
Apron: A Library of Numerical Abstract

Domains for Static Analysis�

Bertrand Jeannet1 and Antoine Miné2

1 INRIA Rhône-Alpes, Grenoble, France
Bertrand.Jeannet@inrialpes.fr

2 CNRS, École Normale Supérieure, Paris, France
mine@di.ens.fr

Abstract. This article describes Apron, a freely available library dedi-
cated to the static analysis of the numerical variables of programs by ab-
stract interpretation. Its goal is threefold: provide analysis implementers
with ready-to-use numerical abstractions under a unified API, encour-
age the research in numerical abstract domains by providing a platform
for integration and comparison, and provide teaching and demonstration
tools to disseminate knowledge on abstract interpretation.

1 Introduction

Static analysis aims at discovering, at compile-time, properties on all the possible
executions of a program, which is useful to, e.g., automatically prove the absence
of errors or optimize code. Numerical static analysis focuses on properties of
numerical program variables. Abstract Interpretation [9] is a general theory of
semantic approximation which allows constructing static analyses that are sound
by construction (i.e., always over-approximate the set of program behaviors). In
the past 30 years, many numerical abstract domains [6,7,10,12,13,17,20,21] have
been proposed, each defining a representation for a set of properties of interest
and algorithms to manipulate them. They vary in expressiveness and in the
cost/precision trade-off.

However, many abstract domains have no publicly available implementation
while others (e.g., early implementations of [10,20]) have diverging API which
makes reuse and experimental comparison difficult. Most are tied to application
domains, lacking operators to be useful in more general settings (e.g., [5] does
not support non-linear or floating-point expressions).

The Apron library aims at solving these problems and provides a uniform,
rich, and user-friendly API, which is given a precise concrete semantics that un-
derlying abstract domains are free to implement with safe approximations. It also
provides reference implementations for a growing number of numerical abstract
domains — including intervals, octagons [20], and polyhedra [10]. Static analyz-
ers for all kinds of semantics (including non-linear and floating-point arithmetic)
� This work is supported by the INRIA project-team Abstraction common to the

CNRS and the École Normale Supérieure, and the ANR project ASOPT.

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 661–667, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



662 B. Jeannet and A. Miné

can easily use Apron to perform their numerical abstractions. Apron also en-
courages the development of new domains by providing an abstraction toolbox
library. New domains can then be plugged into Apron-powered static analyzers
by changing a single line of code, as the API is essentially domain-independent.

The most closely related project is the Parma Polyhedra Library [5], which
shares several features with Apron in its very last version (0.10). Its concrete
semantics does not support however non-linear and floating-point expressions,
and it supports only one global environment for mapping variable names to
dimensions in vector spaces. However, the domains implemented in the PPL can
be interfaced to Apron and can hence benefit from its additional functionalities.

2 Architecture

The architecture of the library is sketched in Fig. 1. A client analysis would first
create a context manager object that specifies which abstract domain to use,
and then interface to the bottom right part of Fig. 1 by constructing domain-
independent operator argument objects and issuing calls to the library. Inter-
nally, the library will dispatch the call to the proper domain implementation (left
part), which can in turn use built-in generic abstraction and utility libraries (top
right part). Due to lack of space, it is not possible to present code samples in
this paper, but short examples can be found on the web-site [1].

Data-types. To communicate with domains, Apron provides various domain-
independent concrete data-types to represent scalars, intervals, linear expressions,
expression trees, tests, and generators, as well as associated utility functions —
constructors, destructors, conversions, etc. Intervals can appear in linear and non-
linear expressions, where they model a non-deterministic choice. By soundness, all
possible outcomes of non-deterministic assignments are taken into account, and

Underlying libraries & abstract domains

box

intervals

octagons

octagons

NewPolka

convex polyhedra

linear equalities

PPL + Wrapper

convex polyhedra

�
�
�

�
�
�

linear congruences

Abstraction toolbox

– scalar & interval arithmetic
– linearization of expressions
– fall-back implementations

Data-types

Coefficients
Expressions
Constraints
Generators
Abs. values

Semantics: A
γ→ ℘(Z

n × R
m)

dimensions and space dimensionality

Variables and Environments

Semantics: A
γ→ ℘(V → Z � R)

C API

OCaml binding C++ binding

Developer interface

User interface

Fig. 1. Architecture of the Apron library



Apron: A Library of Numerical Abstract Domains for Static Analysis 663

℘(Rn)

polynomial inequalities

linear inequalities [10]
(convex polyhedra)

octahedra [7] 2-vars inequalities [21]

octagons [20]

intervals

polynomial equalities

linear equalities [17]

linear congruences [13]

simple congruences [12]

Fig. 2. Some abstract domains for numerical variables,
partially ordered by their expressiveness

Program Annotated prog.

Front-end
(interproc)

Semantic Equations

Solver
(Fixpoint )

Abstract
Domain
(apron)

Fig. 3. Architecture of
the Interproc analyzer

a program state passes a non-deterministic test if it does for at least one of its
possible values. Non-determinism is useful to model program input but also to
abstract complex operators into simpler ones. Operators in expressions include
the four standard operations (+, −, ×, /), modulo, and square root. Each can
be tagged with a rounding target type (e.g., integer, or some IEEE floating-point
format [8]) and direction (towards 0, +∞, −∞, to nearest, or non-deterministic).
Constants can be provided as integers, rationals, or floats, using either machine
types or arbitrary precision types — using the GMP [2] and MPFR [3] libraries.

Abstract elements and operators. Abstract elements are completely opaque data-
types that ultimately represent sets of points in Z

n×R
m. In particular, floating-

point variables can be modeled using real-valued dimensions and expression trees
with explicit rounding tags. Standard operators include (linear and non-linear)
assignments, substitutions, and constraint additions, joins, meets, widenings,
projections, and various comparisons. Less common operators include n-ary
joins, parallel assignments (useful to analyze automata), folds and expands (use-
ful to analyze summarized arrays [11]).

An important rule is that the implementation is free to perform any sound
approximation. Not imposing precision guarantees allows us to require that all
domains support all operators for all data-types. Imprecision comes from the
well-known limited expressiveness of each domain (e.g., polyhedra cannot en-
code non-linear constraints nor disjunctions) but also from less obvious imple-
mentation details — e.g., internal use of inexact arithmetic, such as floats. Thus,
together with a sound result, domains may also return a flag telling whether the
result is exact, optimal (w.r.t. the domain expressiveness), or neither. Also, op-
erators have a generic cost-precision parameter that has a domain-specific but
documented effect — e.g., polyhedra may gain precision by using integer tight-
ening on integer variables, or lose precision by soundly rounding large constraint
coefficients to more memory-efficient ones.

Abstract domains. Fig. 2 presents a few abstract domain examples, organized
as a lattice showing their respective expressiveness. The boxed domains are



664 B. Jeannet and A. Miné

those currently available: intervals, octagons [20] (with either integer, rational or
float bounds, using machine representation, or GMP and MPFR arbitrary pre-
cision numbers), polyhedra [10] (using GMP integers and the double description
method), and linear equalities [17] (implemented as an abstraction of polyhe-
dra). Apron can also act as a middle-ware and make foreign libraries available
under its unified API. Linear congruences [13] and an alternate implementation
of polyhedra are optionally available through the PPL [5]. Finally, Apron sup-
ports a generic reduced product which is instantiated to combine polyhedra and
linear congruences. Fig. 2 also shows some of the domains we wish to add in the
future to provide either improved expressiveness (e.g., polynomial domains) or
additional cost/precision trade-offs (e.g., weakly relational domains).

Abstraction toolbox. Apron exposes a rich, high-level API to domain users that
can chose among a large set of abstract operators and various data-type argu-
ments. However, domain designers wish to implement a minimal set of low-level
entry-points. To ease the burden of developing new domains, Apron provides
several support libraries:
1. Apron provides an environment management package, so that the devel-

oper has only to manipulate dimensions in vector-spaces while the user can
¡manipulate named variables and environments — hence the two interfaces
on the bottom right part of Fig. 1.

2. Apron provides a complete arithmetic package for scalar and outward-
rounded intervals in a variety of types (integers, rationals, floats; machine
types, GMP, and MPFR numbers). Sound conversion functions are provided
so that the developer can choose the most convenient arithmetic type to
use internally and still handle all the API data-types available to the user
(e.g., polyhedra are implemented using integers but can handle floating-point
constants in expressions).

3. Apron provides linearization functions that domains can use to abstract
arbitrary expression trees into linear ones (with or without interval coeffi-
cients). In particular, they can handle integer and floating-point expressions
by abstracting away the non-linearity introduced by rounding, and output
linear expressions with R semantics [19]. Linearization is not compulsory and
developers may also access the raw expression trees provided by the user.

4. Apron provides a default implementation for many operators. For instance,
compound operators provided for the user convenience (such as n-ary joins
or parallel assignments) are implemented in terms of simpler ones (regular
joins and assignments). Domain designers are always free to implement those
operators if a specialized implementation would provide some efficiency gain.

Bindings. The core API is in C (27 KLOC) to ensure maximum interoperability,
but it is designed in an object-oriented way. Additionally, a C++ binding (lever-
aging the object-orientation aspect and adding intelligent constructors, destruc-
tors, and operator overloading for improved user-friendliness) and an OCaml
binding (providing stricter type-checking and fully automated memory manage-
ment) are provided. Other API bindings may be easily designed. As for the C



Apron: A Library of Numerical Abstract Domains for Static Analysis 665

API, these bindings are fully domain-independent and immediately benefit from
the addition of new abstract domains.

Finally, the library is fully thread-safe and several instances (with possibly
different domains) can be used concurrently through the use of context managers.

3 Applications

Distribution. The Apron library is freely available [1] and is released under
the LGPL license.1 Currently, we are aware of ten other research teams using
Apron. Two of them plan to contribute to its development.

The Interproc static analyzer. Interproc [15] fulfills three goals: provide a
library showcase, disseminate abstract interpretation techniques and help pro-
totype new domains [6] and analyses [18,4] — e.g., by encoding problems in the
input language. Its architecture is depicted in Fig. 3. Interproc acts both as a
front-end generating semantic equations from the input program, and as a driver
interpreting the equations in the chosen abstract domain and solving them with
the Fixpoint [14] equation solver.

Interproc takes as input programs written in a small imperative language
featuring numerical variables, loops, and recursive procedures. It performs either
forward analysis that infers invariants at each program point, or backward analy-
sis that infers necessary conditions to reach a given set of control points specified
by fail instructions, or a combination of both analyses. Procedures are handled
in a relational way using the formalisation of [16]. The output of Interproc is
a program annotated with invariants that can also be interpreted as procedure
summaries at the exit point of procedures. Any of the abstract domains provided
by Apron can be selected, as well as several options regarding iteration strate-
gies in fixpoint solving, thus allowing for easy experimentation and comparison.
Interproc is written in OCaml (2 KLOC, excluding the Fixpoint solver [14])
and released under the LGPL license. It has already been used in two research
papers [18,4].

4 Conclusion

The Apron library provides several numerical abstract domains under a unified
interface. It defines a precise concrete semantics for a quite complete set of oper-
ations — including non-linear and floating-point arithmetic — that domains are
free to approximate in a sound way, and that are suitable to build many kinds of
static analyses. Apron encourages the development and experimental compari-
son of new abstract domains by providing a toolbox enabling developers to focus
on the core algorithms of their domain while benefiting for free from powerful
features such as floating-point semantics. Thus, it conciliates two kinds of users
with conflicting requirements: analysis designers wishing for a rich, high-level,
1 However, optional dependencies [5] may be released under a more strict license.



666 B. Jeannet and A. Miné

and domain-independent API, and domain designers, wishing to implement a
minimal set of low-level entry-points. Its effectiveness is illustrated by the num-
ber of research teams using it and developing new domains. A sample analyzer,
Interproc, demonstrates its use.

In the future, we plan to integrate not only more numerical abstract domains,
but also to develop abstract domains combining numerical and finite-type (such
as boolean) variables, and extend Interproc accordingly.

References

1. The APRON abstract domain library, http://apron.cri.ensmp.fr/library/
2. GMP: The GNU multiple precision arithmetic library, http://gmplib.org/
3. The MPFR library, http://www.mpfr.org/
4. Amjad, H., Bornat, R.: Towards automatic stability analysis for rely-guarantee

proofs. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp.
14–28. Springer, Heidelberg (2009)

5. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. SCP 72(1-2), 3–21 (2008)

6. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Hei-
delberg (2008)

7. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: Giacobazzi, R.
(ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)

8. IEEE Computer Society. IEEE standard for binary floating-point arithmetic. Tech-
nical report, ANSI/IEEE Std. 745-1985 (1985)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM Press, New York (1977)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978, pp. 84–97. ACM Press, New York (1978)

11. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, S.: Numeric domains with summa-
rized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 512–529. Springer, Heidelberg (2004)

12. Granger, P.: Static analysis of arithmetical congruences. Int. Journal of Computer
Mathematics 30, 165–190 (1989)

13. Granger, P.: Static analysis of linear congruence equalities among variables of a
program. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493,
pp. 169–192. Springer, Heidelberg (1991)

14. Jeannet, B.: The Fixpoint solver, http://pop-art.inrialpes.fr/people/

bjeannet/bjeannet-forge/fixpoint/

15. Jeannet, B., et al.: The Interproc analyzer, http://pop-art.inrialpes.fr/

interproc/interprocweb.cgi

16. Jeannet, B., Serwe, W.: Abstracting call-stacks for interprocedural verification of
imperative programs. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST
2004. LNCS, vol. 3116, pp. 258–273. Springer, Heidelberg (2004)

17. Karr, M.: Affine relationships among variables of a program. Acta Informatica,
133–151 (1976)

http://apron.cri.ensmp.fr/library/
http://gmplib.org/
http://www.mpfr.org/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi


Apron: A Library of Numerical Abstract Domains for Static Analysis 667

18. Majumdar, R., Gupta, A., Rybalchenko, A.: An efficient invariant generator. In:
Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009.
Springer, Heidelberg (2001)

19. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004)

20. Miné, A.: The octagon abstract domain. HOSC 19(1), 31–100 (2006)
21. Simon, A., King, A., Howe, J.: Two variables per linear inequality as an abstract

domain. In: Leuschel, M.A. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89.
Springer, Heidelberg (2003)


	Apron: A Library of Numerical Abstract Domains for Static Analysis
	Introduction
	Architecture
	Applications
	Conclusion
	References


