
311

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.4

APRIORI MULTIPLE ALGORITHM FOR MINING
ASSOCIATION RULES

Predrag Stanišić, Savo Tomović
University of Montenegro, Podgorica, Montenegro

Abstract. One of the most important data mining problems is mining association rules. In this paper we consider
discovering association rules from large transaction databases. The problem of discovering association rules can be
decomposed into two sub-problems: find large itemsets and generate association rules from large itemsets. The second
sub-problem is easier one and the complexity of discovering association rules is determined by complexity of
discovering large itemsets. In this paper, we suggest Apriori-based algorithm for discovering large itemsets. Actually,
we suggest a new procedure for large itemsets generation which is more efficient than the appropriate procedure of the
original Apriori algorithm. For its implementation, we suggest a modified sort-merge-join algorithm, which is more
efficient than nested-loop-join algorithm, which is suggested in the original Apriori algorithm. Besides, we propose a
way in which Apriori Multiple finishes in just two iterations.

Keywords: data mining, knowledge discovery in databases, association analysis, Apriori algorithm.

1. Introduction

The motivation for discovering association rules
has come from the requirement to analyze large
amounts of supermarket basket data. A record in such
data typically consists of the transaction unique iden-
tifier and the items bought in that transaction. Items
can be different products which one can buy in super-
markets or on-line shops, or car equipment, or tele-
communication companies’ services etc.

The aim of association analysis for market basket
data is to discover customer habits or patterns (to dis-
cover products which one buys together). For
example, an association rule may state that “85% of
customers who bought milk also bought bread”. Dis-
covering all such rules is important for planning
marketing campaigns, designing catalogues, managing
prices and stocks, customer relationships management
etc. For example, a shop may decide to place bread
close to milk because they are often bought together,
to help shoppers finish their task faster. Or the shop
may place them at opposite ends of a row, and place
other associated items in between to tempt people to
buy those items as well, as shoppers walk from one
end of the row to the other.

In association analysis for market basket data it is
important if item is part of customer basket or not, so
each item has a Boolean variable representing the pre-
sence or absence of that item. Then each basket can be
represented by a Boolean vector. By association
analysis of these vectors we can discover rules, which
present customer habits. For example, the fact that

shopper who purchases milk also tends to purchase
bread at the same time can be represented by associa-
tion rule breadmilk ⇒ [support = 20%, confidence
= 85%]. Support and confidence are measures of rule
usefulness and certainty. A support of 20% for the
previous association rule means that 20% of all
transactions under analysis contain milk and bread. A
confidence of 85% for the previous association rule
means that 85% of the customers who purchased milk
also purchased bread. The result of association ana-
lysis is strong association rules, which are rules
satisfying a minimal support and a minimal confi-
dence threshold. The minimal support and the minimal
confidence are input parameters for association
analysis.

The problem of association rules mining can be
decomposed into two sub- problems [1]:

• Discovering large itemsets. Large itemsets have

support greater than the minimal support;
• Generating rules. The aim of this step is to derive

rules with high confidence (strong rules) from
large itemsets. For each large itemset l one finds
all not empty subsets of l; for each ∅≠∧⊂ ala

one generates the rule ala −⇒ , if ≥
)(
)(

a
l

σ
σ

minimal confidence.

We do not consider the second sub-problem in

this paper, because the overall performances of mining

P. Stanišić, S. Tomović

312

association rules are determined by the first step.
Efficient algorithms for solving the second sub-
problem are exposed in [23].

We will briefly expose basic ideas of the Apriori
algorithm from [2], which is one of the most famous
for discovering large itemsets and which will be re-
ferred to as the original Apriori algorithm in the
following text. The original Apriori algorithm gene-
rates large itemsets iteratively: in iteration k 2≥ , large
(k-1)-itemsets, from previous iteration, is used for
generating large k-itemsets, where large k-itemset is a
large itemset with k items. Large k-itemsets are gene-
rated in two steps: first we generate a set of candidate
k-itemsets (possibly large k-itemsets) and then we
identify those ones with support greater than the mini-
mal support among the set of candidates. The support
of candidate itemset is the number of transactions,
which contain that itemset, so it is necessary to read
all transactions to determine support. The total number
of iterations in the original Apriori algorithm is

1+Maxk , where Maxk is the maximum size of a large
itemset. In each iteration the whole database is scan-
ned.

From previous paragraph one can conclude that the
efficiency of the original Apriori algorithm is mostly
determined by the number of generated candidate
itemsets and the number of iterations (in other words,
the total number of I/O operations). In this paper we
suggest the Apriori Multiple algorithm, which solves
the problem of discovering large itemsets. It uses the
new procedure for candidate generation, which is
more efficient than the appropriate procedure from the
original Apriori algorithm. The original Apriori algo-
rithm suggests the join procedure 11 −− ×= kkk LLC ,
which generates candidate k-itemset by joining two
large (k-1)-itemsets if and only if they have k-2 first
items in common. Because of that, each join operation
requires at most k-2 equality comparisons. The pro-
cedure for candidate generation in our Apriori Mul-
tiple algorithm is named 21 −− ×= kkk LLC , and candi-
date k-itemset is generated by joining large (k-1)-
itemset and large (k-2)-itemset if and only if they have
k-3 first items in common. According to that proce-
dure each join operation requires at most k-3 equality
comparisons. In the paper we prove the correctness of
the procedure 21 −− ×= kkk LLC . For its implementa-
tion we suggest a modified sort-merge-join algorithm,
which is more efficient than nested-loop-join
algorithm which is suggested in the original Apriori
algorithm. This is fully expressed when the sets 1−kL
and 2−kL can not be read into main memory. Also,
Apriori Multiple in the best case finishes in just two
iterations.

The remainder of this paper is organized as
follows. Related works are described in section 2. In
section 3 basic concepts from association analysis are
defined. In sections 4, 5 and 6 the Apriori Multiple
algorithm is exposed and we compare steps of this

algorithm to the corresponding steps of the original
Apriori algorithm. At the end, section 7 contains a
comparison of our algorithm with other methods and
experiment results.

2. Related Work

The problem of discovering association rules was
first introduced in [1] and an algorithm called AIS was
proposed for mining association rules. In [20], an
algorithm called SETM was proposed to solve this
problem using relational operations. These were the
first algorithms for mining association rules. For last
fifteen years many algorithms for rule mining have
been proposed. All these algorithms can be classified
into two categories: the candidate-generation-and-test
approach and the pattern-growth approach.

2.1. Candidate-generation-and-test algorithms

The Apriori algorithm from [2] is the basic candi-
date-generation-and-test algorithm. It is based on the
Apriori principle, which says that the itemset X’
containing itemset X is never large if itemset X is not
large. Based on this principle, the Apriori algorithm
generates a set of candidate large itemsets whose
lengths are (k+1) from the large k-itemsets (for k≥1)
and eliminates those candidates, which contain not
large subset. Then, for the rest candidates, supports are
counted and only those with support over minsup
threshold are taken to be large (k+1)-itemsets.

Many variations have been proposed that focus on
improving the efficiency of the original Apriori
algorithm. They are focused on reducing the number
of candidates generated or on reducing the number of
database scans. We will mention some of them.

In [19], a hash-based technique was used to reduce
the size of the candidate k-itemsets, for k>1. This is
especially true for k=2. For example, when generating

1L , we need to read all transactions from database in
order to determine support for each candidate 1-
itemset from 1C . At the same time, we can generate
all of the 2-itemsets for each transaction, hash them
into different buckets of a hash table and increase cor-
responding bucket counts. A 2-itemset whose corres-
ponding buckets count in the hash table is less than the
minimal support cannot be large and should be
removed from the candidate set.

In [2], [16] and [19] there were proposed ways
how to reduce the number of transactions scanned in
future iterations. The main idea is the following. A
transaction that does not contain any large k-itemset
can be removed from further considerations because
such a transaction cannot contain any large (k+1)-
itemset.

In [21], the partitioning technique was proposed. It
requires just two database scans to mine large itemsets
and consists of two phases. In phase I, the algorithm
subdivides the database into n no overlapping

Apriori Multiple Algorithm for Mining Association Rules

313

partitions which can fit into main memory. For all
partitions, all large itemsets are found and they are to-
gether candidate itemsets for whole database (because
any itemset that is large in database must be large in at
least one partition). In phase II, the algorithm counts
actual support of each candidate from phase I in order
to determine large itemsets for whole database.

In [24], the sampling approach is proposed. It
requires just one database scan in the best case, and
just two database scans in the worst case. The main
idea is to randomly choose a sample from database,
which can fit into main memory. The algorithm then
searches for large itemsets in sample instead of data-
base. These large itemsets called potentially large (PL)
itemsets and they are used as part of candidate item-
sets for whole database. The rest of candidate itemsets
are found by applying function called negative border
on set PL. Negative border is defined as minimal set
of itemsets which are not in PL, but all their subsets
are in PL. The second database scan is necessary only
if some of large itemsets is from negative border (if all
large itemsets are from PL, the second scan is not
done).

In [6], a dynamic itemset counting approach is
given. In this approach, database is partitioned into
blocks marked by start point and new candidate item-
sets can be added at any start point (unlike Apriori).
New candidate itemset is added only if all of its
subsets are estimated to be large so far.

2.2. Pattern-growth algorithms

Pattern-growth algorithms mine the complete set
of large itemsets without candidate generation. The
first pattern-growth algorithm was proposed in [17]
and was called frequent-pattern growth or simply FP-
growth. FP-growth constructs an FP-tree structure and
mines large itemsets by traversing the constructed FP-
tree.

The FP-tree consists of a prefix-tree of large 1-
itemsets and an item header table. Each node in the
prefix-tree has three fields: item-name, count and
node-link. Item-name is the name of the item. Count is
the number of transactions that consist of the large 1-
itemsets on the path from root to this node. Node-link
is the link to the next same item-name node in the FP-
tree. Each entry in the item header table has two
fields: item-name and head of node-link. Item-name is,
as before, the name of the item. Head of node-link is
the link to the first same item-name node in the prefix-
tree.

FP-growth performs two database scans.
The first scan of the database derives the set of

large 1-itemsets and their supports. The set of large 1-
itemsets is sorted in the order of descending support
count.

The FP-tree is then constructed as follows. First,
create the root of the tree, labelled with “null”. Scan
the database a second time. The items in each trans-
action are processed according to descending support

count and a branch is created for each transaction. In
general, when considering the branch to be added for a
transaction, the count of each node along a common
prefix is incremented by 1, and nodes for the items
following the prefix are created and linked accor-
dingly.

The mining of the FP-tree proceeds as follows.
Starting from each large 1-itemset construct its condi-
tional pattern base (a “sub database” which consists of
the set of prefix paths in the FP-tree co-occurring with
the suffix pattern), then construct its (conditional) FP-
tree, and perform mining recursively on such a tree.
The pattern growth is achieved by the concatenation
of the suffix pattern with the large patterns generated
from a conditional FP-tree.

The FP-growth algorithm transforms the problem
of finding long large itemsets to looking for shorter
ones recursively and then concatenating the suffix. It
uses the least large items as suffix, offering good
selectivity.

Another well-known pattern-growth algorithm is
Apriori-TFP [13]. The idea is to copy the input data-
base into a data structure called P-tree, which main-
tains all the relevant aspects of the input, and then
mines this structure.

When the database is large, it is unrealistic to
construct a main memory-resident data structure to
represent whole database. This is serious limit of
pattern-growth approach. Because of this, we focused
on candidate-generation-and-test approach, which
previously mentioned limit does not exist for.

3. Preliminaries

In this section we define basic concepts of associa-
tion analysis and give its formal definition.

Definition 1: Let },...,,{ 21 mIIII = be a set of
items in database of transactions },...,,{ 21 ntttD = ,
where },...,,{)(21 iikiii IIIt = and ,1 ()ijI I j k i∈ ≤ ≤ ,
1 i n≤ ≤ . An association rule is an implication of the
form YX ⇒ , where IX ⊆ , IY ⊆ and ∅=YX ∩
[11].

The result of association analysis should be only
“strong” association rules, or in other words those
which are “expressive” and “confident”. Standard
measures of association rules’ “strength” are support
and confidence, and both of these are calculated in
dependence on the support of corresponding itemset.
For the rule YX ⇒ , the corresponding itemset is

YX ∪ .
Definition 2: Let },...,,{ 21 mIIII = be a set of

items in database of transactions },...,,{ 21 ntttD = ,
where },...,,{)(21 iikiii IIIt = and ,1 ()ijI I j k i∈ ≤ ≤ ,
1 i n≤ ≤ (each transaction is a subset of I). Arbitrary
set IX ⊆ is termed as itemset. The support of the

P. Stanišić, S. Tomović

314

itemset X, denoted by)(Xσ , is defined by the
following formula:

() | { |1 } |i i iX t i n X t t Dσ = ≤ ≤ ∧ ⊆ ∧ ∈ .

The support of the itemset X is actually the number
of transactions that contain X. For the transaction it , it
can be stated that it contains itemset X if itX ⊆ [11].

Definition 3: The support of association rule
YX ⇒ , denoted by)(YX ⇒σ , is the ratio of the

number of transactions in database which contain
YX ∪ to the number of all transactions n. More

formally:

()() X YX Y
n

σσ ⇒ =
∪ [11].

Definition 4: The confidence of association rule
YX ⇒ , denoted by)(YX ⇒α , is the ratio of the

number of transactions which contain YX ∪ to the
number of transactions containing X. More formally:

()()
()

X YX Y
X

σα
σ

⇒ =
∪ [11].

Having defined all necessary concepts, we intro-
duce the definition of association analysis problem.

Definition 5: Let },...,,{ 21 mIIII = be a set of
items in transactional database },...,,{ 21 ntttD = ,
where },...,,{)(21 iikiii IIIt = and ,1 ()ijI I j k i∈ ≤ ≤ ,
1 i n≤ ≤ . Association analysis problem consists of
discovering all association rules YX ⇒ , where

≥⇒)(YXσ minsup and ≥⇒)(YXα minconf and
values minsup and minconf are input parameters of the
problem [11].

4. Apriori Multiple Algorithm

Apriori Multiple algorithm generates large item-
sets starting with large 1-itemsets (itemsets consisted
of just one item). Next, the algorithm iteratively
generates large itemsets to the maximum size of large
itemsets. Each iteration of the algorithm consists of
two phases: candidate generation and support count-
ing.

In the candidate generation phase potentially large
itemsets or candidate itemsets are generated. The
Apriori principle is used in this phase. It is based on
anti-monotone property of the itemset support and
provides elimination or pruning of some candidate
itemsets without calculating its support (candidate
containing at least one not large subset is pruned
immediately, before support counting phase).

The support counting phase consists of calculating
support for all previously generated candidates (which
are not pruned according to the Apriori principle in the
preceding candidate generation phase). In the support
counting phase, it is essential to efficient determine if

the candidates are contained in particular transaction
Dt ∈ , in order to increment their support. Because of

that, the candidates are organized in hash tree [2]. The
candidates, which have enough support, are termed as
large itemsets.

The Apriori Multiple algorithm terminates when
none of the large itemsets can be generated.

In the Apriori Multiple algorithm we have added
new parameter named multiple_num, which deter-
mines the “length” of iteration. Actually, in the origi-
nal Apriori algorithm, in the iteration k, set kL (con-
taining all large itemsets with k items) is generated,
while our Apriori Multiple algorithm in the iteration k
generates sets 1_0, −≤≤+ nummultipleiL ik .

The Apriori Multiple can use any value for mul-
tiple_num parameter. If multiple_num=0, our Apriori
Multiple “becomes” the original Apriori algorithm. If
we want to ensure that Apriori Multiple finishes in just
two database scans, we need to choose value for
multiple_num parameter such that kMax < multiple_
num holds, where kMax is the maximal size of large
itemsets. But we do not know kMax value in advance.
As a solution, we can apply some statistical methods
to estimate Maxk value or we can use the following
very simple approach. In the first scan, Apriori
Multiple generates large 1-itemsets. During this scan
Apriori Multiple can determine the length of the
longest transaction in the database: tMax. It is clear that
kMax < tMax, so the algorithm can set multiple_num
parameter to tMax. Another approach is to set
multiple_num parameter to average size of trans-
actions. This does not guarantee that the algorithm
finishes in two database scans, but it will generate less
number of candidates. Also, Apriori Multiple can start
with some value for multiple_num parameter and
change this value in the following iterations. The
multiple_num parameter can also be defined by user,
just like minsup threshold. It means that user, accord-
ing to domain knowledge or some other estimate, can
specify the value for multiple_num parameter.

In our implementation we set multiple_num para-
meter to the average size of transactions.

In addition, all candidate k-itemsets (itemsets con-
taining k items) will be signed as kC , and all large k-
itemsets as kL . Pseudocode for our Apriori Multiple
algorithm comes next.
Apriori Multiple Algorithm
Input: D - transactional database;
 Min_Sup-minimal support;
Output: L - large itemsets in D
Method:

1. L1 = all_large_1– itemset (D,
Min_Sup)

2. multiple_num =
average_size_of_transactions

3. FOR (k=2; Lk-1 ≠ ∅;
k+=multiple_num) DO
Ck = apriori_gen(Lk-1, Lk-1)

Apriori Multiple Algorithm for Mining Association Rules

315

FOR i=1 TO multiple_num-1
Ck = apriori_gen(Ck+i-1, Ck+i-1)

 END FOR
 FOR i=0 TO multiple_num-1
 createCandidateHashtree(Ck+i)
 END FOR
 FOR EACH t ∈ D DO
 FOR i=0 TO multiple_num-1
 traverseHashtree(Ck+i, t)
 END FOR
 END FOR
 FOR i=0 TO multiple_num-1
 Lk+1 = {c ∈ Ck+1 |σ (c) ≥ Min_Sup}
 END FOR
 END FOR
 4. L = UkLk+1

Let us briefly outline the most important steps. Ge-
nerating large 1-itemsets can be done in the same way
as in the original Apriori algorithm from [2]. During
this step Apriori Multiple determines average size of
transactions and sets multiple_num to this value. In
iteration k 2≥ , the set Ck is generated by calling
apriori_gen function (the first call of apriori_gen
function in the upper algorithm), but this is not the end
of candidate generation phase. The loop in which the
candidate itemsets Ck+1, 1 ≤ multiple_num – 1 are
generated comes next. It is done in the following way.
According to the original Apriori algorithm from [2]
candidate itemset Ck+1 (candidate itemsets containing
k+1 items) is formed from the set kL (large itemsets
containing k items) in iteration k+1. However, we
want to generate Ck+1 in iteration k (in order to reduce
number of algorithm's iterations), but we do not have
the necessary set kL . As the solution, the first argu-
ment of apriori_gen function is Ck, which is generated
by the first call. The second argument is Ck–1, which is
known from the previous iteration. For the next call of
apriori_gen function, the arguments are Ck+1 and Ck,
and in that way Ck+2 is generated, etc. Candidate
generation phase, which is here briefly discussed, is
more precisely described in Section 5. The support
counting phase comes next. Candidate itemsets Ck+i, 0
≤ i ≤ multiple_num – 1 are organized in hash tree in
order to make support counting process efficient.
Then, we scan database and calculate support for
candidates Ck+i, 0 ≤ i ≤ multiple_num – 1 by
traversing corresponding hash trees. At the end of
support counting phase large itemsets Lk+i, 0 ≤ i ≤
multiple_num – 1 are generated from candidate
itemsets with large enough support. The support
counting phase is described in Section 6.

The algorithm from [2] performs 1+Maxk itera-
tions, where Maxk is the maximal size of large item-
sets, and in each iteration it scans whole database. Our
Apriori Multiple algorithm finishes after

⎡ ⎤nummultiplekMax _/1 + iterations.

5. Candidate Generation

Both our Apriori Multiple algorithm and the
original Apriori algorithm from [2] assume that any
itemset I is kept sorted according to some relation “<”,
where for all Iyx ∈, , x<y means that the object x is
in front of the object y. Also, we assume that all
transactions in database D and all subsets of I are kept
sorted in lexicographic order according to the relation
“<”.

For candidate generation we suggest the original
method by which 21 −− ×= kkk LLC is calculated, for

3≥k . Candidate k-itemset is created from one large
(k-1)-itemset and one large (k-2)-itemset in the
following way. Let 1121 },..,,{ −− ∈= kk LxxxX and

2221 },...,,{ −− ∈= kk LyyyY . Itemsets X and Y are joi-
ned if and only if the following condition is satisfied:

21)3,...,2,1(−− <∧−== kkii yxkiyx . (1)

Let us prove the correctness of this method. It is
sufficient to show that kk CL ⊆ for all k, where kC is
generated by 21 −− × kk LL . Let kk LzzzZ ∈= },...,,{ 21
be arbitrary chosen and let 3≥k . We will show that

kCZ ∈ . Let us take 1 1 2 2 2{ , ,..., kX x z x z x −= = = =

2 1 1, }k k kz x z Z− − −= ⊆ and 1 1 2 2{ , ,...Y y z y z= = = ,

3 3 2, }k k k ky z y z Z− − −= = ⊆ . Then, according to the
Apriori principle, we have 1−∈ kLX and 2−∈ kLY .
Now we will check the condition (1) for itemsets X
and Y: 1 1 1 3 3 3 1() ... ()k k k kx y z x y z x− − − −= = ∧ ∧ = = ∧ <

2 1()k k ky z z− − < . It is directly checked that the
previous formula is true, so that kCYXZ ∈×= . In
this way we proved the correctness of the method

21 −− ×= kkk LLC for 3≥k .
In the original Apriori algorithm from [2], the join-

ing procedure 11 −− ×= kkk LLC is suggested. It gene-
rates candidate k-itemset by joining two large (k-1)-
itemsets, if and only if they have first (k-2) items in
common. Because of that, each join operation requires
(k-2) equality comparisons. If a candidate k-itemset is
generated by the method 21 −− × kk LL for 3≥k , it is
enough (k-3) equality comparisons to process.

Generation of 21 −− ×= kkk LLC can be represen-
ted by the following SQL query:

 INSERT INTO kC

 SELECT 1 1 1 2 1 3. , . ,..., . ,kR item R item R item −

 2 2 1 1. , .k kR item R item− −

 FROM 1−kL AS 1R , 2−kL AS 2R

 WHERE 1211 .. itemRitemR = AND

 2221 .. itemRitemR = AND … AND

 3231 .. −− = kk itemRitemR

 AND 2211 .. −− < kk itemRitemR .

P. Stanišić, S. Tomović

316

In the previous query large (k-1)-itemsets are
viewed as a relation with (k-1) attributes: item1, item2,
..., itemk–1 (attributes are items from large itemset). It
is similar to the large (k-2)-itemsets. Function
apriori_gen from the original Apriori algorithm from
[2] processes the upper query according to nested-
loop-join algorithm, which is the simplest and the
most inefficient join algorithm. For the join

21 −− × kk LL we suggest a modification of the sort-

merge-join algorithm (note that 1−kL and 2−kL are
sorted because of the way they are constructed and
lexicographic order of itemsets).

By the original sort-merge-join algorithm [22], it is
possible to compute natural joins and equi-joins. Let
r(R) and s(S) be the relations and SR ∩ denote their
common attributes. The algorithm keeps one pointer
on the current position in relation r(R) and another one
pointer on the current position in relation s(S). As the
algorithm proceeds, the pointers move through the
relations. It is supposed that the relations are sorted
according to joining attributes, so tuples with the same
values on the joining attributes are in consecutive
order. Thereby, each tuple needs to be read only once,
and, as a result, each relation is also read only once.
The nested-loop-join algorithm reads each tuple of
inner relation for each tuple of outer relation, so that
the number of considered tuple pairs is sr nn * , where

rn is the number of tuples in r(R) and sn is the
number of tuples in s(S).It is clear that sort-merge-join
algorithm is more efficient.

The modification of sort-merge-join algorithm we
suggest refers to the elimination of restrictions that
join must be natural or equi-join. First, we separated
the condition (1):

)3,...,2,1(−== kiyx ii (2)

and 21 −− < kk yx . (3)

Joining kkk CLL =× −− 21 is calculated according
to the condition (2), in other words we compute
natural join. For this, the described sort-merge-join
algorithm is used, and our modification is: before

},...,,{ 121 −= kxxxX and },..,,{ 221 −= kyyyY , for
which 1−∈ kLX and 2−∈ kLY and ,1i ix y= ≤

3i k≤ − is true, are merged, we check if condition (3)
is satisfied.

 The pseudocode of apriori_gen function comes
next.
 FUNCTION apriori_gen(21, −− kk LL)

 1. i = 1 //pointer for 1−kL

 2. j = 1 //pointer for 2−kL

 3. WHILE (().(). 21 CountLjCountLi kk −− ≤∧≤)

][11 iLiset k−=
 i++
 }{ 1isetSs =

 done = false

 WHILE (NOT done ∧ ().1 CountLi k−≤)

][1 11 iLiset k−=

 IF (21],[1][11 −≤≤= kwwisetwiset) THEN

 }1{ 1isetSS ss ∪=
 i++
 ELSE
 done = true
 END IF
 END WHILE
][22 jLiset k−=

 WHILE (().2 CountLj k−<= ∧

][][
2

1
1

2

1
2 wisetwiset

k

w

k

w

−

=

−

=
< ∪∪)

][22 jLiset k−=
 j++
 END WHILE
 WHILE (().2 CountLj k−<= ∧

][][21

2

1
wisetwiset

k

w
=∧

−

=

)

 FOR EACH s IN sS

 IF (]2[]1[21 −<− kisetkiset) THEN

 1 1{ [1],..., [2],c iset iset k= −

 1 2[1], [2]}iset k iset k− −

 IF)(ctelarge_subsins_notconta −
 //pruning according to
 //Apriori principle
)(celiminate
 ELSE
 }{cCC kk ∪=
 END IF
 END IF
 NEXT
 j++
][22 jLiset k−=
 END WHILE
 END WHILE
END FUNCTION

6. Support Counting

Support counting process means counting the
support for all candidates which are not eliminated in
the candidate generation phase. Those candidates
which have greater support than minsup parameter are
termed as large itemsets. They are used for candidate
generation in the next iteration, which we talked about
in Section 5.

Candidates from kC are stored in a hash tree [2].
Nodes in the hash tree can be either leaves or interior
nodes. The leaves contain a collection of candidate
itemsets. The interior nodes contain a hash table where
each row points to another node. The root of the hash
tree is on the level 1. The interior node on the level d
points to the node on the level d+1. When we add the
candidate kc in the hash tree, we start from the root
and go down the tree until we reach a leaf. In the
interior node on the level d we decide which branch to
follow applying a hash function to the dth item of the

Apriori Multiple Algorithm for Mining Association Rules

317

candidate kc . The hash tree for candidate k-itemsets
has k levels.

We need to scan whole database in order to cal-
culate supports of candidate itemsets. How can we use
the hash tree to determine which candidates are
contained in the transaction t? If we reach a leaf of the
hash tree, it will be enough to check which candidates
from the collection in that leaf are subsets of t and to
increment their supports. If we reach an interior node
by hashing to the ith item of the transaction t, then we

do hashing on the all items of t which follow ith and
recursively apply this procedure to the node from the
corresponding bucket. In this way, itemsets from the
transaction are compared only to the candidate
itemsets from the same bucket (not with all possible
ones).

We suggest the structural pattern Composite for
implementation of a candidate hash tree. In Figure 1
the class diagram for hash tree implementation is
shown.

Figure 1. Composite pattern for hash tree implementation

7. Experimental Results
7.1. Comparison with the Original Apriori

Algorithm

We implemented the original Apriori algorithm
from [2] to the best of our knowledge based on the
published reports. Also, run time used here means the
total execution time, i.e., the period between input and
output instead of CPU time measured in the experi-
ments in some literature. We used programming
language VB from Microsoft .NET framework. Expe-

riments are performed on a PC with a CPU Intel(R)
Core(TM)2 clock rate of 2.66GHz and with 2GB of
RAM.

In experiments dataset which can be found at
www.cs.uregina.ca is used. It contains 10000 binary
transactions. The average length of transactions is 8.

In the first experiment, we compared the methods
for candidate generation. Figure 2 shows that the me-
thod 21 −− × kk LL generates less number of candidates
than the method 11 −− × kk LL for the greater support.

Figure 2. Number of generated candidates

P. Stanišić, S. Tomović

318

In Figure 3, the results of comparing execution
times for procedures for candidate generation are
shown.

In Figure 4, the results of comparing the number of
I/O operations in Apriori Multiple and in the original

Apriori algorithm from [2] are shown. The parameter
multiple_num from Apriori Multiple algorithm is set
to 2. This experiment confirms the expectations that
Apriori Multiple requires less I/O operations.

Figure 3. Execution times for different candidate generation methods

Figure 4. Number of I/O operations for Apriori and Apriori Multiple algorithm

Figure 5. Dependence of execution time for Apriori Multiple algorithm on multiple_num parameter

Figure 6. Dependence of the number of generated candidates for Apriori Multiple algorithm on multiple_num parameter

Apriori Multiple Algorithm for Mining Association Rules

319

7.2. Comparison with Pattern-Growth Algorithms

Our Apriori Multiple algorithm is a candidate-
generation-and-test algorithm for mining frequent
itemsets from database of transactions. Recently,
much more papers have been written concerning
another approach: pattern-growth approach. We will
expose some limits of the pattern-growth approach
which does not exist in the candidate-and-test ap-
proach, and because of that we decided to concentrate
on improvements of classic candidate-generation-and-
test algorithm: the Apriori algorithm.

The first pattern-growth algorithm was proposed in
[17] and was called frequent-pattern growth or simply
FP-growth. FP-growth constructs main-memory-resi-
dent FP-tree structure to represent database and mines
large itemsets by traversing the constructed FP-tree.
Many FP-tree based algorithms have been proposed
during the last few years. These algorithms differ in
tree-based structures they use for database projection
into main memory. Some of proposed tree-based
structures are: CFP tree [18], COFI tree [12], T-tree [8,
9], P-tree [9, 10], PP-tree [4] etc., and they assume no
limitation on main memory capacity. These structures
differentiate slightly and all pattern-growth algorithms
have common limits.

FP-growth based algorithms work well for sparse
datasets, but if transactions contain many distinct
items it leads to large and bushy tree structure (reduc-
tion ratio is not high). Also, tree depth is maximal
number of large 1-items in transactions and for large
databases (in which we are most interested) this
number can be greater than 100, so with sufficiently
large datasets it will not be possible to construct the
tree within primary memory. However, results presen-
ted for pattern-growth algorithms demonstrate its ef-
fectiveness in cases when the tree is memory resident,
but the linkage between nodes of the tree makes it
difficult to effect a comparable implementation when
this is not the case. Apriori-based algorithm can mine
database of any size and they show linear scalability
with the number of transactions.

The performance of pattern-growth algorithms will
be affected if it is impossible to proceed entirely
within primary memory. Many partitioning strategies
have been proposed [3], [4], [5] and [8] to deal with
these cases. The main idea behind these approaches is
to subdivide database into segments and then separate-
ly process each segment. It means that algorithm
creates tree representation for each segment and stores
each tree in secondary memory. Then each pass of
algorithm requires each of previously created trees to
be read in turn from secondary memory as Apriori-
based algorithms do with transactions. Also, in some
cases it is not possible to compute the support for a set
by considering only the sub-tree in which it is located,
so procedures for traversing trees are very expensive
and complicated. These are especially expensive if the
depth of tree is large, because of the greater depth of

recursion required. Numerous experiments have
shown that 80% of CPU time was used for traversing
trees [14].

To sum up, pattern-growth algorithms require two
database scans with assumption that database can be
mapped into memory resident tree structure, while our
Apriori Multiple algorithm requires two database
scans and without limits on the database size.

8. Conclusion

In this paper the procedure of discovering associa-
tion rules in large transaction databases is exposed.
Each transaction contains a unique identifier and the
items bought in that transaction. Also, each transaction
is sorted in lexicographic order. The aim of association
analysis is to find association rules which satisfy the
minimal support and the minimal confidence thre-
sholds. This task is solved in two steps: discovering
large itemsets and generating rules from large item-
sets. The overall performance of mining association
rules is determined by the first step. For solving the
first step we suggested Apriori Multiple algorithm,
which is a modification of the well known Apriori
algorithm from [2]. Our Apriori Multiple algorithm
uses the new procedure for candidate generation. We
proved its correctness. It is more efficient than the
appropriate one from the original Apriori algorithm.
Also, our Apriori Multiple algorithm is able to finish
in just two iterations. These considerations are con-
firmed by experimental results which are part of this
paper.

We plan to extend this paper to:
• Apply concepts from association rule mining to

classification problems, especially signal/back-
ground classification in HEP (High Energy
Physics);

• In the previous considerations we ignored quan-
tity of items sold or the price paid to purchase
them, which can be really important for some
practical applications. Discovering such rules re-
quires additional modifications of the Apriori
Multiple algorithm and the Apriori algorithm
from [2];

• Mining multilevel association rules from trans-
action databases (these rules involve items at dif-
ferent levels of abstraction);

• Mining multidimensional association rules from
relational databases and data warehouses (these
rules involve more than one dimension or predi-
cate, e.g. rules relating what a customer shopper
buy as well as shopper’s occupation).

P. Stanišić, S. Tomović

320

References
 [1] R. Agrawal, T. Imielinski, A. Swami. Mining Asso-

ciation Rules between Sets of Items in Large Data-
bases. Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
Washington, DC, USA, 1993, 207-216.

 [2] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules. IBM Almaden Research Center,
San Jose CA 95120, 1994.

 [3] S. Ahmed, F. Coenen, P. Leng. Strategies for Parti-
tioning Data in Association Rule Mining. Coenen, F.
P., Preece, A., Macintosh, A. L. (Eds.), Research and
Development in Intelligent Systems XX, Springer,
London, 2003, 127-140.

 [4] S. Ahmed, F. Coenen, P. Leng. A Tree Partitioning
Method for Memory Management in Association Rule
Mining. Kambayashi, Y., Mohania, M.K., Woll, W.
(Eds.) Data Warehousing and Knowledge Discovery,
In Proc. DaWaK 2004 conference Lecture Notes in
Computer Science, 2004, Vol.3181, 331-340.

 [5] S. Ahmed, F. Coenen, P. Leng. Tree-based Partitio-
ning of Data for Association Rule Mining. Knowledge
and Information Systems, Vol.10, No.3, 2006, 315-
331.

 [6] S. Brin, R. Motwani, J.D. Ullman, S. Tsur. Dynamic
Itemset Counting and Implication Rules for Market
Basket data. Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data,
May 13-15, 1997, Tucson, AZ, USA, 1997, 255-264.

 [7] F. Coenen, G. Goulbourne, P.H. Leng. Computing
Association Rules Using Partial Totals. In de Raedt,
L., Siebes, A. (Eds.), Principles of Data Mining and
Knowledge Discovery, Proc PKDD, Spring Verlag
Lecture Notes in Computer Science, 2001, Vol.2168,
54-66.

 [8] F. Coenen, P. Leng, S. Ahmed. T-Trees, Vertical
Partitioning and Distributed Association Rule Mining.
Proceedings of the Third IEEE International Confe-
rence on Data Mining (ICDM-2003), 2003, 513-516.

 [9] F. Coenen, P. Leng, S. Ahmed. Data Structure for
Association Rule Mining. T-trees and P-trees. IEEE
Transactions on Knowledge and Data Engineering,
Vol.16, No.6, 2004, 774-778.

[10] F. Coenen, G. Goulbourne, P. Leng. Tree Structures
for Mining Association Rules. Data Mining and
Knowledge Discovery, Vol.8, No.1, 2004, 25-51.

[11] M.H. Dunham. Data Mining Introductory and Ad-
vanced Topics. Prentice Hall, New Jersey 2003.

[12] M. El-Hajj, O.R. Zaiane. Non-Recursive Generation
of Frequent K-itemsets from Frequent Pattern Tree
Representations. In: Kambayashi Y., Mohania M.K.,
Woll W. (Eds.) Data Warehousing and Knowledge
Discovery, Proceedings of the 5th International Con-
ference (DaWaK 2003), Lecture Notes in Computer
Science, Vol.2737, 2003, 371-380.

[13] G. Goulbourne, F. Coenen, P. Leng. Algorithms for
Computing Association Rules Using a Partial-Support
Tree. Knowledge-Based Systems, Vol.13, 2000, 141-
149.

[14] G. Grahne, J. Zhu. Efficiently Using Prefix-trees in
Mining Frequent Itemsets. Proc. of the IEEE ICDM
Workshop on Frequent Itemset Mining Implementa-
tions, 2003.

[15] J. Han, M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, San Fran-
cisco, 2001.

[16] J. Han, Y. Fu. Discovery of multiple-level association
rules from large databases. Proceedings of 21th Inter-
national Conference on Very Large Data Bases
(VLDB’95), September 11-15, 1995, Zurich, Switzer-
land, Morgan Kaufmann, 1995, 420-431.

[17] J. Han, J. Pei, Y. Yu. Mining Frequent Patterns with-
out Candidate Generation. Proceedings of the 2000
ACM SIGMOD International Conference on Manage-
ment of Data, Dalas, Texas, USA, 2000, 1-12.

[18] G. Liu, H. Lu, W. Lou, J. Yu. On Computing, Stor-
ing and Querying Frequent Patterns. .Proceedings of
the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August 24-
27, 2003, Washington, DC, USA, ACM, 2003, 607-
612.

[19] J. S. Park, M.-S. Chen, P.S. Yu. An Effective Hash-
Based Algorithm for Mining Association Rules.
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, CA,
USA, 1995, 175-186.

[20] G. Piatetsky-Shapiro, W.J. Frawley. Knowledge
Discovery in Databases. MIT Press, 1991.

[21] A. Savasere, E. Omiecinski, S. Navathe. An Effi-
cient Algorithm for Mining Association Rules in
Large Databases. Proceedings of 21th International
Conference on Very Large Data Bases (VLDB’95),
September 11-15, 1995, Zurich, Switzerland, Morgan
Kaufmann, 1995, 432-444.

[22] A. Silberschatz, H.F. Korth, S. Sudarshan. Database
System Concepts. Mc Graw Hill, New York, 2006.

[23] P. Tan, M. Steinbach, V. Kumar. Introduction to
Data Mining. Addison Wesley, Boston, 2006.

[24] H. Toivonen. Sampling Large Databases for Associa-
tion Rules. Proceedings of 22th International Confe-
rence on Very Large Data Bases (VLDB’96), Sep-
tember 3-6, 1996, Mumbai, India, Morgan Kaufmann,
1996, 134-145.

[25] M.J. Zaki, S. Parthasarathy, M. Ogihara, W. Li.
New algorithms for Fast Discovery of Association
Rules. Proceedings of the Third International Confe-
rence on Knowledge Discovery and Data Mining
(KDD-97), August 14-17, 1997, Newport Beach, USA,
AAAI Press, 1997, 283-286.

Received July 2008.

