
 Open access Proceedings Article DOI:10.1109/ARES.2007.43

AProSec: an Aspect for Programming Secure Web Applications — Source link

Gabriel Hermosillo, Roberto Gomez, Lionel Seinturier, Laurence Duchien

Institutions: Monterrey Institute of Technology and Higher Education,
French Institute for Research in Computer Science and Automation

Published on: 10 Apr 2007 - Availability, Reliability and Security

Topics: Web application security, AspectJ, Aspect-oriented programming, Cross-site scripting and
Software development

Related papers:

 How to develop secure applications with Aspect-Oriented Programming

 Improving security design patterns with aspect-oriented strategies

 Stronger Enforcement of Security Using AOP and Spring AOP

 The research and application of web-based system with Aspect-Oriented features

 AspectJ(tm): Aspect-Oriented Programming in Java

Share this paper:

View more about this paper here: https://typeset.io/papers/aprosec-an-aspect-for-programming-secure-web-applications-
4z8kdh6oeb

https://typeset.io/
https://www.doi.org/10.1109/ARES.2007.43
https://typeset.io/papers/aprosec-an-aspect-for-programming-secure-web-applications-4z8kdh6oeb
https://typeset.io/authors/gabriel-hermosillo-32ykutqeai
https://typeset.io/authors/roberto-gomez-2gvlduq6as
https://typeset.io/authors/lionel-seinturier-29td487u3i
https://typeset.io/authors/laurence-duchien-5f4bimo61s
https://typeset.io/institutions/monterrey-institute-of-technology-and-higher-education-1romwbr1
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/conferences/availability-reliability-and-security-13w412su
https://typeset.io/topics/web-application-security-9289rr7z
https://typeset.io/topics/aspectj-2zvtzymu
https://typeset.io/topics/aspect-oriented-programming-2s2r3j6k
https://typeset.io/topics/cross-site-scripting-1ivzukww
https://typeset.io/topics/software-development-1vxoqmyk
https://typeset.io/papers/how-to-develop-secure-applications-with-aspect-oriented-1hdk5tov3a
https://typeset.io/papers/improving-security-design-patterns-with-aspect-oriented-179c8ijru9
https://typeset.io/papers/stronger-enforcement-of-security-using-aop-and-spring-aop-2l8b7yj65c
https://typeset.io/papers/the-research-and-application-of-web-based-system-with-aspect-1acai06tbo
https://typeset.io/papers/aspectj-tm-aspect-oriented-programming-in-java-3ikdd538nr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/aprosec-an-aspect-for-programming-secure-web-applications-4z8kdh6oeb
https://twitter.com/intent/tweet?text=AProSec:%20an%20Aspect%20for%20Programming%20Secure%20Web%20Applications&url=https://typeset.io/papers/aprosec-an-aspect-for-programming-secure-web-applications-4z8kdh6oeb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/aprosec-an-aspect-for-programming-secure-web-applications-4z8kdh6oeb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/aprosec-an-aspect-for-programming-secure-web-applications-4z8kdh6oeb
https://typeset.io/papers/aprosec-an-aspect-for-programming-secure-web-applications-4z8kdh6oeb

HAL Id: inria-00155086
https://hal.inria.fr/inria-00155086

Submitted on 15 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AProSec: an Aspect for Programming Secure Web
Applications

Gabriel Hermosillo, Roberto Gomez, Lionel Seinturier, Laurence Duchien

To cite this version:
Gabriel Hermosillo, Roberto Gomez, Lionel Seinturier, Laurence Duchien. AProSec: an Aspect for
Programming Secure Web Applications. The International Dependability Conference (ARES), 2007,
Barcelona, Spain. pp.1026-1033. ฀inria-00155086฀

https://hal.inria.fr/inria-00155086
https://hal.archives-ouvertes.fr

AProSec: an Aspect for Programming Secure Web
Applications

Gabriel Hermosillo - Roberto Gomez-Cardenas
ITESM-CEM-Dpto. Ciencias Computacionales

Km. 3.5 Carretera Lago de Guadalupe
52926 Edo de Mexico, Mexico

+53 (55) 58.64.56.45

ghermosillo@itesm.mx,rogomez@itesm.mx

Lionel Seinturier - Laurence Duchien
LIFL – INRIA Jacquard Project

Cité Scientifique – Bât M3
F-59655 Villeneuve d’Ascq – France

+33 (0) 3 28 77 85 84

Lionel.Seinturier@lifl.fr, Laurence.Duchien@lifl.fr

ABSTRACT
Adding security functions in existing Web application servers is

now vital for the IS of companies and organizations. Writing

crosscutting functions in complex software should take advantage

of the modularity offered by new software development

approaches. With Aspect-Oriented Programming (AOP),

separating concerns when designing an application fosters reuse,

parameterization and maintenance. In this paper, we design a

security aspect called AProSec for detecting SQL injection and

Cross Scripting Site (XSS) that are common attacks in web

servers. We experiment this aspect with the AspectJ language and

the JBoss AOP framework. With this experimentation, we show

the advantage of runtime platforms such as JBoss AOP for

changing security policies at runtime. Finally, we describe related

work on security and AOP.

1. INTRODUCTION
Companies and organizations use Web servers to publish

information that concerns directly their users. However, other

institutions consult their operations through these same servers.

The ignorance of the developers concerning the vulnerabilities of

this kind of systems, highlights the weakness of these software.

OWASP's Top Ten listing references two common attacks on this

type of systems: Cross Site Scripting (XSS) and SQL injection

[1]. SQL injection is a technique where a would-be intruder

modifies an existing SQL request to post hidden data, to crush

important values, or to process dangerous orders for the database.

That is made when the application retrieves data sent by the

Internet users, and uses it directly to build a SQL request. Cross

Site Scripting (XSS) is an attack exploiting a weakness of a Web

site that fails to validate the parameters entered by the users. XSS

uses various techniques for injecting (and executing), scripts

written in languages such as JavaScript or VBScript. The goal of

these attacks is to keep cookies containing information identifying

users, or to mislead them later so that they provide these data to

the attacker.

Security techniques used by most web developers do not perform

very well. The approach Design for security defends the idea that

security should be taken into account during all the phases of the

development cycle and must influence deeply the design of the

application.

Aspect-Oriented Programming (AOP) is a good candidate for this

feature [2]. AOP has been proposed as a technique for improving

separation of concerns in software systems and for adding

crosscutting functionalities without changing the business part of

the software. AOP provides specific language mechanisms that

make possible to address concerns, such as security, in a modular

way. AOP languages and tools can be applied at compile-time or

at run-time. This way, the security issue in a software system can

be addressed

Our main objective is to design and implement a security aspect

called AProSec to deal with SQL Injection and XSS web attacks.

Our proposal is based on the aspect programming models offered

by AspectJ and JBoss AOP and defines the elements necessary for

the defense of a Web site against these attacks, not only by

validating and filtering the user info, but also by implementing a

SQL analyzer that can intercept and validate all the database

queries before they are processed. These elements will appear as

AspectJ [3] aspects woven at compile-time and, in a second

version, at run-time with the JBoss AOP [4] framework.

Our work is motivated by the need to fill the gap between an

integrated version of a web server with security functions and a

modular version with AOP techniques. This paper leads to the

definition of a model for addressing security issues in software

applications that could be re-used on several software systems

with few changes and be dynamically added at the runtime.

The rest of this paper is organized as follows. Section 2 presents

the motivation and principles of SQL Injection, XSS and AOP.

Section 3 provides the Web application architecture. Section 4

defines our AProSec Aspect, its integration with the web server

architecture and details the difference between two weaving with

AspectJ and JBoss AOP. Section 5 describes some related work.

Finally, Section 6 concludes and discusses some future work.

2. MOTIVATION AND PRINCIPLES

2.1 SQL injection and XSS

SQL injection
According to [1] a SQL injection attack consists in finding a

parameter that a web application sends to a database. The attacker

embeds malicious SQL commands into parameters in order to

trick the web application for forwarding a malicious query to the

database. As a result of this kind of attack, the database contents

can be corrupted, destroyed or disclosed.

Many techniques are used in SQL injection. The most popular are

tautology, union, additional declaration and comments. In order to

explain each technique, we will consider the case in which a web

application authenticates a user by executing the following query:

SELECT * FROM users WHERE name='alice' and
password = 'toto'
Tautology looks for a disjunction in the WHERE clause of a

select or update statement. In the previous example it can be made

by adding the statement 'a'='a', resulting in the following query:

SELECT * FROM users WHERE user='alice' and
password = 'toto' or 'a' = 'a'
The precedence operator causes the WHERE clause to be true for

every row, and all table rows will be returned.

The union clause allows grouping the result of two SQL queries.

The goal is to manipulate a SQL statement into returning rows

from another table. As an example we will assume that a database

containing the reports is available:

SELECT body, results FROM reports
When using this statement with our example, we will obtain the

following query:

SELECT body, results FROM reports
UNION
SELECT * FROM users
As result the query will display the reports list, but also the

database users in the application.

The additional statements technique attempts to add SQL

statements or commands to a SQL query. For example:

SELECT * FROM users WHERE name='alice' and
password = 'toto'
DELETE FROM users WHERE username = 'admin'.
When executing the previous query, the admin record would be

erased from the database.

We can also use comments. Most of the databases use the “--“ or

“#” characters for a comment indication. An attack can use the

comments to cut a SQL query and change the meaning of it. For

example the following SQL statement:

SELECT * FORM users WHERE name = 'alice' and
password = 'toto' can be transformed in the following way:
SELECT * FORM users WHERE name = 'admin' -- and
password = ''
The result will show all the information about the admin user in

the user’s database. All these attacks can be combined to form

more complex SQL queries.

XSS
The XSS cross site scripting is an attack oriented to the user’s

browser, in order to disclose the end user’s token, to attack the

local machine, or to spoof content to fool the user [1]. The

attacker uses a web application to send malicious code generally

in the form of a script to a particular user. The attack takes

advantage of web applications that do not validate the output

generated by a user’s input. The attack is known as XSS attack,

and not CSS attack, to avoid confusion with Cascading Style

Sheets.

As an example, consider a web application that gives the visiting

user the opportunity to send a comment through a guest book. A

malicious user can introduce the following characters “<! --“.

After some time, these characters are mixed with other users'

input, resulting in the following content in the guess book:

Very good web page, dude!
<!--
You’re da man, boss

When a user reads the guest book with a browser, it will read all

the contents and will interpret the character “<!--“ not as a user’s

opinion, but as a HMTL tag. As a result, the rest of the content in

the guest book is ignored by the users' browsers. We can imagine

the effects of the following statements in the guest book.

<script>
 for (q=0; q < 1000; q++)
 window.open(http://www.hot.example);
</script>
This is an example of a very simple XSS attack. An attacker can

introduce scripts that can take session cookies of a user and send

them to the attacker. With this information the attacker can use

the system as the original user.

2.2 AOP
The domain of aspect-oriented programming (AOP) [2][3]

appeared in 1996. It was pioneered by Gregor Kiczales and his

team, then at the Xerox Palo Alto Research Center. While original

and innovative, the domain of AOP inherits results from other

programming approaches such as reflection, open

implementations, meta-object protocols or generative

programming.

One of the experiences that motivated the definition of AOP was

the study of the Tomcat servlet engine. When studying the code

of Tomcat, Gregor Kiczales and his team discovered that, while

some functionality was cleanly modularized in classes, other,

such as user session management or logging, appeared in several

classes. This phenomenon is known as code scattering. When

developers want to fix a bug or to upgrade such functionalities,

they have to scan and modify several source files. While feasible,

this hinders productivity and is error-prone. In other cases, the

code scattered around several classes, was also redundant. The

consequence of this scattering is that a given method mixes

concerns related to different functionalities. This second

phenomenon is known as code tangling. Once again this hinders

the maintainability and understandability of applications.

When faced with these two phenomena, the question is whether

scattering and tangling are irreducible or is the result of a poor

design. In other words, could Tomcat be re-designed to prevent

scattering and tangling? While open, the answer to this question is

usually no. The idea is that a complex piece of software such as

Tomcat may be decomposed according to many criteria: the

decomposition may be data-driven, process-driven, driven by

various requirements such as security, integration with existing

information systems, or performance. It happens that one is

chosen by designers and that the other decompositions may not fit

in the scheme introduced by the first one, leading to

functionalities being scattered and tangled. The purpose of AOP is

then to provide a solution to solve these issues.

AOP, as a new programming paradigm, introduces notions such

as an aspect, a join point, a pointcut and an advice code.

However, these notions do not replace existing ones such as a

class, an object, a procedure or a method. Rather, AOP must be

seen as a complement to these existing techniques. Furthermore,

these notions are not specific to a programming style (e.g. object-

oriented or procedural) or a given syntax (Java, C#, Ada,

COBOL, etc.). Aspect-oriented extensions exist for many

languages, object-oriented or procedural. Furthermore, aspects

can be applied (the term used by the AOP community is woven)

at compile-time or at run-time. Experience has shown the

difficulty of writing crosscutting functions such as security [5].

3. Web application architecture

Figure 1: The architecture of our Web application server

Figure 1 shows the architecture of our Web Application Server

(WAS). The client sends a request to the Web Application Server.

This HTTP request is intercepted and validated by the AProSec

aspect. If needed, the WAS sends a request to the Database in

order to get a response for the client. This latter JDBC request is

also intercepted and validated by the AProSec aspect. If the

request is correct, it will be processed, otherwise it is rejected.

4. The AProSec Aspect
The AProSec aspect can be used by any AOP framework and is

composed of three parts. First, an advice (the added code) defines

the validation process. Second, the way AProSec validates the

requests depends on the options that the administrator selects on

the configuration file, as shown in Section 4.2. Finally, the

pointcut part (where the code is added) allows the weaving with

the WAS. How this weaving is made will be described in Section

4.3 and 4.4 for each implementation.

4.1 Advice
The advice part consists in two main validations:

1. HTTP requests parameters (intercepting javax.servlet.http.

HttpServletRequest.getParameter(String) call),

2. DB queries (intercepting java.sql.Statement.addBatch(String),

execute(String), executeQuery(String) and executeUpdate (String)

calls).

When implementing these validations, we consider several

syntaxes that should be validated: double and single quotes, SQL

Injection, and XSS. In the HTTP requests, we validate the

parameter value to avoid code injection and invalid HTML tags.

For DB queries, the validation is made by analyzing the query

string to prevent “always true” comparisons and comments.

When validating the HTTP requests, we prevent SQL Injection by

removing any single or double quotes sent by the user. As a

result, using the same example as before, for the user validation:

SELECT * FROM users WHERE user='alice' and
password = 'toto' or 'a' = 'a'

The attacker should have input alice as the user and toto' or

'a' = 'a as the password. AProSec would validate this and

change the password to toto\' or \'a\' = \'a taking the

whole string as the password and not as two operations.

SELECT * FROM users WHERE user='alice' and
password = 'toto\' or \'a\' = \'a'
As for the XSS, all the tags the user may input are transformed to

HTML code preventing the attacker from introducing any tags. If

the administrator wants to allow an HTML tag from the user,

these tags are transformed to safe tags (explained in Section 4.2).

Using the XSS example, in the input:

<script>
 for (q=0; q < 1000; q++)
 window.open(http://www.hot.example);
</script>
The <script> tag would be transformed into <script>

allowing the browser to print it as text an not interpret it as a

script. This includes other validations explained in this section.

4.2 The SQL Analyzer
Once the input got through the filter, if it is going to be used for a

database query, it will be validated again in the context of the

query. This helps to prevent unsafe queries to the database in case

any malicious input got through the previous filters.

In order to validate JDBC requests, AProSec checks that the

queries don't contain any comments or “always true” comparisons

by not allowing queries like:

'value' = 'value'
'value' != 'value2'
table1.field1 = table1.field1
login = 'admin' -- ' and password = ''

Doing this, the SQL Analyzer enforces the application's security

by not allowing unwanted code to be sent to the database and

executed.

4.3 Configuration of the AProSec aspect
Even though single and double quotes are part of the SQL

injection, the AProSec aspect manages them separately. We

define all the validations that can be done, but the administrators

can decide which ones to use by using the configuration file.

The configuration file is in XML format and is described in

Figure 2.

<?xml version="1.0"?>
<!DOCTYPE validator [
<!ELEMENT validator
(validateQuotes,validateApost,validateSQLInj,valid
ateXSS,validTag*)>
 <!ELEMENT validateQuotes (#PCDATA)>
 <!ELEMENT validateApost (#PCDATA)>
 <!ELEMENT validateBackslash (#PCDATA)>
 <!ELEMENT validateSQLInj (#PCDATA)>
 <!ELEMENT validateXSS (#PCDATA)>
 <!ELEMENT validTag (#PCDATA)>
]>

Figure 2: The configuration file

In order to define the validations to make, we define a set of

ELEMENT with the following meaning:

validator: This is the root element.

validateQuotes: To validate double quotes (“) from a

parameter. If this option is enabled, every time the applications

receives a form or URL parameter, it will convert the double

quote (“) to “backslash double quote” (\”).

validateApost: To validate single quotes (') from a

parameter. If this option is enabled, every time the application

receives a form or URL parameter, it will convert the single quote

(') to “backslash single quote” (\').

validateBackslash: To validate backslash (\) from a

parameter. If this option is enabled, every time the application

receives a form or URL parameter, it will convert the backslash

(\) to “double backslash” (\\).

validateSQLInj: To activate the SQL Analyzer and validate

database queries with certain rules. If this option is enabled, every

time the application issues a database call, the query is validated

to prevent unexpected queries to execute.

validateXSS: To validate user input for XSS attacks. If this

option is enabled, every time the application receives a form or

URL parameter, this parameter is validated and all the HTML

tags are transformed into safe tags.

validTag: To accept certain HTML tags. If this option is

enabled and the validateXSS option is enabled too, then for

every tag found in the parameter, this validation checks if it

should accept the tag and transform it to a safe tag. This tag must

be used for every HTML tag the administrator wants to accept.

A safe tag is the one that will not be printed as an HTML tag. For

example, if a parameter contains the tag “ LINK
”, the filter will transform it into “
LINK”, allowing the tag to be safely displayed. To

enable an option, the value “TRUE” (case insensitive) should be

used as the tag value. Any other value will disable the option. If

an element is not present, then the default values are taken. The

default values are all TRUE, without accepting any HTML tags.

Valid tags cannot contain an on* family element; if it does, it will

be removed. If we are accepting the <a> tag, the input: This is
a
link. Will be transformed as: This is a

link. Also, no parameter value can contain the words

“javascript”, “vbscript” nor “tcl”, to prevent attacks

like .

4.4 Weaving with AspectJ
AspectJ [3] is the most widely used language for aspect-oriented

programming. It defines an extension of the Java programming

language for dealing with aspects. The AspectJ compiler handles

Java source code or bytecode, weaves them with aspects, and

generates some bytecode that can then be executed with a

standard Java virtual machine.

Our first approach is made using AspectJ as the AOP framework,

Tomcat as the application server and MySQL as the database

manager. The code for intercepting the calls in AspectJ is

described in Figure 3.

pointcut dbWrite(String query): (call(*
java.sql.Statement.addBatch(String))
 || call(* java.sql.Statement.execute(String))
 || call(* java.sql.Statement.executeQuery
(String))
 || call(* java.sql.Statement.executeUpdate
(String)))
 && args(query);
pointcut getParameter(): call(String
javax.servlet.http.HttpServletRequest.getParameter
(String));
Object around(String query): dbWrite(query){
 Object ret = validator.Validator().validateQuery
(proceed());

 return ret;
}
String around(): getParameter(){
 return new validator.Validator().validate
(proceed());
}

Figure 3: The intercepting code with AspectJ

In AspectJ the aspect is defined using the extended java language

in a .aj file. By using the new expressions of the language we

declare our pointcuts specifying the calls to be intercepted. With

our pointcuts defined, we then call the validator to verify that the

parameter or query is not dangerous.

4.5 Weaving with JBoss AOP
JBoss AOP [4] is a framework for programming aspect-oriented

applications in Java. It can be used as a standalone framework or

embedded in the JBoss J2EE server. Web applications running on

this server can then take advantage of the aspect-oriented features

of the framework. JBoss AOP is an open-source project that can

be downloaded from http://www.jboss.org/products/aop

By using JBoss AOP, a vulnerable application can now be

protected at compile time or at runtime by applying the security

aspects. Both modes were tested. The main advantage of the load

time (or runtime) mode is that the application doesn't need any

manipulation before getting it in the WAS. Using the compile

time mode, we need to recompile the source files and then

package them before getting them to run in the WAS.

The JBoss code for intercepting the calls is described in Figure 4.

<aop>
 <bind pointcut="call(java.lang.String
$instanceof{javax.servlet.http.HttpServletRequest}
->getParameter*(java.lang.String))">
 <interceptor
class="interceptors.HTTPInterceptor"/>
 </bind>
 <bind pointcut="call(*
$instanceof{java.sql.Statement}-> addBatch*
(java.lang.String))">
 <interceptor class=
"interceptors.QueryInterceptorQuery"/>
 </bind>
 <bind pointcut="call(* $instanceof
{java.sql.Statement}-> execute*
(java.lang.String))">
 <interceptor
class="interceptors.QueryInterceptor"/>
 </bind>
 <bind pointcut="call(* $instanceof
{java.sql.Statement}-> executeQuery*
(java.lang.String))">
 <interceptor class=
"interceptors.QueryInterceptor"/>
 </bind>
 <bind pointcut="call(* $instanceof
{java.sql.Statement}-> executeUpdate*
(java.lang.String))">
 <interceptor class=
"interceptors.QueryInterceptor" />
 </bind>
</aop>

Figure 4: The intercepting code with JBoss AOP

When using JBoss AOP we define our aspect using a XML file.

Here we specify the call we want to intercept and the class we

want to call when intercepted. This class will then call the

validator to verify the parameters and queries.

4.6 Experimentation results
We developed a vulnerable online bookstore, to test the AProSec

aspect. First we tried all sorts of SQL Injection and XSS attacks to

see how the application behaved. Then we protected it with

AProSec using two approaches: AspectJ and JBoss AOP. After

using AProSec we attacked the application again, but were unable

to bypass the application's security.

For example, let assume than an attacker tries to input the

following query in order to obtain information as a system

administrator:

 select * from users where login=’admin’ - - and
‘pwd=’ ‘;

The query will not be processed by the database because it

contains a commentary inside it. The SQL analyzer will detect it

and will refuse to pass it to the database manager.

In another example the attacker will try to obtain information

using a query that contains a statement that is always true.

 select * from users where login='admin' and

pwd='' or 1=1;

The analyzer will detect that there is a statement that always is

true and will refuse to process it.

Both frameworks, AsoectJ and JBoss AOP, will help to reach our

goal, but since we prefer to keep the aspect working without the

need of the source code, the runtime weaving sounds as a better

option. This way, even if we don't have access to the source code

we can still improve our applications' security.

5. RELATED WORK

Security approaches for SQL injection and

XSS
The best way to be protected against SQL attacks is to inspect all

the data the user introduces to the application. Most of the work in

this area attempts to limit the way in which a pre-programmed

query will be used, allowing only the sentence that the

programmer wants to define.

In [6] the authors propose to use a parsing tree that represents the

parsed SQL query. Once the user introduces the required data, a

new parsing tree is generated and compared with the first one. An

SQL injection attack will produce a different tree.

The AMNESIA project [7] defines a model for detection of illegal

SQL queries, before they are executed by the DBMS. In the first

phase, the source code is analyzed in order to generate the model

that contains the valid SQL queries. In a second phase, a real time

monitor compares the SQL generated by the program with those

stored in the model.

SQL DOM technique, described in [8], is a set of classes that are

strongly-typed to a database schema. Instead of string

manipulation, these classes generate SQL statements. The

solution is based on an executable called sqldomgen, which

generates a dynamic link library (DLL) based on the structure of

the database. The DDL contains classes that will be used to

construct dynamic SQL statements without manipulating any

strings.

In [9] the authors propose a randomization of the instruction set.

They create an execution environment that is unique to the

running process. In order to achieve this, the original opcodes of

the computer server are transformed by a random key. If an

attacker tries to inject code and it does not know the key, the

machine will not execute this code, causing a runtime exception.

Another solution is the use of application IDS (Instruction

Detection System). This kind of IDS is oriented to supervise

specific applications, including SQL applications. The authors in

[10] propose to use a Network IDS in order to look for invalid

SQL statements in the network traffic.

The advantage of AProSec, in comparison with the other works, is

that it is based on AOP and it considers both, SQL Injection and

XSS in the same aspect. Also, when using JBoss AOP it provides

runtime weaving, allowing the administrator to incorporate

AProSec without recompiling the application. Once the

application is running with AProSec, any change in the

configuration file will be taken during runtime, without stopping

the application at any moment.

5.1 AOP and Security
The domains of aspects and security have already been the subject

of several works. Among the security related functionalities that

have been the topic of an aspect-oriented development, one can

find: access control [15] [16] [17], encryption [12] [14], the

adding of digital signatures [13], authorization [14] and

authentication [14]. Most of the implementations described in

these studies, such as [13] [14] [16], rely on AspectJ.

The work presented at [18] is closest to the objectives of our

project. The authors propose an aspect to detect cross-site

scripting. Their approach relies on sanitizing, i.e. replacing

special characters by quoted ones, the input data submitted by

users to web applications. The authors take the case of servlet-

based web applications. When data is submitted to a servlet, one

of the issues which are raised consists in determining whether it

comes from an end-user or whether it comes from another servlet

which delegates the request by mean of the transfer mechanism

provided by the servlet container. In the latter case, data is

supposed to be trustworthy as it simply originates from another

part of the application. In this case, the sanitizing can be skipped

in order to save computation time. To achieve this, the authors

propose to extend the syntax of the AspectJ pointcut language

with a new construct to detect data flows: the servlet input is

sanitized if and only if it is written back on the servlet output

stream. As far as we know, this data flow operator remains at the

level of a proposal and has not been implemented. Furthermore, it

remains to be seen in what circumstances this solution is more

efficient than a solution that would sanitize all input streams

regardless of their origin.

6. CONCLUSION
We have presented our approach for writing a security aspect in a

web application server. This aspect detects SQL injection and

XSS attacks in requests. As an advantage to usual solutions, this

aspect allows the interception of all database accesses and

validates them with its SQL Analyzer before dangerous

information is stored. Moreover, the AProSec aspect can be

parameterized. The administrator doesn't need to recompile the

code and can freely decide which validations to apply to each web

application. We have described our two experimentations, one

with AspectJ and another with JBoss AOP.

With our approach, an aspect allows a clear separation of the

security code and the WAS code. The initial code of the WAS

was not modified. By this way the aspect will be able to evolve

independently. We only have to program it once for all web

applications.

For further study, a first approach would be to add path traversal

attack detection. The path traversal of a file is an attack in which,

through request, the user provides information concerning the

access path of a file (e.g., "../../target_dir/target_file"). This kind

of attack tries to access files that shouldn’t be accessible. These

attacks can be sent in the form of a URL or of an entry such that it

can have access to a given file. Second, cryptography issues can

be added to applications in order to protect the disclosure of data

for unauthorized parts. AOP will also take care of the key

encryption management, and the encryption/decryption processes.

This will be transparent for the users and their e-mails will be

safe. Authentication can be added to, in order to accept any kind

of known applications, token, or biometric. Finally, we plan to

design and develop a more expressive pointcut language for

security by the definition of an Aspect Specific Language (ASL).

7. ACKNOWLEDGMENTS
This work is partially funded by the Franco-Mexican Laboratory

on Informatics (LaFMI) (http://lafmi.imag.fr/).

8. REFERENCES
[1] OWASP Top Ten Most Critical Web Application Security

Vulnerabilities, http://www.owasp.org

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J.-M. Loingtier, J. Irwin. Aspect-Oriented

Programming. Proceedings of the 11th European Conference

on Object-Oriented Programming (ECOOP'97). LNCS 1241.

pp 220-242. June 1997. Springer-Verlag.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

W. Griswold. Overview of AspectJ. Proceedings of the 15th

European Conference on Object-Oriented Programming

(ECOOP'01). LNCS 2072. pp 327-353. June 2001. Springer-

Verlag.

[4] M. Fleury, F. Reverbel. The JBoss Extensible Server.

Proceedings of the 4th ACM/IFIP/USENIX International

Conference on Distributed Systems Platforms and Open

Distributed Processing (Middleware'03). LNCS 2672. pp

344-373. June 2003. Springer-Verlag.

[5] J. Viega, J.T. Bloch and P. Chandri, Applying Aspect-

Oriented Programming to Security, Cutter IT Journal,

Volume 14, No. 2, pp. 31-39, 2001 10

[6] G. Buehrer, B. Weide, P. Sivilotti, Paolo, Using Parse Tree

Validation to Prevent SQL Injection Attacks, Proceedings of

the 5th international workshop on Software engineering and

middleware SEM '05, p. 106 – 113, September 2005.

[7] W. Halfond, A. Orso, AMNESIA: Analysis and Monitoring

for Neutralizing SQL – Injection Attacks. In Proceedings of

20th ACM International Conference on Automated Software

Engineering (ASE), Nov. 2005. 7, 2005, p. 174 – 183.

[8] R. McClure, I. Krüger, Sql Dom: Compile Time Checking of

Dynamic SQL Statements. Proceedings of the 27th

international conference on Software engineering. p. 88 – 96,

May 2005.

[9] Kc, Gaurav, A. Keromytis, V. Prevelakis, Countering Code-

Injection Attacks With Instruction-Set Randomization.

CCS’03, Proceedings of the 10th ACM conference on

Computer and communications security, p.272 – 280,

October 2003.

[10] K. Mookhey, N. Burghate, Detection of SQL Injection and

Cross-site Scripting Attacks. SecurityFocus. Marzo 17, 2004.

[11] Workshop for Application-level Security (AOSDSEC) @ the

3rd International Conference on Aspect-Oriented Software

Development (AOSD’04). March 2004. Lancaster, UK.

[12] G. Bostrom. Database Encryption as an Aspect. In 11.

[13] R. Laney, J. van der Linden, P. Thomas. Evolution of

Aspects for Legacy System Security Concerns. In 11.

[14] M. Huang, C. Wang, L. Zhang. Toward a Reusable and

Generic Security Aspect Library. In 11.

[15] T. Verhanneman, F. Piessens, B. De Win, W. Joosen. View

Connectors for the Integration of Domain Specific Access

Control. In 11.

[16] B. De Win, F. Sanen, E. Truyen, W. Joosen, M. Südholt.

Study of the Security Concern. Network of Excellence on

Aspect-Oriented Software Development. Milestone 9.1. July

2005.

[17] B. De Win, W. Joosen, F. Piessens. AOSD & Security: A

Practical Assessment. Workshop on Software Engineering

Properties of Languages for Aspect Technologies (SPLAT)

@ AOSD’03. pp 1-6. Boston, USA. March 2003.

[18] K. Kawauchi, H. Masuhara. Dataflow Pointcut for Integrity

Concerns. In 11.

