orchard 
5 Budapest-Soroksár (lat. 47.395810 N, long. 19.148472 E; 
cultivars ‘Goldrich’, ‘Orange Red’, ‘Budapest’, ‘Ceglédi 
bíbor’, ‘Ceglédi kedves’, ‘Korai zamatos’ and ‘Pannónia’). 
All orchards were planted on cherry plum (Prunus cerasifera 
Ehrhart) rootstock. Cultivars within each orchard received 
the same horticultural practices and pest management (Sup-
plementary Table 1). Number of shoots and number of M. 

mumecola-infested shoots were counted for each sampled 
tree. The extent of the damage was expressed as percentage 
of infested shoots on randomly selected trees (n ≥ 9 trees per 
cultivar) (Supplementary Table 1). Due to the non-normal 
distribution of the data and lack of homogeneity of vari-
ance, for intergroup comparisons the Brunner–Munzel test 
(two cultivars) or the adjusted rank Welch test followed by 
Brunner–Munzel test with Bonferroni adjustment (more than 
two cultivars) were used. As cultivars were grown in non-
randomised plots (spatial pseudoreplication), all statistical 
comparisons were tested at the significance level of 0.0001 
and 0.05. Statistical analyses were performed with the soft-
ware package ROPstat (Vargha et al. 2015).

Detection of PPV viral RNA

For detection of the presence of PPV in the aphids collected 
from apricot trees at the six aphid collection sites described 
above (Supplementary Fig. 1), six aphid individuals (one 
specimen per sampling site) were tested. After releasing the 
viral RNA template from a single aphid with boiling tech-
nique (Kim et al., 2016), a two-step RT-PCR was carried 
out for the detection of PPV with a PPV-specific primer pair 
(PP3: 5′ TTA TCT CCA GGA (AG)TTG GAG C 3′ and PCI: 
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5′ TTG AGT CAA ATG G(AG)ACA GTT GG 3′(Glasa et al. 
2002)) amplifying a 836-bp-long fragment corresponding 
to the 5′-terminal region of the P3 gene (580 nt), the com-
plete 6K1 (156 nt) and a 100 nt portion from the 3′-terminal 
part of the CI gene [3′P3–6K1–5′CI]. Amplification was per-
formed with Phire Hot Start (Thermo Scientific, Hungary) 
polymerase as described above. The cycling parameters were 
as follows: initial denaturation at 98 °C for 30 s, then 30 
cycles of denaturation at 98 °C for 5 s, annealing at 55 °C 
for 5 s, extension at 72 °C for 15 s and a final extension for 
1 min at 72 °C. Amplification was verified on a 1% (w/v) 
ethidium bromide‐stained agarose gel in 1 × TBE buffer. 
Fragment size was estimated by comparison with the 1 kb 
DNA ladder (Fermentas, Waltham, MA, USA).

For PPV subgroup typing, aliquots of the PCI/PP3 PCR 
products were subjected to CAPS analysis with restriction 
endonucleases DdeI, EcoRI and EcoRV (Thermo Scientific, 
Hungary), as suggested by the manufacturer. Based on the 
resulting digestion pattern, the three most common strains 
in Hungary (PPV-D, PPV-M, PPV-Rec) can be differentiated 
(Glasa et al. 2002; Ádám, et al. 2015).

Results

Morphological identification

We confirmed the presence of M. mumecola in Hungary 
by morphological characteristics. Myzus mumecola appears 
to be widespread in Hungary, as we could detect it in all 
of the examined regions of Hungary: Győr (25 May 2020; 
number of identified specimens: 48) and Győrszentiván (23 
April 2020; 24 specimens) in Western Transdanubia, Bala-
tonalmádi (16 May 2020; 24 specimens) in Central Trans-
danubia, Budafok (2 May 2020; 12 specimens) and Pomáz 
(25 May 2020; 12 specimens) in Central Hungary, and Gönc 
(19 May 2020; 12 specimens) in Northern Hungary. The 
slide-mounted specimens were deposited in the Hungar-
ian Natural History Museum, Budapest. These are the first 
records of M. mumecola from Central Europe. We propose 
the common name ‘apricot aphid’ for M. mumecola, refer-
ring to the host plant, apricot.

Morphological description of Myzus mumecola

Apterous (wingless) M. mumecola individuals in life are 
medium-sized (2–2.4 mm) (Panini et al. 2017), pale green 
in colour with pale cauda and siphunculi. The cauda is short 
and triangular, and the siphunculi are cylindrical, about 7 
times longer than their width (Fig. 1a) (Panini et al. 2017). 
On the mounted specimens, key morphological characters of 
M. mumecola are clearly discernible: M. mumecola differs 
from Phorodon humuli Schrank in the lack of the finger-like 

processes on the antennal tubercles (Fig. 1b), while from 
Myzus persicae Sulzer in the divergent antennal tubercles 
(Fig. 1b), longer hairs of the antennae (Fig. 1c), and the 
narrowing shape of the siphunculi (Fig. 1d) (Basu and Ray-
chaudhuri 1976; Blackman and Eastop 1984). Other aphid 
species recorded from apricot differ significantly from M. 

mumecola in size or colour (Blackman and Eastop 1984).

Molecular identification

Identification of M. mumecola was also confirmed by DNA 
sequence analysis. The COI barcode of six M. mume-

cola individuals (one specimen per site) was sequenced 
from the samples collected at six locations in Hungary 
(Győrszentiván, Győr, Balatonalmádi, Budapest Budafok, 
Pomáz, Gönc): the sequenced region covered 709 nucleo-
tides. Forward and reverse sequences were aligned, and a 
consensus sequence was generated for each. All sequences 
are deposited in the NCBI GenBank under the accession 
number MT635054-MT635059. For sequence comparison, 
further M. mumecola (AB738876 and AB738877) and M. 

persicae (JF883917, HQ971262, GU668755, KR032469, 
KR039431, KY323048, KP759548, MN320357) COI 
sequences have been retrieved from NCBI GenBank. For 
NJ analysis, the sequences were trimmed; hence, finally 644 
bases were used in the alignment and cluster analysis. The 
sequences both for M. mumecola and for M. persicae were 
uniform within the species, while comparing M. mumecola 
and M. persicae sequences 42 SNPs were found differentiat-
ing the two species. The neighbour-joining analysis (Fig. 2) 
revealed two independent clades with strong support (100%), 
one harbouring the M. mumecola individuals and the other 
the M. persicae individuals.

Life cycle, damage and susceptibility

Fundatrices were observed on the leaves as early as in the 
initial stages of leaf development, indicating that M. mume-

cola probably overwinters as eggs on apricot trees. The 
following 2–3 apterous generations were found to feed on 
the backside of the leaves (Fig. 3a) and caused significant 
malformation on young leaves: developing leaves were dis-
torted, severely curled downwards (perpendicularly to the 
midrib) forming pseudo-galls as reported by Panini et al. 
(2017) (Fig. 3b). The apterae of the later spring generations 
were actively moving on the trees, colonising the tips of 
the growing shoots in the surrounding of the initial colo-
nies. The growth of the infested shoots was affected, and the 
shoots became slightly distorted (Fig. 3c). In some cases, we 
observed delayed flowering (in mid-April) and fructification 
of the infested shoots. In some cases, aphid individuals were 
found feeding on the growing fruits. The infested leaves 
partially discoloured and fell prematurely within a couple 
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of weeks. New shoot growth appeared at the base of the 
dead shoot tips in early June. The first alatae (winged) forms 
appeared in mid-May in the pseudo-galls (Fig. 3c), indicat-
ing that M. mumecola follows a heterocyclic life cycle in 
Hungary, although its summer host is still unknown (Panini 
et al. 2017). Alatae feeding on the winter host (apricot) were 
found by mid-June.

In the M. mumecola colonies, ants (Lasius niger L.) and 
predatory insects (primarily Harmonia axyridis Pallas, 
Forficula auricularia L. and Episyrphus balteatus De Geer) 
were observed in high numbers.

The susceptibility of different apricot cultivars to the 
aphid infestation differed significantly (Table 1). Three 
susceptibility levels were distinguishable: aphid-tolerant 
cultivars (0–4% of the shoots were infected) were Greek 
mixed seedlings, ‘Budapest’, ‘Ceglédi bíbor’, ‘Magyar kajszi 
C235’, ‘Orange Red’, ‘Ceglédi kedves’ and ‘Pannónia’; 
moderately sensitive cultivars (10–21%) were ‘Korai zama-
tos’ ‘Gönci magyar’, ‘Summerland’ and ‘Bergeron’; and the 
sensitive cultivars (30–34%) were ‘Goldrich’ and ‘Spring 
Blush’. The aphid infestation on the sensitive cultivars and 
in most comparisons on the moderately sensitive cultivars 
differed significantly from that on the cultivars in the aphid-
tolerant group (Table 1). There was no significant difference 

Fig. 1  Morphological characteristics of apterae M. mumecola (a: overview; b: antennal tubercles, c: hairs on antennal segments IV and V, d: 
siphunculus)

Fig. 2  Neighbour-joining (NJ) tree showing phylogenetic relation-
ships among Myzus mumecola and M. persicae based on mitochon-
drial COI barcode (644 positions in final data set). The analysis 
involved 16 nucleotide sequences (six sequences resulting from this 
study and ten retrieved from the NCBI GenBank database). The evo-
lutionary distances were computed using the maximum composite 
likelihood method and are in the units of the number of base substitu-
tions per site
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in the number of shoots between most of the cultivars (Sup-
plementary Table 2).

Detection of PPV viral RNA

The RT-PCR carried out with the PP3/PCI PPV-specific 
primer pair amplified fragments of the expected size (around 

Fig. 3  Damage of M. mumecola 
on apricot (a M. mumecola 
colony on the backside of a leaf; 
b malformed leaves on a grow-
ing shoot; c shoots disrupted 
in development with alateae 
forms)

Table 1  Proportion of shoots (mean ± SD) infested by M. mumecola on different cultivars in five apricot orchards in Hungary

Different capital and lowercase letters indicate significant differences among means on p < 0.0001 and p < 0.05 levels, respectively. Description 
of the orchards is given in Supplementary Table 1

Site 1 Site 2 Site 3 Site 4 Site 5

Bergeron 20.7 (7.1); C (c)

Budapest 0.4 (1.2); A (a)

Ceglédi bíbor 0.7 (1.1); A (a)

Ceglédi kedves 3.4 (4.5); AB (a)

Goldrich 30.2 (11.6); C (c)

Gönci magyar 12.8 (5.4); B (b)

Greek seedlings 0.2 (1.0); A (a)

Korai zamatos 10.8 (7.7); B (b)

Magyar kajszi C235 0.2 (1.0); A (a) 3.7 (6.0); A (a) 0.0 (0.0); A (a)

Orange Red 0.0 (0.3); A (a) 3.0 (3.7); AB (a)

Pannónia 3.8 (4.7); AB (ab)

Spring Blush 33.9 (22.6); B (b)

Summerland 20.1 (14.8); B (b)
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836 bp) in the case of all six M. mumecola individuals from 
six locations of Hungary (Győrszentiván, Győr, Bala-
tonalmádi, Budafok, Pomáz and Gönc). The PCR products 
could be cleaved by both DdeI and EcoRI, but no restric-
tion site of EcoRV was present in the sequences. Thus, all 
six PPV isolates detected in aphids belonged to the PPV-D 
subgroup, and no other strains of PPV from the most com-
mon types in Hungary (PPV-D, PPV-M, PPV-Rec) could 
have been identified.

Discussion

In the past few years, Myzus mumecola became an important 
pest of apricot in Italy (Panini et al. 2017) and, as we found, 
in Hungary as well. Its rapid expansion across the apricot-
growing regions of Europe is highly probable. Since M. 

mumecola were not recorded in an extensive faunal survey of 
the apricot orchards in West Serbia between 2009 and 2011 
(Jevremović et al. 2016), the new species had presumably 
been established in Central Europe in the past few years. As 
Northern Hungary is one of the northernmost apricot-grow-
ing regions of Europe (Bassi 1999; FAOSTAT 2020), it is 
less likely that continental climate can limit the distribution 
of the new species (Kaneko 1993). Aphids had been gener-
ally uncommon pest of apricot in Central Europe, and there-
fore insecticide sprays were not required for aphid control 
(Pénzes et al. 2003). As M. mumecola is now a significant 
pest of apricot in Central Europe, deeper understanding of 
its life cycle (including the range of summer hosts and the 
vector role in the virus and phytoplasma dissemination) and 
development of new effective control strategies are required.

The morphological characteristics of M. mumecola spec-
imens examined by us matched exactly with the descrip-
tion of Panini et al (2017) and the morphological keys of 
Takahashi (1965), Basu and Raychaudhuri (1976) and 
Blackman and Eastop (1984) (Fig. 1). The identity of the 
species was also confirmed by the COI barcode sequence 
analysis (Fig. 2), which fully matched with those of the 
Italian and Japanese samples of M. mumecola (AB738876 
and AB738877) proving the reliability of the morphologi-
cal descriptions in the distinction of the species from other 
aphid pests of apricot.

The 13 apricot cultivars evaluated varied considerably in 
their susceptibility to M. mumecola. While most of the cul-
tivars showed low or moderate aphid incidence, ‘Goldrich’ 
and ‘Spring Blush’ appeared to be particularly susceptible 
(Table 1). The abundance of aphids on fruit trees is primar-
ily limited by the intensity of shoot growing, quality and 
quantity of plant soap, and the presence of natural enemies 
(Dixon, 1973). The susceptibility of different plant culti-
vars depends on several physiological and genetical factors 
(Dogimont et al. 2010; Pierson et al. 2011). Some cultivars 

compensate for the loss caused by aphids (Pierson et al. 
2011) or restrain the feeding of aphids in a physical way 
(Giordanengo et al. 2010), while in other cases the expres-
sion of different resistance genes leads to some level of toler-
ance (Dogimont elt al. 2010). In the case of peach (Prunus 

persica L.), Pascal et al. (2002) found a single dominant 
resistance gene in the red leaf rootstock cultivar ‘Rubira’, 
which is responsible for induced resistance against M. per-

sicae (Sauge et al. 2002). Aphid resistance genes of apricot 
have not been identified yet.

Our findings, obtained with CAPS analysis of the PP3/
PCI amplified PCR product which is used for subgroup typ-
ing of PPV isolates (Glasa et al. 2002; Ádám et al. 2015), 
are in accordance with previously published results where 
the most prevalent strain of PPV in apricot in Hungary was 
PPV-D (Sihelská et al. 2017). Although M. mumecola has 
lower transmission rate (12%) than M. persicae (24.4%) 
(Kimura et al. 2016), it has the potential to be an important 
vector of PPV because of its high abundance and high rate 
of aphids carrying PPV.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s4134 8-021-00436 -z.
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