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APSE: Attention-aware Polarity Sensitive

Embedding for Emotion-based Image Retrieval
Xingxu Yao, Sicheng Zhao, Yu-Kun Lai, Dongyu She, Jie Liang, Jufeng Yang

Abstract—With the popularity of social media, an increasing
number of people get used to expressing their feelings and emo-
tions online using images and videos. An emotion-based image
retrieval (EBIR) system is useful for obtaining visual contents
with desired emotions from a massive repository. Existing EBIR
methods mainly focus on modeling the global characteristics of
visual content, without considering the crucial role of informative
regions of interest in conveying emotions. Further, they ignore
the hierarchical relationships between coarse polarities and fine
categories of emotions. In this paper, we design an attention-
aware polarity sensitive embedding (APSE) network to address
these issues. First, we develop a hierarchical attention mechanism
to automatically discover and model the informative regions of
interest. Specifically, both polarity- and emotion-specific attended
representations are aggregated for discriminative feature em-
bedding. Second, we propose a generated emotion-pair (GEP)
loss to simultaneously consider the inter- and intra-polarity
relationships of the emotion labels. Moreover, we adaptively
generate negative examples of different hard levels in the feature
space guided by the attention module to further improve the
performance of feature embedding. Extensive experiments on
four popular benchmark datasets demonstrate that the proposed
APSE method outperforms the state-of-the-art EBIR approaches
by a large margin.

I. INTRODUCTION

Images can vividly convey rich opinions and feelings of

people, especially those posted on social media such as

Instagram1 and Flickr2. In the past few years, visual emotion

analysis has attracted increasing attention in the fields of

both psychology [2], [3] and multimedia [4], [5]. The related

research findings can be applied in various domains, including

opinion mining [6], [7], [8], psychological health [9], [10],

business intelligence [11], [12], entertainment [13], [14], etc.

Emotion-based image retrieval (EBIR) aims to retrieve

images that evoke similar emotions to the query image.

Compared with content-based image retrieval (CBIR), EBIR

mainly concerns abstract emotional semantics and subjective

human perceptions, of which a so-called affective gap [15]
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Fig. 1. Illustration of retrieving affective images in the embedding space. The
two regions in the space represent binary sentiment polarities, i.e., positive
and negative. For the given query image in a green box, the images from the
same polarity but different category and from the opposite polarity are shown
in red and blue boxes, respectively.

exists between low-level image features and high-level abstract

emotions. For this significant yet challenging task, previous

studies [16], [17], [18] have made great efforts to design robust

EBIR systems. To bridge the gap, in earlier years, various

hand-crafted visual features are developed, inspired by the

theories of psychology and art [19], [20]. In [21], Zhao et al.

utilize multi-graph learning for EBIR based on the features of

different levels, including color, attributes, facial expressions,

etc. Recently, with the rapid development of deep learning,

Convolutional Neutral Network (CNN)-based methods begin

to emerge, in which the emotional features are mapped into

measurable space [22], [23]. Yang et al. [24] design a joint

CNN-based framework to simultaneously optimize the emo-

tion classification and retrieval tasks, leading to performance

improvements on both tasks.

However, two essential characteristics of image emotion are

ignored in the existing EBIR methods. First, some attractive

regions of an image play a decisive role in evoking emo-

tions [25]. As shown in Fig. 1, the emotions of different

samples are largely determined by the attended content of

the heat maps. For example, the two face-to-face lions in the

query image convey the contentment emotion due to their close

by faces. Second, there exist obvious hierarchical relations

among different emotions, as depicted by the embedding space

in Fig. 1. We can simply classify the emotion of images

based on the polarity, i.e., positive and negative, in the coarse

level. Furthermore, as defined in psychological theories [3],

[26], we are also able to recognize the emotions at a more
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Fig. 2. Illustration of the expected rank list. (a) Ranking list without
considering the hierarchy of emotions as traditional EBIR methods do. (b)
Ranking list of optimization objective in this paper.

concrete level, i.e., amusement, contentment, awe, excitement,

fear, anger, disgust, sadness. The first four categories belong

to the ‘positive’ polarity, while the last four categories belong

to ‘negative’ polarity. In this paper, we use the term ‘class’

to represent both polarity and emotion categories, where

‘category’ means the concrete emotions. When measuring the

emotional similarity, we need to consider not only the emotion

category but also polarity, because categories belonging to the

same polarity are more similar than those belonging to the

opposite polarity. Explicitly, our objective (as shown in Fig. 2)

is to rank the images in a gallery based on the relationship with

the query image in the following order: the same emotional

category, the same polarity but different emotion categories,

different polarity.

To consider the emotional characteristics mentioned above,

in the paper, we propose an attention-aware polarity sensitive

embedding (APSE) network for EBIR. An attention module

is used to attend to emotion-related regions. While concrete

emotion categories depend on high-level semantic information,

the polarity is relevant to low-level features like color, texture,

etc. [27], [28], [20]. Consequently, in the attention module,

we utilize polarity-specific attention in lower layers, while

emotion-specific attention is conducted in higher layers. Then,

the two types of attended features are integrated by cross-level

bilinear (CLB) pooling, which can facilitate the interaction

between the information of different levels. The polarity sen-

sitivity is not only reflected in our attention module, but also

taken into account in the embedding learning. In particular,

we propose to optimize a new generated emotion-pair (GEP)

loss, which is designed based on the N-pair loss [29], to learn

discriminative feature embedding. First, the samples in the

embedding space are separated into two parts based on their

polarities (negative and positive). This is mainly because the

primary goal of EBIR is to successfully retrieve the images

with the same polarity as the query. Second, the different

categories in the same polarity can also be well distinguished

in the objective function. In addition, the hardness of negative

examples is augmented by generating embedding with differ-

ent degrees based on the category probability in the attention

module. With the generated hard negative feature embedding,

not only convergence of the model can be accelerated, but also,

more importantly, the performance of embedding learning is

improved. During the end-to-end training process, the unified

framework simultaneously optimizes the GEP loss and atten-

tion loss to map raw images into emotional feature embeddings

used for EBIR.

Our contributions are highlighted as follows:

• We propose to consider multi-level attended local features

for emotion-based image retrieval (EBIR), based on the

psychology theories that low-level and high-level image

features are relevant to different levels of the emotion

hierarchy, respectively. To the best of our knowledge,

we are the first to integrate attended features at different

levels to capture emotional information.

• We develop an attention-aware polarity sensitive embed-

ding (APSE) network, which takes into account the inter-

and intra-polarity relationships of the emotion labels.

The proposed GEP loss connects the attention module

and feature embedding effectively during the training

process. Extensive experiments indicate that the proposed

architecture significantly outperforms the state-of-the-art

methods on four benchmark datasets.

The journal paper improves on our preliminary conference

version [1] in the following three aspects. (1) We develop a

method that adaptively generates harder negative examples

in the embedding learning process, which can learn more

discriminative features. (2) We provide more implementation

details and sufficient visualization results to showcase the

effectiveness of the proposed method , and provide more

insights regarding the key essence of an EBIR system. More-

over, we systematically discuss the failure cases and show

more experimental results, including the experiments in terms

of choosing feature combinations at different levels. (3) A

more comprehensive survey of related work is performed,

and the performance of the latest methods is supplemented

in comparison experiments.

The rest of the paper is organized as follows. Section II

summarizes the related work on image emotion analysis, visual

attention mechanism, and deep feature embedding. Section III

introduces the proposed hierarchical attention mechanism and

polarity sensitive embedding learning method. In Sections IV,

we perform both quantitative and qualitative experiments on

the popular benchmark datasets and analyze the results. And

finally, Section V concludes this paper.

II. RELATED WORK

In this section, we review closely related work in the past

decades, including image emotion analysis [30], [31], [32],

visual attention mechanism [33], [34], and feature embedding

learning [35], [36].

A. Image Emotion Analysis

In the domain of image emotion analysis, most of the studies

pay attention to dominant emotion classification [37], [38],

[39] and emotion distribution learning [24]. In the early years,

various hand-crafted features are introduced, inspired by the
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theories of art and psychology [19], [20]. The effectiveness of

low-level features [19], [28] such as color, texture, shape, etc.

and mid-level representations [40] such as attribute, principle-

of-the-art features, etc. are demonstrated when representing

emotion at that time. To better bridge the “affective gap”

between low-level representations and abstract emotion se-

mantics, Borth et al. [41] propose adjective-noun pairs (ANP)

like “beautiful flower” to describe an image. Besides, fa-

cial expressions [42] act as a very important element for

recognizing emotions, as demonstrated in [19]. Along with

the boom of deep learning methods, an increasing number

of researchers [23], [43] utilize images to train CNNs for

specific image emotion analysis tasks. With the supervision of

the emotion labels, the learned features can well capture the

characteristic representation for each category [44]. Moreover,

considering that producing emotion is relevant to various

visual stimuli from low-level to high-level, some studies [30],

[45] extract features from multiple layers to obtain more

comprehensive information. Further, Zhu et al. [46], [47]

explore the dependency between features of different levels by

employing the bi-directional gated recurrent unit (Bi-GRU).

Although it is meaningful for the affective computing

community and has many applications, EBIR draws less

attention compared with emotion recognition. In 2014, Zhao et

al. [21] retrieve emotional images by employing multi-graph

learning, where each graph contains one type of hand-crafted

features. Inspired by the deep Bolzmann machine (DBM),

Pang et al. [48] develop a density model to learn the joint

representation coupled with emotions and semantics, which

can be used for emotion-oriented cross-modal retrieval. With

the emerging of CNN, a unified multi-task framework [24]

is designed to simultaneously learn retrieval and classification

tasks. Existing EBIR methods fail to fully employ important

cues like information of multiple levels or hierarchy of emo-

tional labels. In this paper, we develop a polarity sensitive

embedding method based on multi-level attended features for

EBIR.

B. Visual Attention Mechanism

Imitating human attention, we expect a network can weight

features by the degree of their importance for a task, and

further obtain more discriminative features. The effectiveness

of attention mechanism has been demonstrated in various

visual tasks, including image captioning [49], [50], person re-

identification [51], object detection [52], etc. In [53], a residual

attention network is proposed by incorporating soft attention

into the state-of-the-art CNN architecture. Self-attention [54]

is to compute the response of one position through attending

all positions. In computer vision, the attention is able to

capture the dependency of different regions in the same image.

As the extension of self-attention in visual tasks, non-local

networks [55] can capture the long-range dependency by

calculating the interactions between two frames of a video

or two regions of an image.

Based on the theories of psychology [56], [57], emotional

contents, including smiling faces, cute babies, beautiful flow-

ers, etc., always catch more attention of humans. Unlike

the traditional object classification and detection tasks, in

which the object regions are explicit and well-defined, the

emotions are ambiguous and may contain foreground and

background [58], [59]. In the early years, prior methods [30],

[60] detect emotional attention regions from a large number

of candidate bounding boxes by computing both objectiveness

score and emotion score. It is obvious that these methods

consume excessive amounts of time and computing resources.

In [59], Fan et al. perform human fixation based on expensive

eye-tracking data, and then evaluate the relationship between

image sentiment and visual stimuli. Yang et al. [58] propose

to directly generate soft attention maps with the single shot

by weighting feature responses on various emotion categories.

Differently, in this paper, we take into account the repre-

sentations from multiple layers and develop a hierarchical

attention mechanism for learning discriminative features in the

embedding space. That is, both polarity-specific features from

lower layers and emotion-specific features from higher layers

are combined together in our framework.

C. Feature Embedding Learning

In the past years, various metric learning methods [61], [36]

have been proposed to learn feature embedding in a separate

space, and they have a wide range of applications in the

domain of computer vision [62], [63]. The most representative

metric learning loss functions are contrastive loss [64] and

triplet loss [65], which motivate a variety of novel methods

later. The contrastive loss aims to minimize the distance

between samples of the same class and push away the samples

of different classes with a fixed margin. The triplet samples

include the anchor, positive, and negative examples. The

triplet loss encourages that the distance between the anchor

and the negative is larger than that between the anchor and

the positive by at least a specified margin. As an extension

of the contrastive loss, a lifted embedding structure [66] is

proposed to compute the loss based on the matrix consisting

of pairwise distances of the mini-batch. Beyond the triplets,

Chen et al. [62] introduce the negative pairs w.r.t. different

probe samples. Besides, to generalize the application of metric

learning on continuous labels, Kim et al. [61] propose a log-

ratio loss to learn feature embedding based on the distance

between labels. The method can be well applied to the task

in which the labels are continuous, such as human pose

estimation, considering a novel relation of samples.

In metric learning, the sampling strategy may affect the

training process. Therefore, some studies aim to design ef-

fective sampling strategies to accelerate the convergence and

obtain better performance. To select the informative triplets

that violate the constraints, an online negative sample mining

strategy is proposed in [65], including the hardest negative

mining and semi-hard negative mining. Besides, Duan et

al. [67] generate hard negatives by deep adversarial learning to

train a more discriminative model. Considering that the prior

mining methods cannot well characterize the global geometry

of embedding space, hardness-aware metric learning [68] is

proposed to adaptively generate samples with different hard

levels based on the training status. Motivated by the obser-

vation that there is an obvious hierarchy in emotion labels,
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Fig. 3. Pipeline of the proposed approach. The attended features outputted from attention modules (Att.1 and Att.2) of different levels are integrated by
cross-level bilinear (CLB). After compaction and ℓ2-Normalization (ℓ2-N), the combined representations are inputted into embedding space for metric learning.
In the generated emotion-pair (GEP) loss, we employ similar emotion categories in the FI dataset [26] with the number of categories N = 8. Here, four
categories are positive and the other four are negative. The detailed process of generating attention maps is presented in Fig. 4. Att.1 and Att.2 represent

polarity-specific attention and emotion-specific attention, respectively. fi and f+

i
represent the features of anchor point and positive example from the ith

category, respectively. f i−
j

means the generated negative embedding of the jth category for the anchor from the ith category.

i.e., from coarse polarity to concrete emotions, we design

a polarity-sensitive GEP loss for optimizing our framework.

The most similar work to ours is [35], which constructs a

hierarchical structure based on the triplet loss. Unlike this

method that needs to use a special sampling strategy, our

method can directly take full advantage of all the samples

within a mini-batch, avoiding the redundant computations.

III. METHODOLOGY

We design a novel network, named attention-aware positive

embedding (ASPE) network, to learn feature embedding for

emotional images. The framework contains two main closely

related components, as shown in Fig. 3. One is the hierarchical

attention module that integrates polarity- and emotion-specific

attended features extracted from multiple layers (Sec. III-A);

the other is the embedding module that learns polarity-

sensitive feature embedding by optimizing generated emotion-

pair (GEP) loss guided by the attention module (Sec. III-B).

A. Hierarchical Attention Mechanism

We introduce a simple yet effective attention module, which

detects informative regions for different hierarchies of emotion

labels in both higher and lower layers. As shown in Fig. 4, the

detection process contains two components, i.e., the attention

head and output head. The attention head is to compute the

feature activations for each polarity or emotion after spatial

attention and channel-wise dimension reduction. The output

head is to generate the final attention map by computing the

weighted sum of the feature maps of all classes. Note that the

attention module can be applied in multiple layers.

Suppose that we conduct attention in the lth layer for

instance. Its feature maps F l ∈ R
h×w×c from the lth con-

volutional layer will be fed into the attention head, and then

Kl attention maps derived from F l are outputted. h, w and

c represent the height and width of the feature maps, and

the number of channels, respectively, while Kl denotes the

number of labels in the lth layer. In the lower layers that are su-

pervised by binary sentiments polarities, the value of K is set

to 2, while we set K = 8 in higher layers, representing eight

specific emotion categories as defined in Mikel’s wheel [3].

In the spatial attention, we intend to consider the emotion-

related regions rather than treating each region equally. Thus,

we aggregate the received feature activation tensor channel-

wisely and then feed the derived 2-D aggregated maps into a

softmax layer. We formulate the process as:

Zl = Softmax(

c
∑

i=1

F l
i ), (1)

where Zl is the outputted spatial weights and F l
i is the feature

map of the ith channel.

Then, we conduct spatial attention on feature maps to com-

pute the spatially-attended feature maps, i.e., F̂ l = F l ⊙ Zl,

where ⊙ means Hadamard Product by repeating Zl for each

channel of F l. After generating F̂ l, a 1 × 1 conv. layer is

employed to reduce the channel-wise dimension from c to

Kl, resulting in Sl ∈ R
h×w×Kl

. In Sl, each 2-dimensional

feature map represents a sentiment polarity or specific emotion

category, which depends on the value of l. Then, Sl is fed into

a global average pooling (GAP) layer and a softmax layer

successively, acquiring a confidence score c
l, in which each

element that represents global information for each feature

map ranges from 0 to 1 and the sum of them is 1.

In the output head of the lth level, the 2-dimensional class-

wise feature maps Sl and the derived confidence score vector

c
l for different classes are inputted. Note that each element

clj in the confidence vector usually well represents the degree
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that the jth label describes the instance. To comprehensively

consider the responses for different classes when computing

the final attention weights, we add all the class-wise feature

maps weighted by corresponding scores. Therefore, the spe-

cific process of generating attention map U can be formalized

as follows (with the layer-wise subscript l omitted without

ambiguities):

U = norm(

K
∑

j=1

cjSj), (2)

where norm represents the normalization on the 2-

dimensional attention map and Sj denotes the feature acti-

vations for the jth label. Then, to obtain the final attended

features Fa, we apply the attention weights U on the feature

maps F̂ derived from the attention head: Fa = F̂ ⊙U , where

⊙ denotes element-wise multiplication by broadcasting. In

practice, we train our network by conducting constraints using

the labels of different hierarchies in different layers. Therefore,

the attention loss in different layers can be represented in the

following unified formula:

Latt = −
1

M

M
∑

m=1

K
∑

j=1

1[zm = j] log cj , (3)

where 1[t] = 1 if the condition t is true, and 0 otherwise. M

represents the total number of input images, and zm is the

corresponding label ID for the mth input image. Particularity,

we simultaneously employ the loss function on both lower and

higher layers, resulting in attention weights for two polarities

and eight emotion categories.

Since the attended features from different layers focus on

different aspects [45], [46], we intend to effectively integrate

these various sources of information for a more discrimina-

tive representation. Therefore, we use the CLB operation to

model the interactions between polarity- and emotion-specific

attended features and obtain higher-order information. Before

this, the attended features from the lower layers will be

downsampled to match the size of those from higher layers.

B. Polarity Sensitive Embedding Learning

In this section, to take into account the hierarchy among

emotion label space, we first introduce the polarity sensitive

emotion-pair (EP) loss based on the N-pair loss. Moreover,

to enhance the robustness of the trained model, we further

generate negative examples for each anchor-positive pair based

on their original negative examples. The generation strategy

can be adjusted by the confidence scores from the attention

module.

1) Review on N-pair loss: The N-pair loss [29] is proposed

based on (N+1)-tuplet
{

x, x+, x−
1 , · · · , x

−
N−1

}

, including an

anchor x, a positive example x+, and N−1 negative examples.

Its aim is to identify a positive example for an anchor from

all the negative examples. To fully exploit training data, N

pairs of convolution features constructed from N different

categories are formulated as
{

(f1, f
+
1 ), · · · , (fN , f+

N )
}

. Note

that fi and f+
i represent the feature embeddings of anchor

point xi and positive example x+
i , respectively, both from the

1
×

1
 co

n
v

GAP

S
o

ftm
ax

Attention head
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Fig. 4. Overview of our attention map generation. The class-aware activation
and corresponding confidence score are derived in the attention head. In the
output head, the resulting attention map is obtained by weighting individual
activation maps. In the lower layers, the attention module generates a polarity-
specific attention map, whereas an emotion-specific attention map is generated
in higher layers.

ith category. In the feature space, f+
i serves as a negative

example for the anchor from the jth category, where i 6= j.

Discarding the subscript of f for simplicity, the similarity

between f and f+ has a positive correlation with the value

of their dot product f⊤f+. Therefore, the formula of N-pair

loss is given as:

Lnp =
1

N

N
∑

i=1

log(1 +
∑

j 6=i

exp(f⊤
i f+

j − f⊤
i f+

i )). (4)

With this penalty strategy, N − 1 negative examples are

simultaneously pushed away from the anchor.

2) EP loss: Although the N-pair loss has demonstrated its

effectiveness in various tasks, it is insufficient to learn the

feature embeddings for emotional images well due to the

negligence of sentiment polarity, i.e., positive and negative.

Intuitively, examples from the same polarity as the query

should be closer to it than those from the opposite polarity

in the embedding space. To achieve this goal, we propose an

inter-polarity loss to effectively separate the two polarities.

Specifically, in an N -tuple, we regard the examples from the

opposite polarity as a group and compute the mean similarity

of them to enlarge the distance with negative examples in the

same polarity. Here, negative examples mean the images of

different categories with the anchor. Note that the positive

examples (images from the same category with the anchor)

will not contribute to the optimization of this loss function. It is

mainly because the positive example can dramatically reduce

the mean value of the distance between anchor and examples in

the same polarity, resulting in insufficient training on negative

examples of the same polarity. Therefore, we formalize the

inter-polarity loss as follows:

Linter =
1

N

N
∑

i=1

log(1 + exp(
1

NQi

∑

j∈Qi

f⊤
i f+

j

−
1

NPi

∑

j∈Pi,j 6=i

f⊤
i f+

j )),

(5)
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where Pi and Qi represent the sets of emotion categories in the

same and opposite polarities to the anchor of the ith category,

respectively. NPi
and NQi

are the numbers of corresponding

categories.

With the inter-polarity loss, we are able to largely avoid

the dramatic failure cases that many examples of the opposite

polarity rank at the top of returned list, which may lead to

unpleasant experience for users. Further, it is more challenging

to distinguish the positive examples from negative examples

in the same polarity. Therefore, to learn more discriminative

feature embeddings, we develop a intra-polarity loss that can

differentiate similar categories within the same polarity as

follows:

Lintra =
1

N

N
∑

i=1

log(1 +
∑

j∈Pi,j 6=i

exp(f⊤
i f+

j − f⊤
i f+

i )).

(6)

Then, we combine inter-polarity loss and intra-polarity loss,

resulting in the EP loss:

Lep = Linter + Lintra. (7)

With the combined loss function, we can realize our aim that

modulates the position of feature embeddings in the separable

space according to the hierarchical emotional similarity.

3) Generating negative feature embeddings: In the learning

process, many tuples will be constructed for training. In fact,

a majority of them may fail to contribute to the update

of parameters, because they lack sufficient information and

produce the gradients that approach 0. Besides, the images in

the same category always have the large diversity in emotion

intensity, so the uniform penalty strategy may be insufficient to

optimize negative examples of various hard levels. Therefore,

inspired by [68], we propose to manipulate the hard level of the

training tuples adaptively by generating new negative examples

based on the learning status.

Given the embedding fi of an anchor, f+
i and f+

j (i 6= j)
are used to represent the feature embeddings of corresponding

positive and negative examples, respectively. Based on the

existing negative example f+
j for fi, we can utilize the linear

interpolation to adjust the hardness of training data:

f i−
j = fi + λ0(f

+
j − fi), λ0 ∈ [0, 1], (8)

where f i−
j denotes the generated embedding from the jth

category for the anchor from the ith category. However, to

avoid generated examples that are too close to the anchor

and leading to noisy data, we set the minimum value for λ0

to
d(fi,f

+

i
)

d(fi,f
+

j
)
. Therefore, the range of λ0 is [

d(fi,f
+

i
)

d(fi,f
+

j
)
, 1], where

d(fi, f
+
i ) means the distance between the anchor and positive

example (‖fi − f+
i ‖2) and d(fi, f

+
j ) means the distance

between the anchor and negative example (‖fi − f+
j ‖2). In

order to achieve the target, we introduce a variable β ∈ [0, 1]
and set:

λ0 =

{

β + (1− β)
d(fi,f

+

i
)

d(fi,f
+

j
)
, if d(fi, f

+
j ) > d(fi, f

+
i )

1, if d(fi, f
+
j ) ≤ d(fi, f

+
i ).

(9)

At the condition of d(fi, f
+
j ) > d(fi, f

+
i ), the generated

negative example can be expressed as:

f̃−
ij = fi + [βd(fi, f

+
j ) + (1− β)d(fi, f

+
i )]

f+
j − fi

d(fi, f
+
j )

. (10)

To assign proper value to β adaptively, we consider the hard

level of separating corresponding anchor-negative pair. Given

an anchor xi from the ith category and one of its negative

samples x−
j from the jth category, we use cxi

j to represent

the confidence score of xi of the ith category w.r.t. the jth

emotional category, while c
x
−

j

i denotes the confidence score

of x−
j of the jth category w.r.t. the jth emotional category. In

the attention module, a higher confidence cxi

j or c
x
−

j

i denotes

that the pair is harder to separate. Consequently, we aim to

assign a stronger penalty term to this pair in the embedding

learning by generating negative feature embeddings that are

closer to the anchor. We define the weight between the anchor

xi and the negative example x−
j as:

wij = exp(cxi

j ) · exp(c
x
−

j

i ). (11)

The larger the weight wij is, the harder to separate the xi and

x−
j , so we should conduct the stronger penalty on them by

generating examples that are closer to the positive in feature

space. To achieve this goal, we intuitively set β to e−wij .

Therefore, the proposed algorithm that generates negative

feature embedding can be formulated as:

f i−
j =







fi +
[

e−wijd(fi, f
+
j ) + (1− e−wij )d(fi, f

+
i )

]

if d(fi, f
+
j ) > d(f, f+

i )

f+
j , if d(fi, f

+
j ) ≤ d(f, f+

i ).
(12)

Consequently, in our EP loss function, the generated features

are regarded as the negative examples, so we introduce GEP

loss:

Lgep =
1

N

N
∑

i=1

log[(1 + exp(
1

NQi

∑

j∈Qi

f⊤
i f i−

j

−
1

NPi

∑

j∈Pi,j 6=i

f⊤
i f i−

j ))(1 +
∑

j∈Pi,j 6=i

exp(f⊤
i f i−

j

− f⊤
i f+

i ))].
(13)

We define the total loss consisting of the attention and GEP

losses to optimize the proposed framework simultaneously:

Ltotal = λLgep + (1− λ)Latt, (14)

where λ is the weight to control the trade-off between two

types of losses.

IV. EXPERIMENTS

In this section, we present extensive experimental results on

the widely-used benchmark datasets to evaluate the effective-

ness of our algorithm. Apart from comprehensive comparison

experiments against the state-of-the-art methods, we also con-

duct an ablation study to analyze each module. Finally, various

visualization results are provided.
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TABLE I
RETRIEVAL PERFORMANCE ON THE FI DATASET. WE EVALUATE THE PROPOSED METHOD AGAINST DIFFERENT ALGORITHMS, INCLUDING TRADITIONAL

METHODS (TRA), EXISTING CNN MODELS (CNN), AND EMBEDDING LEARNING METHODS (EMB). NOTE THAT ‘S’ REPRESENTS THAT THE SOFTMAX

LOSS IS USED FOR TRAINING, AND ‘DIM.’ DENOTES THE DIMENSION OF FEATURES. OLD APSE MEANS THE METHOD IN OUR CONFERENCE VERSION.

Methods Dim. mAP8 ↑ mAP2 ↑ FT↑ ST↑ NN↑ DCG↑ ANMRR↓

TRA

SIFT [69] 1000 0.1705 0.5913 0.1830 0.3513 0.2462 0.4507 0.6553
HOG [70] 1000 0.2115 0.6002 0.1926 0.3620 0.3225 0.4639 0.6424
Gabor [70] 1000 0.1724 0.5942 0.1768 0.3395 0.2641 0.4434 0.6770
Sentibank [41] 1200 0.2337 0.6168 0.2422 0.4232 0.3990 0.5223 0.5934

CNN

DeepSentiBank [71] 2089 0.2559 0.6247 0.2658 0.4468 0.4583 0.5509 0.5655
MVSO [72] 4342 0.2798 0.6366 0.2877 0.4761 0.5158 0.5731 0.5346
AlexNet (S) [73] 4096 0.2709 0.6328 0.2795 0.4693 0.5038 0.5633 0.5463
VggNet (S) [74] 4096 0.3013 0.6552 0.3007 0.4887 0.5511 0.5860 0.5161
GoogleNet (S) [75] 2048 0.3583 0.6773 0.3571 0.5619 0.5816 0.6403 0.4517
ResNet (S) [76] 2048 0.4380 0.7068 0.4286 0.6079 0.6084 0.6816 0.3998
WSCNet [58] 2048 0.5060 0.7381 0.4653 0.6223 0.6358 0.6910 0.3872

EMB

Contrastive loss [64] 2048 0.3842 0.6972 0.3768 0.5702 0.5711 0.6508 0.4396
Triplet loss [65] 2048 0.5130 0.7120 0.4864 0.6216 0.5710 0.6843 0.3860
N-pair loss [29] 2048 0.5217 0.8062 0.4785 0.7075 0.5341 0.7310 0.3089
Center loss [77] 2048 0.5021 0.6943 0.4982 0.6082 0.5431 0.6789 0.3621
Binomial deviance [78] 2048 0.5421 0.7352 0.4781 0.7112 0.5371 0.7031 0.3398
ArcFace [79] 2048 0.5308 0.6910 0.5366 0.6675 0.6187 0.7232 0.3123
SphereFace [80] 2048 0.4987 0.6689 0.4032 0.6023 0.6065 0.6755 0.3604
FastAP [81] 2048 0.5639 0.7123 0.5578 0.6822 0.6112 0.7209 0.3179
SoftTriple [82] 2048 0.5712 0.7746 0.5431 0.6921 0.6210 0.7312 0.3064
Yang et al. [83] 544 0.6395 0.8081 0.5995 0.7354 0.6164 0.7866 0.2518

Ours
Old APSE [1] 512 0.7344 0.9079 0.6985 0.7817 0.6613 0.8114 0.2201
New APSE 512 0.7433 0.9030 0.7075 0.7994 0.6755 0.8250 0.2106
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Fig. 5. Retrieval performance on three small datasets (Artphoto, Abstract, and IAPSa). The results are derived using the model trained on FI dataset.

A. Datasets

We conduct our experiments on four benchmark datasets,

including a large-scale dateset, i.e., Flickr and Instagram

(FI) [26], and three small-scale datasets, i.e., Subset A of IAPS

(IAPSa) [3], Artistic dataset (ArtPhoto) [19], and Abstract

paintings (Abstract) [19].

1) Large-scale Dataset: FI is one of the largest well-

annotated image emotion datasets, which is collected from

social websites by querying with Mikel’s eight emotions [3]

as keywords. A total of 225 AMT workers are employed to

label these images. Finally, 23,308 images that receive at least

three agreements of five assigned workers are used as the final

clean dataset.

2) Small-scale Datasets: IAPSa includes 395 images col-

lected from International Affective Picture System (IAPS) [84]

and is labeled with eight emotion categories by 20 under-

graduate participants. Abstract contains 228 peer-rated abstract

paintings in which the color and texture occupy the major vi-

sual contents, lacking specific semantic information. Artphoto

is composed of 806 artistic photos downloaded from an art

sharing site. The emotion label of each image is determined

by the owner of the image.

B. Evaluation Metrics

Following previous work [21], [83], we utilize the following

metrics to comprehensively evaluate the experimental results.

Mean Average Precision (mAP) is employed to measure the

mean precision of retrieval results. In this paper, we con-

sider both mAP of eight emotion-specific categories (mAP8)

and mAP of two sentiment polarities (mAP2). Note that

the following metrics are only used to evaluate the retrieval

performance on eight specific emotions. Nearest neighbor rate

(NN) represents the proportion of the rank-1 samples in the

return list being correct. First tier (FT) and second tier (ST)

both denote the recall of the returned results. Specifically, FT

is responsible for measuring the recall for the top-n returned
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results, while ST denotes the top-2n recall. Here, n is the total

number of all the correct examples for the query. Assuming

that users prefer frontal results, discounted cumulative gain

(DCG) [85] incorporates the weights of different positions of

relevant samples in the ranking list into performance measur-

ing. F1 score is the harmonious mean of Precision and Recall.

Similar to DCG, average normalized modified retrieval rank

(ANMRR) [86] takes into account the ranking sequence of

relevant images within the retrieved results. Note that smaller

values of ANMRR represent better retrieval results and for

other evaluation metrics larger ones are better.

C. Baselines

In the comparison experiments, we compare our method

to different baselines. The low-level descriptors include

SIFT [69], HOG [70], and Gabor [70], the dimension of which

are set to 1,000. Meanwhile, we explore the performance of

mid-level features, especially those designed based on ANPs,

including 1200-dimensional representations of SentiBank [41],

2089-dimensional features of DeepSentiBank [71], and more

recent 4342-dimensional features of MVSO (English) [72]. As

for CNN-based methods, we fine-tune different architectures

with the supervision of softmax loss, including AlexNet,

VGGNet, GoogleNet, and ResNet-50, in which the features

of the last FC layer are extracted as the representation for

embedding learning. Besides, with the ResNet-50 model as

the backbone, we also train the networks by optimizing

various metric learning losses, including contrastive loss [64],

triplet loss [65], center loss [77] and N-pair loss [29] etc.

Finally, we compare with the state-of-the-art methods of EBIR,

including Yang et al. [83], Multi-Graph [21], and the previous

conference version of our APSE method [1].

D. Implementation Details

Following [83], we regard the test images of FI dataset

as the query images to retrieve relevant emotional images

in the training set. For small-scale datasets, we use each

image to retrieve the remaining images. All the images are

ranked based on the emotional similarity between them and

the queries. The proposed architecture is based on pre-trained

ResNet-50 [76]. The original images are resized to 256 ×
256 and randomly cropped to 224 × 224. The framework

is optimized by SGD with the weight decay of 0.0005 and

a momentum of 0.9. The initialized learning rate is set as

0.001 and dropped down one-tenth for every 40 epochs. The

maximal number of epochs is 100 for fine-tuning all layers

with a batch size of 32 ensuring 4 images from each of

the 8 emotions. We set hyper-parameter λ = 0.5 in all our

experiments, which achieves the best performance. Taking

into consideration both the performance and computational

consumption, we extract the low-level and high-level features

from the last layer of conv3 and conv5, respectively. The semi-

hard triplet sampling method is applied in the triplet loss, so

as to guarantee the model to converge stably and rapidly. In

the baseline models, the feature vector is obtained through the

global average pooling operation on the feature map from the

last convolutional layer. The dimension of outputted feature

embedding is compacted into 512 following the empirical

insights in [87]. We randomly split the FI dataset into 80%

training, 5% validation, and 15% test sets. The parameters of

the model trained on FI are transferred to fine-tune other small-

scale datasets. We conduct 5-fold validation and report the

average performance of them. The entire work is implemented

using PyTorch, where all experiments are conducted on one

NVIDIA GTX 1080Ti GPU.

E. Retrieval Performance

The effectiveness of the proposed method is validated on

four emotional datasets. In Tab. I, we report the results of

various contrastive methods of attention networks and deep

metric learning on FI dataset. It is obvious that the end-to-

end learning-based methods perform better than those based

on hand-crafted features, such as SIFT, HOG, and Gabor.

SentiBank, DeepSentiBank and MVSO belong to the same

series of algorithms that can detect the ANP concepts for

each image as the mid-level representations. Among the three

types of representations, the performance is slightly improved

with the increase of feature dimensions. Generally, the net-

work optimized by metric loss gets remarkably better overall

performance than those with the supervision of softmax loss.

Note that the performance of metric learning on ‘NN’ metric

cannot outperform that of the softmax loss like on other

metrics. This is because the softmax loss mainly concerns the

boundary between different categories but ignores the concrete

distance between feature embeddings. Meanwhile, the metric

loss directly manipulates features in the embedding space to

maximize the inter-class variation and minimize the intra-class

variation. Therefore, the feature points learned by metric loss

can well distribute in the embedding space according to the

emotion similarity.

Besides, we also compare the proposed method with the

latest and popular metric learning algorithms as well as state-

of-the-art methods [83] for emotion-based image retrieval.

Particularly, to achieve a fair comparison, we implement

the state-of-the-art algorithms using ResNet-50 as backbone,

which is the same as that in our method. Obviously, our

framework achieves much better performance than state-of-

the-art methods, especially on mAP2 and mAP8 (about 10%
improvement). Compared with the results of the conference

version, the methods of generating negative embeddings uti-

lized in this journal paper further improves the retrieval

performance on six of seven metrics.

For the three small-scale datasets, we directly fine-tune

the network using training dataset based on the model that

has been trained on the FI dataset. These datasets include

natural images and abstract art images, in which there is

a large domain gap. As shown in Fig. 5, our method also

obtains the best retrieval results, which demonstrate the robust

generalization ability of our method for different domains.

F. Ablation Study

To present an in-depth analysis of the effect of each

component in the proposed framework, we conduct a detailed

ablation study and show the experimental results on FI dataset
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TABLE II
ABLATION EXPERIMENTS ON THE FI DATASET. THE BACKBONE FRAMEWORK IS RESNET-50 PRE-TRAINED ON IMAGENET. HERE, AT REPRESENTS THE

ATTENTION LOSS CONSISTING OF TWO SOFTMAX LOSSES. HA DENOTES HIERARCHICAL ATTENTION, AND SA DENOTES THE EMOTION-SPECIFIC

ATTENTION ON THE LAST CONVOLUTIONAL LAYER. CLB REPRESENTS CROSS-LEVEL BILINEAR OPERATION. SO MEANS USING THE FEATURE FROM THE

LAST CONVOLUTION LAYER, AND MO MEANS USING THE FEATURE FROM THE LAST LAYER FROM BOTH CONV3 AND CONV5 , RESPECTIVELY. WHEN

CLB IS NOT SELECTED, THE FEATURES FROM DIFFERENT LAYERS ARE CONCATENATED DIRECTLY.

AT N-pair EP GEP SA HA CLB SO MO mAP8 ↑ mAP2 ↑ FT↑ ST↑ NN↑ DCG↑ ANMRR↓
√ √

0.4380 0.7068 0.4286 0.6079 0.6084 0.6816 0.3998√ √
0.5217 0.8062 0.4785 0.7075 0.5341 0.7310 0.3089√ √
0.5680 0.8558 0.5247 0.7187 0.5623 0.7602 0.2789√ √ √
0.6225 0.7816 0.5779 0.7255 0.5975 0.7451 0.2623√ √ √
0.6430 0.8241 0.6036 0.7485 0.6110 0.7863 0.2551√ √ √
0.6680 0.8325 0.6365 0.7504 0.6278 0.7885 0.2421

√ √ √ √
0.6938 0.8605 0.6417 0.7604 0.6290 0.7883 0.2396√ √ √ √
0.7051 0.8733 0.6696 0.7595 0.6393 0.7952 0.2388√ √ √ √ √
0.7190 0.8912 0.6824 0.7677 0.6495 0.8052 0.2294√ √ √ √ √
0.7433 0.9030 0.7075 0.7994 0.6755 0.8250 0.2106

TABLE III
RESULTS OF DIFFERENT COMBINATION STRATEGIES AMONG CONVOLUTIONAL LAYERS. ‘P’ DENOTES POLARITY-SPECIFIC ATTENDED FEATURES, WHILE

‘E’ REPRESENTS EMOTION-SPECIFIC ATTENDED FEATURES. SINCE THE COMBINATION OF CONV3 AND CONV5 PERFORMS BEST ON SIX OUT OF SEVEN

CRITERIA, WE EMPLOY THIS STRATEGY IN ALL EXPERIMENTS.

combinations mAP8 ↑ mAP2 ↑ FT↑ ST↑ NN↑ DCG↑ ANMRR↓

conv2(p)+conv5(e) 0.7351 0.8989 0.6890 0.7912 0.6589 0.8152 0.2209
conv2(e)+conv5(e) 0.7304 0.8901 0.6934 0.7881 0.6623 0.8136 0.2253
conv3(p)+conv5(e) 0.7433 0.9030 0.7075 0.7994 0.6755 0.8250 0.2106
conv3(e)+conv5(e) 0.7352 0.8928 0.6951 0.7892 0.6661 0.8179 0.2191
conv4(p)+conv5(e) 0.7335 0.9012 0.6982 0.7912 0.6682 0.8185 0.2146
conv4(e)+conv5(e) 0.7356 0.8981 0.6868 0.7739 0.6622 0.8046 0.2130
conv5(p)+conv5(e) 0.7316 0.8969 0.6922 0.7877 0.6626 0.8069 0.2250
conv5(e)+conv5(e) 0.7380 0.8912 0.7012 0.7920 0.6678 0.8271 0.2163
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Fig. 6. Effect of λ for total loss on mAP8 and mAP2 testing on FI dataset.
Note that λ is the weight of Lgep, and 1− λ is the weight of Latt.

in Tab. II. In the first part, we verify the effectiveness

of EP loss and the features at multiple levels. First, AT

represents the attention loss conducted on conv3 and conv5,

where the attention loss includes two softmax losses. When N-

pair loss serves as the optimization function, the performance

is obviously improved compared with that based on attention

loss. Further, the results of the proposed EP loss outperforms

N-pair loss on all the metrics, especially on mAP2, which

demonstrates that the target of EP loss is achieved. Meanwhile,

the improvement on mAP2 also facilitates 4% increase on

mAP8. Obviously, benefiting from the mutual promotion of

multiple tasks, simultaneously exploiting AT and EP losses can

obtain better performance on all the metrics except mAP2. The

reduction on mAP2 is mainly because AT of the last convo-

lution layer ignores the boundary between two polarities. The

slight reduction will be recovered by the attention mechanism

and multi-level outputs.

Besides, we also ablate how to design the attention module

to obtain better performance. The detailed experimental results

are shown in the second part of Tab. II. By incorporating

emotion-specific attention into conv5, the performances on

mAP2 and mAP8 gain 3% improvement. When both polarity-

and emotion-specific attention modules are utilized in our

framework, the results are further improved, which demon-

strates that the attended features from different levels are

complementary.

To make the multi-level features interact effectively, CLB is

introduced to obtain higher-order information, leading to fur-

ther improvement over the baseline that directly concatenates

them. Finally, the proposed method of generating sample pairs

adaptively (i.e., GEP loss) improves the overall performance

effectively.

G. Combinations of Multiple Stages

In Tab. III, we discuss the combinations among four stages

(conv2, conv3, conv4, conv5) in ResNet-50, and only extract

the feature maps from the last layer in each stage. As shown in
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Image PSAM ESAM Image PSAM ESAM

Fig. 7. Visualization of attention maps of different levels. For each image from the FI dataset, we show its corresponding polarity-specific attention map
(PSAM) and emotion-specific attention map (ESAM), respectively.

Tab. III, the combination of conv3(p) and conv5(e) performs

the best on six out of seven criteria, where p means the

polarity-specific attended features and e means the emotion-

specific attended features. On the one hand, the features from

conv3 and conv5 interact better than other combinations. On

the other hand, the attended regions relevant to sentiment

polarity from conv3 provide significant complementary cues

with high-level features. Therefore, we select the combination

of conv3 and conv5 in all the experiments.

H. Influence of Parameter λ

Based on FI dataset, we discuss the sensitivity of hyper-

parameter λ, which controls the relative importance between

the GEP loss and attention loss in Eq. (14). In Fig. 6, the

results on mAP8 and mAP2 are shown when λ ranges from

0.1 to 0.9. We can draw two conclusions from the curves: (1)

mAP8 is more sensitive than mAP2 for the variation of λ;

(2) When λ = 0.5, mAP8 and mAP2 both achieve the best

performance. Note that the performance on mAP8 descends

dramatically when λ > 0.6, which means the weight of

attention loss is less than 0.4. It is concluded that softmax

loss (attention loss) can guide metric loss to recognize the

concrete categories. Then, the metric loss can well manipulate

the Euclidean distance between features.

I. Visualization

We randomly select several attentional visualization results

in Fig. 7. The polarity-specific attention always concerns the

detailed color and texture representations that are able to guide

the fine-grained recognition. For instance, the polarity-specific

attention regions cover bright petals in the first image. It guides

to concrete emotion (i.e., contentment) as the cue and enhances

the high-level attention features in some ways.

In Fig. 8, we present the top-5 retrieved images from the

FI dataset learned by N-pair loss and our method. With the

supervision of N-pair loss, even images from the opposite

polarity appear in top-5 results, such as the results for the

first query. This is due to the negligence of local information

(e.g., big spider in the man’s face of the third returned

image) and the hierarchy of emotion. By contrast, the proposed

method obtains the correct results in top-5 images for the two

examples.

In Fig. 9, we show some failure cases of our method. For the

first query of excitement, there are two images of awe in top-

3 results. In fact, the two images can also make viewers feel

excited, which is due to the emotional diversity of one image.

That is the emotional boundary of some images is ambiguous.

The disgust emotion of the second query is caused by the

content of the magazine on the desk, which is difficult for

us to see clearly. Therefore, this type of failure cases may be

lessened by improving the resolution of images.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an attention-aware polarity sen-

sitive embedding (APSE) network for emotion-based image

retrieval. In the hierarchical attention module, the polarity- and

emotion-specific attended features are integrated through the

cross-level bilinear operation effectively. We develop a gener-

ated emotion-pair (GEP) loss for feature embedding learning,

which constrains features from inter- and intra-polarity simul-

taneously. The negative examples can be generated adaptively



IEEE TRANSACTIONS ON MULTIMEDIA 11

Amusement Awe Excitement Fear

(a) Query images (b) Top-5 retrieved images using N-pair loss (c) Top-5 retrieved images using our method

Fig. 8. Top 5 results of exampled query images from the FI dataset. (a) are query images from FI. (b-c) are the retrieval results of networks trained by the
N-pair loss and our method, respectively. Image frames with different colors represent different emotions.

Excitement Awe Disgust Sadness

Query image Top-3 retrieved results

Fig. 9. Representative failure cases in top-3 results. The first example is from
IAPSa dataset, and the second example is from FI dataset.

based on confidence scores derived from the attention module.

Finally, multiple losses including GEP and attention losses are

employed to optimize the framework. Extensive experiments

on four datasets demonstrate that the proposed framework

outperforms the state-of-the-art approaches.

For further studies, we will try to take into account the

ambiguity of emotion for EBIR. For example, the similarity

between emotional images can be measured by the distances

between label distribution of images. Apart from discrete label

space, retrieving emotional images in continuous label space

like valence-arousal space is also a meaningful topic for some

professional applications.
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