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ABSTRACT
The boundaries of the Uranian v, a, and b rings can be Ðtted by Keplerian ellipses. The pair of ellipses

that outline a given ring share a common line of apsides. Apse alignment is surprising because the quad-
rupole moment of Uranus induces di†erential precession. We propose that rigid precession is maintained
by a balance of forces due to ring self-gravity, planetary oblateness, and interparticle collisions. Col-
lisional impulses play an especially dramatic role near ring edges. Pressure-induced accelerations are
maximal near edges because there (1) velocity dispersions are enhanced by resonant satellite pertur-
bations and (2) the surface density declines steeply. Remarkably, collisional forces felt by material in the
last D100 m of a D10 km wide ring can increase equilibrium masses up to a factor of D100. New ring
surface densities are derived that accord with Voyager radio measurements. In contrast to previous
models, collisionally modiÐed self-gravity appears to allow for both negative and positive eccentricity
gradients ; why all narrow planetary rings exhibit positive eccentricity gradients remains an open ques-
tion.
Subject headings : celestial mechanics, stellar dynamics È planets and satellites : individual (Uranus) È

solar system: general

1. INTRODUCTION

Each narrow eccentric ring surrounding Uranus is composed of particles moving on nested elliptical orbits. The outer and
inner edges of a given ring deÐne ellipses having semimajor axes a ^ *a/2 and eccentricities e^ *e/2, where *a > a, *e> e,
and e> 1. Observed values of a, e, *a, and *e for the Uranian v, a, and b rings are listed in Table 1.

Remarkably, the set of ellipses describing an individual ring share a common line of apsides. Apse alignment is surprising
because the oblateness of Uranus causes orbits of particles with di†erent semimajor axes to precess di†erentially. Timescales
for di†erential precession in the absence of other forces are extremely short ; in the case of the Uranian v ring, the inner edge
would precess a full revolution relative to the outer edge in 175 years. Rigid precession of an eccentric planetary ring has
remained a problem in ring dynamics for over 20 years.

Goldreich & Tremaine (1979, hereafter GT) proposed that apse alignment is maintained by self-gravity. Their theory
predicts that the eccentricity gradient across the ring,

q
e
4 a

Le
La

, (1)

must be positive. A positive eccentricity gradient in an apse-aligned ring implies that the ring is narrowest at periapse and
widest at apoapse. Gravitational forces between particles are therefore greatest near periapse. Material in the inner half of the
ring pulls radially inward on the outer half at periapse, generating a di†erential precession which exactly cancels that due to
planetary oblateness.

Although the prediction that accords with observations of all known narrow eccentric rings, the standard self-q
e
[ 0

gravity (SSG) model predicts Uranian ring masses that are too low compared to those inferred from Voyager radio
occultations. Ring masses based on observations exceed predictions by factors of at least D3 (v ring) to D50 (a and b rings)
(Tyler et al. 1986 ; Gresh 1990 ; see also the reviews by Esposito et al. 1991 and French et al. 1991). Low surface densities are
particularly problematic for the a and b rings. With SSG surface densities, torques exerted by inner shepherd satellites would
be insufficiently strong to conÐne the a and b rings against drag from the distended exosphere of Uranus (Goldreich & Porco
1987, hereafter GP). In addition, as discussed by Graps et al. (1995), shapes of the v ring surface density proÐles as derived
from occultation light curves do not accord with SSG predictions.

This paper points the way toward resolving these problems. In ° 2 a theory of collisionally modiÐed self-gravity (CMSG) is
qualitatively described. A simple quantitative model is set forth in ° 3, in which new surface density proÐles are derived for the
v and a rings that are in better agreement with observations. In ° 4 implications of our solutions for torque balance, the role of
planetary oblateness, and the value of are discussed. Directions for future research are summarized in ° 5.q

e

2. QUALITATIVE SOLUTION

For simplicity, consider an apse-aligned eccentric ring having constant, positive across its width. The ring is Ðlled withq
espherical particles of internal mass density o and radius r, and the ring surface density is given by &. Let n and - be the mean

motion and apsidal angle, respectively, of a ring particle. Subscripts i and b denote quantities evaluated in the ring interior
and near the ring boundary, respectively. Variables subscripted with p or s are associated with the central planet or shepherd
satellite, respectively, and take their usual meanings. The dimensionless strength of the quadrupole moment of the planet is
given by Numerical estimates in this section are made using parameters appropriate for the v ring.J2.

1084



APSE ALIGNMENT 1085

TABLE 1

PARAMETERS OF ECCENTRIC URANIAN RINGSa

a *a e *e
Ring (km) (km) (]103) (]103)

v . . . . . . 51,149 58.1 7.936 0.711
a . . . . . . 44,718 7.15 0.761 0.076
b . . . . . . 45,661 8.15 0.442 0.066

a Values taken from Tables I and VII of French et
al. 1991.

A key ingredient missing in the SSG model is an accounting for interparticle collisions. Since ring optical depths q measured
normal to the orbital plane are typically of order unity, each particle collides, on average, a few times with its neighbors every
orbital period. Only modest collisional impulses per unit mass and time, of order 0.1 cm s~1 per orbit, are required to generate
di†erential precession rates comparable to those induced by planetary oblateness (GT). Velocity dispersions of order c

i
D 0.1

cm s~1 in the ring interior are not unreasonable : both the Keplerian shearing velocity across a particle diameter, D3nr, and
the escape velocity from the particle surface, Dr(8Go)1@2, are of that order for the meter-sized bodies that plausibly compose
the ring.

Although a single collision can impart an impulse of dynamically signiÐcant magnitude, multiple collisions experienced by
a particle in the ring interior leave its precession rate largely unaltered. A particle in the ring interior is struck by its inside
neighbors about as frequently and as forcefully as by its outside ones. Di†erential precession across the ring induced by
smooth internal pressure gradients occurs on timescales of order cm yr, much2n&nae/ o$P oD 2nnae*a/c

i
2D 106(0.1 s~1/c

i
)2

longer than misalignment timescales set by planetary oblateness (see GT). Here the height-integrated pressure isPD &c
i
2

taken to vary over a length scale *a.
Conditions are dramatically di†erent near ring edges. Pressure-induced accelerations are maximal there because (1) velocity

dispersions are enhanced by resonant satellite perturbations and (2) the surface density declines steeply (Borderies, Goldreich,
& Tremaine 1982). The velocity dispersion near the ring boundary could be as high as

c
b
D
S d

w
r
c
i
D 3

c
i

0.1 cm s~1 cm s~1 , (2)

where d D 103 km is the ring-satellite separation, and is the width of the annulus perturbed by the satellite. To order ofw
rmagnitude, the latter is given by km, the distance from the resonant edge at which nested periodicw

r
D a(M

s
/M

p
)1@2 D 1

orbits cross. Equation (2) is derived by equating the rate of energy dissipation by collisions in the perturbed zone,
to the rate of energy deposition by the satellite, where T is the satellite-inducedDn&aw

r
c
b
2 nq, D3nT d/2a D 9n&nac

i
2 d/2,

conÐning torque whose magnitude equals that of the viscous torque, in steady state.D3n&c
i
2 a2,

A particle on the ring edge experiences a radially directed, collisional acceleration

C D [$P
&

D ^c
b
2
j

rü D ^c
b
nrü , (3)

where the upper (lower) sign applies to the outer (inner) ring edge. Here is taken to vary over a radial length scale, j,PD &c
b
2

of the order of the local ring thickness, In a ring, collision rates are highest near periapse. At the periapsis of a ringc
b
/n. q

e
[ 0

boundary, the radial acceleration, C, generates a di†erential precession rate, relative to the precession*Sd-/dtT
C
B[C/nae,

rate at the ring midline. This collision-induced rate is greater than the local di†erential rate due to planetary oblateness,
by a substantial factor :*Sd-/dtT

O
,

*Sd-/dtT
C

*Sd-/dtT
O

D
<c

b
/ae

<(21*a/8a)J2 n(R
p
/a)2D 40

c
b

1 cm s~1 . (4)

Self-gravity maintains apse alignment against di†erential precession caused by planetary oblateness and interparticle
collisions. For self-gravity to enforce rigid precession near ring edges, surface densities there must be higher than those
predicted by SSG. At ring boundaries, self-gravitational attraction must balance the extra repulsive acceleration due to
collisions. To estimate the surface density near the edge, equate the collisional acceleration, to the gravitational&

b
, CD c

b
2/j,

acceleration from a wire of linear mass density located a distance j away :&
b
j

c
b
2/j D 2G&

b
. (5)

Take m to obtainj \ c
b
/n D 50

&
b
D

c
b
n

2G
D 103 c

b
1 cm s~1 g cm~2 , (6)

which is greater than corresponding SSG predictions by factors Equation (6) is equivalent to the condition thatZ40.
ToomreÏs Q be of order unity at the edge.
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FIG. 1.ÈSurface density proÐles at quadrature for rings v (top) and a (bottom) in CMSG solid line) vs. SSG dashed line) models. When the(c
b
D 0 ; (c

b
\ 0 ;

total CMSG ring mass, greatly exceeds the total SSG ring mass, it is found empirically thatMCMSG, MSSG, MCMSG P c
b
2/j1@2P c

b
3@2.

These end wires of mass constitute new boundary conditions not found in SSG. Gravitational forcesD 2na&
b
j \ nc

b
2 a/G

from massive end wires induce substantial di†erential precession in the ring interior. For self-gravity to maintain apse
alignment in the interior, surface densities there must also be greater than those predicted by SSG.

3. QUANTITATIVE MODEL

Divide the region occupied by an apse-aligned, constant ring into an even number N of equally spacedq
e
\ a *e/*a

intervals. The center of the jth interval contains an elliptical wire having mass semimajor axism
j
, a

j
\ a]

[ j[ (N ] 1)/2]*a/N, and eccentricity Denote by the precession rate of the jth wiree
j
\ e] [ j [ (N] 1)/2]*e/N. *

j
Sd-/dtT

relative to the precession rate of a test particle at the ring midline. Uniform precession requires

*
j

Td-
dt
U

\ *
j

ATd-
dt
U

O
]
Td-

dt
U

G
]
Td-

dt
U

C

B
\ 0 . (7)

Subscripts O, G, and C denote contributions from planetary oblateness, self-gravity, and interparticle collisions, respectively.
The Ðrst two terms on the right-hand side are given by

*
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O
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and

*
j
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U
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where

H(q
e
2) 4 1 [ J1 [ q

e
2

q
e
2J1 [ q

e
2

(see GT). For the following simplistic prescription is adopted :*
j
Sd-/dtT

C
,

*
j
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U
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\
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[[q
e
H(q

e
2)c

b
2/jnae](1[ y/j) if y 4 (N [ j ] 1/2)*a/N \ j ,

0 otherwise .
(10)
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Thus, is nonzero only within intervals da \ j from each edge ; there, its magnitude rises linearly from zero to*
j
Sd-/dtT

CAs a crude justiÐcation for this maximum value, approximate the collisional acceleration asq
e
H(q

e
2)c

b
2/jnae.

C B [ $P
&

B ^ c
b
2

j(1[ q
e

cos f )
rü , (11)

where the upper (lower) sign applies to the outer (inner) edge. Here the pressure gradient is taken to vary inversely as the
separation between streamlines. Insert C into GaussÏs perturbation equation for d-/dt and average over true anomaly :

Td-
dt
U

\ [ 1
nnae

P
0

n
C cos f df

\ <
q
e
H(q

e
2)c

b
2

jnae
. (12)

For the constant ring models presented here,q
e

j \ c
b
/n , (13)

so that the only remaining free parameter is Equation (13) is relaxed for °° 4.2.2 and 4.3.2.c
b
.

Note that this prescription for ignores the decrease in velocity dispersion from at the ring edge to in the*
j
Sd-/dtT

C
c
b

c
iring interior. The decline in velocity dispersion occurs over a length scale of order This length scale is large compared tow

r
.

so that the gradient of velocity dispersion does not give rise to a signiÐcant radial acceleration.c
b
/n
For a given value of equations (7), (8), (9), (10), and (13) comprise N equations in N unknowns Solutions for surfacec

b
, Mm

j
N.1

density proÐles at quadrature for various values of are displayed in Figure 1, for parameters appropriate to the v and ac
brings ; models for the b ring are nearly identical to those of the a ring. In CMSG models, higher surface densities near ring

edges are evident, as are higher total ring masses.

4. DISCUSSION

4.1. Surface Density ProÐles and Torque Balance
Simple CMSG models, while not fully realistic, demonstrate the existence of a new class of self-gravity solution, that

obtained by accounting for the modiÐcation of ring boundary conditions by interparticle collisions. Remarkably, forces felt by
material in the last D100 m of a D10 km wide ring can increase equilibrium masses by factors up to 100. The information that
ring edges necessarily possess large surface densities to balance local collisional stresses is propagated into the ring interior by
self-gravity.

Large S-band opacities measured by Voyager, which are incompatible with SSG surface densities (see, e.g., the review by
Esposito et al. 1991), can be reconciled with average CMSG surface densities of D75È100 g cm~2 for the v, a, and b rings.
Moreover, CMSG models predict that surface densities near ring edges are higher than those in the interior. This behavior is
reminiscent of the ““ double-dip ÏÏ structure seen in occultation light curves for the v and a rings (see, e.g., the review by French
et al. 1991).

Greater ring masses as implied by CMSG resolve problems associated with exospheric drag that were pointed out by GP
for rings a and b. For the remainder of this subsection, numerical estimates will be made for the a ring ; similar conclusions
hold for the b and v rings. Surface densities are scaled to a typical CMSG value in the ring interior of &\ 75 g cm~2. An inner
shepherd satellite exerts a repulsive, nonlinear torque at Ðrst-order Lindblad resonances of magnitude

T nlL B
10o

s
R

s
3&2n2a7

M
p
2 d

B 6 ] 1017
A &
75 g cm~2

B2A R
s

10 km
B3A o

s
1.5 g cm~3

BA500 km
d

B
ergs , (14)

where the satellite radius, is scaled to the Voyager upper limit of 10 km (Smith et al. 1986). The shepherding torque exceedsR
s
,

the magnitude of the drag torque exerted by the Uranian exosphere,

T
d
B [4nmH nH v

T
na3*a B [4 ] 1016

A nH
103 cm~3

B
ergs . (15)

Here cm~3 is the number density of hydrogen atoms of mass in the exosphere, and km s~1nH \ 7 ] 10~6e32.4Rp@a mH v
T

B 1
is their thermal speed normal to the orbital plane (Broadfoot et al. 1986). That ensures that the inner shepherdT nlL [ o T

d
o

prevents ring particles from spiraling in toward Uranus.
Estimates of viscous torques also require revision. For a ring undergoing Keplerian shear, with minimum kinematicT

vviscosity n(&/o)2, the viscous torque is given by

T
v
B

3nn2&3a2
o2 B 2.5] 1018

A &
75 g cm~2

B3A1.5 g cm~3
o

B2
ergs (16)

1 ReÑection symmetry about the ring midline reduces the number of equations necessary to N/2. Typically wires are needed to converge toN Z 2000
within 10% of the solution for N ] O.



1088 CHIANG & GOLDREICH Vol. 540

(GP). The fact that ensures that ring particles on the outer edge press against the inner Lindblad resonanceT
v
? o T

d
o

established by the outer shepherd.
Conclusions drawn from comparisons between and are on less sure footing. For the choice of scaling parameters, theT nlL T

vlatter exceeds the former, contrary to the requirement of the standard theory of shepherding that the torques be equal. This
might be construed as evidence that the angular momentum luminosity in the ring interior is reduced below by theT

vnon-Keplerian shear associated with a nonzero (Borderies et al. 1982 ; GP). However, the numerical estimates for the twoq
etorques di†er only by a factor of a few. The shepherding torque should be evaluated using surface densities near the edge,

which CMSG predicts are higher than those in the interior ; this would increase the estimate of Uncertainties in the choiceT nlL .
of parameters preclude drawing any conclusion other than that these torques are of the same order of magnitude.

4.2. Relative Importance of Planetary Oblateness
versus4.2.1. J2 \ 0 J2D 0

What does CMSG predict if Figure 2a displays the answer for the v ring, for and 3 cm s~1. In contrast toJ2\ 0? c
b
\ 2

SSG, a nonvanishing equilibrium surface density does not require a Ðnite planetary oblateness ; self-gravity can be balanced
entirely by collisional pressure gradients. For the a and b rings, solutions with and without are practically indistinguish-J2able for cm s~1. The inÑuence of on the equilibrium solution diminishes as *a decreases or as increases.c

b
º 0.5 J2 c

b
4.2.2. Empirical Scaling Relations for J2 \ 0

For and Ðxed ring geometry, the surface density at quadrature near a given edge scales asJ2\ 0

&
b
(0¹ o x o[ j) \ c

b
2

Gj
f ( o x o /j) , (17)

where o x o measures distance from the edge, and j are the same free parameters as in equation (10), and f is a dimensionlessc
bfunction of the similarity variable o x o /j. Well away from ring edges, the surface density at quadrature scales as

&
i
( o x o? j) \ c

b
2

GJj *a
g( o x o /*a) , (18)

where g is another dimensionless function. The total ring mass scales as

M D
c
b
2 a
G
A*a

j
B1@2

. (19)

FIG. 2.È(a) CMSG v ring models for which is reduced from its nominal value of 3.35] 10~3 (Elliot & Nicholson 1984 ; solid line) to zero (dotted line).J2As is increased from 2 cm s~1 (lower two curves) to 3 cm s~1 (upper two curves), the inÑuence of diminishes. For the a and b rings, CMSG models withc
b

J2and without are practically indistinguishable for cm s~1 (data not shown). (b) CMSG v ring models for which Contrary to SSGJ2 c
b
º 0.5 q

e
\^0.626.

models, a positive is not required to obtain an equilibrium solution.q
e
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4.3. Value of q
e

4.3.1. Sign of q
e

Figure 2b displays a CMSG model for the v ring obtained by reversing the sign of In contrast to SSG, a positiveq
e
.

eccentricity gradient is not necessary in CMSG to obtain an equilibrium solution. This resurrects the problem of why all
known eccentric planetary rings, including the Titan and Maxwell ringlets around Saturn, are narrowest at periapse and
widest at apoapse.

It is possible that equilibria obtained using are unstable. To address this issue, a preliminary investigation of ringq
e
\ 0

stability for an N \ 4 ringlet model has been undertaken. Forces due to pressure gradients are included only for the Ðrst and
fourth ringlets. Collisional accelerations are treated as if they arise from antiÈself-gravity forces (self-gravity with the sign of
the acceleration reversed) ; i.e., collisional shear stresses are ignored. In this crude approximation, equilibria are found to be
stable regardless of the sign of small deviations from equilibrium masses result in apsidal librations (Borderies, Goldreich,q

e
;

& Tremaine 1983). It remains to be seen whether collisional shear stresses alter stability properties.
Another possibility is that initial conditions set the sign of If the ring were initially uniform in width as a function ofq

e
.

azimuth, then planetary oblateness would determine the initial sense of di†erential precession within the ring. The resultant
narrowing of the ring width near a true anomaly of f \ [n/2 would cause a positive eccentricity gradient to grow by
self-gravity. Under this hypothesis, an N \ 2 ringlet model incorporating forces from self-gravity and planetary oblateness
yields the following time evolution for the apse and eccentricity di†erences between outer and inner ringlets :

d-\ [A sin )lib t , (20)

de\ Ae(1[ cos )lib t) , (21)

where A[ 0 and are the amplitude and frequency, respectively, of libration (cf. Borderies et al. 1983). Note that the time)libaverage of de is positive. Inelastic collisions would damp librations, and the ring would eventually settle into an equilibrium
for which q

e
[ 0.

4.3.2. Magnitude of near Ring Boundariesq
e

It has been assumed that the eccentricity gradient, is Ðnite out to the last meters of ring material. A Ðniteq
e
, j \ c

b
/n D 50

is necessary to generate a nonzero azimuthal average of the collisional acceleration (see eq. [12]). The simple quantitativeq
emodel of ° 3 employed the observed value of averaged over the entire ring width. The true value over the last few hundredq

emeters of ring material is unknown.
In the case of the best-studied v ring, Graps et al. (1995) combined Voyager photopolarimeter and radio occultation

measurements to infer the eccentricity gradient as a function of the semimajor axis. They found that decreases over the lastq
e

D5 km from its nearly constant value of D0.65 in the interior to D0.35 near the edge. The radial resolution of their study was
between 1 and 2 km.

A decrease in toward ring boundaries is theoretically plausible. Distortions in a circular ring can be described by theq
echange in separation, dr, between neighboring streamlines of the form

dr P cos m(/[ )pat t) , (22)

where is the pattern speed of the distortion and m is an integer. A constant ring that precesses rigidly in the quadrupole)pat q
eÐeld of the central planet is equivalent to a distorted circular ring for which m\ 1 and Resonant satellite)pat\ Sd-/dtT

Q
.

perturbations, which enhance velocity dispersions within a distance km of ring edges, are characterized by muchw
r
D 1

higher values of m\ 2a/3d ? 1 and Satellite-induced disturbances might therefore reduce the local value of A)pat \ )
s
. q

e
.

decrease in over a distance near ring boundaries is roughly equivalent to setting in equation (10). By the scalingq
e

w
r

j \ w
rrelations in equations (18) and (19), this would reduce surface densities and total ring masses shown in Figure 1 by a factor of

(w
r
n/c

b
)1@2 D 4.

5. DIRECTIONS FOR FUTURE RESEARCH

This work is primarily a demonstration that interparticle collisions near ring boundaries play a crucial role in determining
ring masses under the self-gravity hypothesis. Large collision-induced accelerations near ring edges engender locally large
surface densities. These massive ring edges furnish new boundary conditions for the old self-gravity hypothesis. The nature of
ring boundary conditions has not been calculated in rigorous detail ; instead a prescription motivated by order-of-magnitude
arguments is provided for collision-induced precession rates. Numerical simulations incorporating shepherd satellites will
help to determine the actual three-dimensional collisional stress tensor and eccentricity gradient everywhere within the ring.

Why all narrow eccentric rings surrounding Uranus and Saturn are narrowest at periapse and widest at apoapse remains to
be understood. Stability analyses incorporating collisional shear stresses may reveal that rings having are unstable.q

e
\ 0

Alternatively, the sign of may be set by initial conditions. Scenarios for ring formationÈe.g., the catastrophic disruption ofq
ea small moonÈrequire further elucidation.

Viscous damping gives rise to small di†erences between apsidal angles of neighboring streamlines (Borderies et al. 1983).
For a given apsidal shift of d-> 1, the di†erence between the azimuth of maximum streamline separation and the azimuth of
apoapse is given by the ““ pinch angle,ÏÏ The pinch angles calculated by Borderies et al. (1983) ford/\ arctan (e d-/de) ? du8 .
their N \ 2 streamline models of the Uranian and Saturnian ringlets are suspect, however, because they neglect the boundary
e†ects highlighted in the present work. A careful calculation of d/(a) that incorporates viscous drag and the global e†ects of
resonant forcing by shepherd satellites has yet to be performed. Upcoming observations of narrow Saturnian ringlets by the
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Cassini Orbiter might test the predictions of such a calculation, thereby furnishing a powerful diagnostic of stresses within
ringlets.
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