
Received 13 April 2023, accepted 27 April 2023, date of publication 1 May 2023, date of current version 8 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3272223

APSO: An A∗-PSO Hybrid Algorithm for Mobile
Robot Path Planning
CHANGSHENG HUANG1, YANPU ZHAO 1, MENGJIE ZHANG2, AND HONGYAN YANG1
1School of Economics and Management, China University of Petroleum (East China), Qingdao, Shandong 266580, China
2Dareway Software Company Ltd., Jinan, Shandong 250200, China

Corresponding author: Yanpu Zhao (Z21080319@s.upc.edu.cn)

ABSTRACT Aiming at the problems of the A∗ algorithm in mobile robot path planning, such as multiple
nodes, low path accuracy, long running time and difficult path initialization of particle swarm optimization,
an APSO algorithm combining A∗ and PSO was proposed to calculate the optimal path. First, a redundant
point removal strategy is adopted to preliminarily optimize the path planned by the A∗ algorithm and obtain
the set of key nodes. Second, a stochastic inertia weight is proposed to improve the search ability of PSO.
Third, a stochastic opposition-based learning strategy is proposed to further improve the search ability of
PSO. Fourth, the global path is obtained by using the improved PSO to optimize the set of key nodes. Fifth,
a motion time objective function that is more in line with the actual motion requirements of the mobile
robot is used to evaluate the algorithm. The simulation results of path planning show that the path planned
by APSO not only reduces the running time of the mobile robot by 17.35%, 14.84%, 15.31%, 15.21%,
18.97%, 15.70% compared with the A∗ algorithm in the six environment maps but also outperforms other
path planning algorithms to varying degrees. Therefore, the proposed APSO is more in line with the actual
movement of the mobile robot.

INDEX TERMS A∗ algorithm, mobile robot, path planning, particle swarm optimization, stochastic inertia
weight, stochastic opposition-based learning.

I. INTRODUCTION
In the new industrial revolution, also known as Industry 4.0,
mobile robots are used in a wide range of scenarios. Path
planning has always been a key research problem in the
field of mobile robots. Path planning refers to planning a
safe and collision-free optimal or near-optimal path from
the starting point to the target point in an environment with
obstacles [1]. The path planning of mobile robots needs to
solve the following three problems: first, the path can make
the mobile robot move from the starting point to the target
point; second, the mobile robot should avoid obstacles in the
environment in the path planning algorithm; finally, on the
basis of solving the first two problems, the motion trajectory
of the mobile robot is optimized. The optimization objectives
usually include the shortest path, the fewest path nodes, and
the smallest turning amplitude [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

Path planning of mobile robots can be divided into static
path planning (global path planning) and dynamic path plan-
ning (local path planning) based on a known static environ-
ment and an unknown dynamic environment [3]. Local path
planning is the real-time path planning carried out by the
mobile robot in the process of movement according to the
surrounding environment information fed back by its sensor,
which can cope with frequent and random changes in the
environment [4]. However, because dynamic path planning
is very dependent on the local environment, the path planned
by only using the dynamic path planning algorithm may not
be the globally optimal path [5]. Global path planning uses a
static path planning algorithm to search the global optimal
path in the established environment map model before the
mobile robot moves. What we study in this paper is the global
path planning problem based on a static environment.

As seen from the above description, the core of the path
planning problem is the path planning algorithm. Likewise,
static path planning is no exception. Static path planning

43238

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-5257-3108
https://orcid.org/0000-0001-5981-5683

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

algorithms can be subdivided into heuristic methods and arti-
ficial intelligence algorithms [6]. Widely acclaimed heuristic
methods include the Dijkstra algorithm [7], A∗ algorithm [8],
LPA∗ algorithm [9], D∗ algorithm [10], PRM algorithm [11],
RRT algorithm [12], etc. In recent years, researchers have per-
formed more in-depth research on heuristic methods in static
path planning problems. Examples include the A∗ algorithm
based on guideline [13], A∗ algorithm based on hybrid heuris-
tic function [14], A∗ algorithm combined with B-spline curve
[15], A∗ algorithm based on bidirectional alternating search
[16], D∗Lite algorithm based on inverse distance weighted
interpolation [17], improved PRM algorithm [18], RRT algo-
rithm based on APF [19], and RRT-connect algorithm based
on triangle inequality [20].

In static path planning problems, commonly used artificial
intelligence algorithms include the genetic algorithm (GA)
[21], differential evolution (DE) [22], ant colony optimization
(ACO) [23], particle swarm optimization (PSO) [24], etc.
Additionally, to make these intelligent algorithms better at
static path planning problems, researchers have also proposed
a GA that integrates the Bessel curve [25], an adaptive GA
that integrates the collision detection method [26], adaptive
ACO [27], improved PSO based on the minimum-maximum
normalization method [28], PSO based on the smoothing
principle [29], etc. In recent years, with the increase in
intelligent optimization algorithms, some new intelligent
algorithms have been gradually applied to the global path
planning problem. Yuan et al. [30] designed a bat algo-
rithm that combined a logarithmic decline strategy and
Cauchy perturbation and applied it to path planning problems.
Li et al. [31] combined differential evolution with the whale
optimization algorithm and applied it to the vehicle routing
problem. Li et al. [32] applied the improved artificial fish
swarm algorithm to the path planning of mobile robots and
smoothed the path by using the continuous segmented Bessel
curve. Pattnaik et al. [33] applied a chemical reaction opti-
mization algorithm to the global path planning problem.

Due to the limitations of a single path planning algo-
rithm [34], in recent years, researchers have developed
many hybrid path planning algorithms that combine two
static path planning algorithms to solve this problem.
Hilal ARSLAN et al. [35] proposed a hybrid Dijkstra-BFS
algorithm, which not only improved the accuracy of the path
but also the computational efficiency of the algorithm. Leila
Pasandi et al. [36] proposed a hybrid A∗-ACO algorithm,
which not only improved the path planning ability of the
algorithm in a complex environment but also reduced the
operation time of the algorithm. Zhou et al. [37] proposed
a Dijkstra-ACO algorithm. In this algorithm, the Dijkstra
algorithm was used to plan the initial path, and then the
ACO algorithm was used to optimize the path, which not
only solved the problem of insufficient path accuracy of the
Dijkstra algorithm. It also solves the problem that the ACO
algorithm easily falls into deadlock in a complex environ-
ment. Yu et al. [38] proposed a D∗Liten-GWO algorithm and

proved its strong applicability and effectiveness. And Omar
et al. [39], [40] proposed an ACPSO combining A∗ algorithm
heuristic function with PSO.

Although the single A∗ algorithm has the advantage of fast
computing speed, it also has the disadvantages of too many
turning points, redundant nodes and low path accuracy [41].
In contrast, although the path searched by a single PSO in
the static path planning problem has high accuracy, it is often
difficult to initialize the population in a complex environ-
ment, resulting in low efficiency of the algorithm. Previous
studies on the A∗ algorithm in static scenes mostly focused on
the optimization of its heuristic function or path smoothness
[42], [43], [44], [45], [46], while studies on particle swarm
optimization mainly focused on the optimization of its flight
mode, inertia weight and other aspects [47], [48], [49], [50],
[51], [52] and rarely combined the two algorithms to optimize
each other.

Based on this, this paper combines the A∗ algorithm with
PSO, named APSO. First, the A∗ algorithm was used to
calculate the initial path, a redundant point removal strategy
was used to extract the key nodes in the initial path, and the
key nodes on the path were used as the initial particles of the
PSO. Then, the PSO combined with random inertia weight
and random opposition-based learning strategy was used to
obtain the global optimal path. This not only makes up for
the low path accuracy of the A∗ algorithm but also solves
the problem that PSO has difficulty initializing the population
in the static path planning problem. Finally, a more compre-
hensive objective function is adopted to evaluate the effect of
the algorithm when modeling the path planning problem of
mobile robots.

The structure of this paper is as follows: Section II
briefly describes the A∗ algorithm and the PSO algorithm;
Section III introduces the specific content of APSO in detail;
and Section IV shows the optimization results of stochas-
tic inertia weight and stochastic opposition-based learning
strategy in APSO in classical benchmark functions and the
statistical test analysis results. In Section V, after modeling
the path planning problem of a mobile robot, APSO is applied
to it, and the result of path planning is analyzed. Section VI
summarizes the thesis and looks forward to the next step.

II. BASIC A∗ ALGORITHM AND PSO
A. A∗ ALGORITHM
The A∗ algorithm combines the Dijkstra algorithm and the
BFS algorithm, which is a global search heuristic algorithm
with awide range of application scenarios. Because of its high
search efficiency and strong robustness, it is often used in path
planning of mobile robots.

The steps of the A∗ algorithm are as follows: first, the
starting node is taken as the first parent node to traverse
its surrounding child nodes, and then the f (n) value of the
surrounding child nodes is calculated. The child node with
the smallest f (n) value is taken as the next parent node and
put into openList until the target node is included in openList

VOLUME 11, 2023 43239

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

to stop the search. The cost estimation function formula is
shown as:

f (n) = g (n) + h (n) , (1)

where f (n) is the estimated cost of reaching the target node
from the starting node through the current node n; g (n) is the
actual cost from the starting node to the current node n; and
h(n) is the estimated cost from the current node n to the target
node, that is, the heuristic function of the algorithm, which
is usually represented by Manhattan distance or Euclidean
distance. The Manhattan distance is the sum of the absolute
values of the horizontal and vertical coordinates between
two nodes, and the Euclidean distance is the straight-line
distance between two nodes. Because the Euclidean distance
has higher accuracy than the Manhattan distance, Euclidean
distance is often used as the heuristic function when using
the A∗ algorithm. In this paper, the eight-way search method
is adopted in the raster map, and the map contains obstacles,
so the Euclidean distance is used as the heuristic function of
the algorithm. g (n) and h(n) can be shown as:

g (n) =

√
(xs − xn)2 + (ys − yn)2, (2)

h (n) =

√
(xn − xt)2 + (yn − yt)2, (3)

where xs and ys are the abscissa and ordinate of the starting
node, respectively, and xn and yn are the abscissa and ordinate
of the current node, respectively. xt and yt denote the abscissa
and ordinate of the target node, respectively.

B. PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) was proposed by
Kennedy and Eberhart [24] and was inspired by the foraging
behavior of birds. PSO simulates the process of a particle
swarm moving toward the optimal solution in the multidi-
mensional search space, where each particle represents a can-
didate solution and the initial particle is randomly generated
[53]. Due to its simple steps and fast convergence speed, the
algorithm is widely used in many practical scenarios, such
as robot path planning [54], nonlinear optimization of power
systems [55], medical image classification [56], and flow
shop scheduling [57].

The PSO algorithm first initializes a certain number of
random particle populations as available solutions and then
searches for the optimal solution by iterating and updating the
particle swarm. In the iteration process, each particle updates
its speed and position through its own optimal solution
(pbest) and the group optimal solution (gbest). The updating
process of its speed and position is shown as follows:

vk+1
i = ωvki + c1r1

(
pbestki − xki

)
+ c2r2

(
gbestk − xki

)
,

(4)

xk+1
i = xki + vk+1

i , (5)

where vk+1
i is the velocity of the i-th particle in the

k + 1-th iteration; ω stands for inertia weight; c1, the self-
learning factor, represents the weight of a bird flying to its

FIGURE 1. A ∗ algorithm example.

optimal position, that is, the greater the value of c1, the
stronger the bird’s willingness to fly to its optimal position.
c2, the social learning factor, is the weight of a bird flying
to the optimal position that the group has been to, and the
greater the c2 value, the greater the bird’s willingness to fly
to the optimal position of the group. r1 and r2 are random
numbers uniformly distributed in the interval (0,1); pbestki is
the optimal solution of the i-th particle searched after the k-th
iteration. gbestk is the group optimal solution after the k-th
iteration. xki denotes the position of the i-th particle after the
k-th iteration.

III. APSO ALGORITHM
A. THE IMPROVEMENTS OF A∗ ALGORITHM
In the application scenarios of mobile robot path planning,
although the A∗ algorithm can efficiently provide the lowest
cost path, it also has obvious limitations. Fig. 1 shows the path
node diagram planned by algorithm A∗.

As seen from the figure, the path provided by the algorithm
often has the problems of too many nodes, too many turning
points, and poor path smoothness, which does not meet the
realistic motion requirements of mobile robots. In view of
the problem of redundant path nodes and redundant transition
nodes in the path planned by the A∗ algorithm, we adopted a
redundant node removal strategy to solve the problem.

1) DELETE REDUNDANT PATH NODES
As shown in Fig. 2, solid points are the starting nodes and
target nodes of the path, and hollow points are other nodes
on the path. Fig. 2-(a) shows the path before deleting the
redundant path node, and Fig. 2-(b) shows the path after
deleting the redundant path node.

If the current node is on a line with the previous node and
the next node of the current node, it means that the node
is a redundant path node, and then the current node will be
deleted. For example, node An in Fig. 2-(a) is collinear with

43240 VOLUME 11, 2023

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

FIGURE 2. Comparison before and after deleting redundant path nodes.

FIGURE 3. Comparison before and after deleting redundant transition
nodes.

the previous node S and the next node B; then, node A will be
deleted. The judgment function of the redundant path node is
expressed as:

fr =
yn − yn−1

xn − xn−1
, (6)

af =
yn+1 − yn
xn+1 − xn

, (7)

where xn and yn are the abscissa and ordinate of the current
node n. xn−1 and yn−1 are the abscissa and ordinate of the
previous node n − 1. xn+1 and yn+1 are the abscissa and
ordinate of the next node n+1. If fr = af , the current node is
collinear with the previous node and the next node; that is, the
current node is a redundant path node. If fr ̸=af , the current
node is not collinear with the previous node and the next node;
that is, the current node is not a redundant path node. The path
after deleting the redundant path node is shown in Fig. 2-(b).

2) DELETE REDUNDANT TRANSITION NODES
After eliminating the redundant path nodes, except the start-
ing point and the ending point, the remaining nodes on the
path are all transition nodes. There are two situations in
Fig. 3-(a) for the connection between two separated turning
points: in SIT.1, there is an obstacle between two separated
turning points S and B. For this situation, the intermediate
turning point A between two separated turning points is
reserved, and whether there is an obstacle between turning

points A and C is judged. In SIT.2, there is no obstacle
between two separated turning points B and G. For this situ-
ation, the redundant turning point C between B and G should
be deleted. For redundant transition nodes, the following
implicit function is used to judge:

path = f (x, y) =

(
y− yn−1

yn+1 − yn−1

)
−

(
x − xn−1

xn+1 − xn−1

)
, (8)

obs = f (x, y) = (x − xobs)2 + (y− yobs)2 − robs2, (9)

where xn−1 and yn−1 represent the abscissa and ordinate of
the previous node n − 1 of the current node, respectively;
xn+1 and yn+1 represent the abscissa and ordinate of the
next node n + 1 of the current node, respectively; xobs and
yobs represent the abscissa and ordinate of each obstacle,
respectively; and robs is the area radius of each obstacle after
expansion.When path = obs, there are obstacles between the
two turning points; otherwise, there are no obstacles between
the two turning points, that is, the intermediate turning points
between the two turning points are redundant turning points.
The path after deleting the redundant turning point is shown
in Fig. 3-(b).

B. THE IMPROVEMENTS OF PSO
1) STOCHASTIC INERTIA WEIGHT
The inertia weight ω is the core parameter for particle veloc-
ity and position update in PSO, which has an important
impact on the convergence performance of the algorithm [58].
To improve the performance of the PSO algorithm, the adap-
tive inertia weight (AIW) [58] is often used, as shown in Eq.
nonlinear decreasing inertia weight (NDIW) [59], as shown
in Eq. 11; linearly decreasing inertia weight (LDIW) [60],
as shown in Eq. 12, etc.

ω = (ωmax + ωmin) ×

(
pkgbest
pk−1
gbest

)
−
wmax × k
Tmax

, (10)

ω = exp
[
− exp

(
Tmax − k
Tmax

)]
, (11)

ω = ωmax − (ωmax − ωmin) ×

(
k

Tmax

)
, (12)

whereωmin is the minimum value of inertia weight, often with
a value of 0.4; wmax is the maximum value of inertia weight,
often with a value of 0.9; pkgbest is the global optimal fitness
at the k-th iteration; pk−1

gbest is the global optimal fitness at the
k − 1-th iteration; c is a constant; k is the current iteration
number; and Tmax is the maximum iteration number.
If the inertia weight is set as a random number obeying a

certain distribution, adjusting the inertia weight by using the
characteristics of random variables can make the algorithm
jump out of the local optimum quickly, which is conducive to
maintaining the diversity of the population and improving the
global search performance of the algorithm [61]. Therefore,
based on the widely used linear decreasing inertia weight,
this paper proposes a stochastic inertia weight (SIW), whose

VOLUME 11, 2023 43241

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

FIGURE 4. Inertia weight curve comparison.

formula is shown as:

ω = ωmax − (ωmax − ωmin) ×

(
k

Tmax

)
× erb , (13)

where rb is a random number in the interval range (-0.1,0.1).
A comparison of the inertia weight change curves is shown
in Fig. 4.

2) STOCHASTIC OPPOSITION-BASED LEARNING
Opposition-based learning (OBL), proposed by
Tizhoosh et al. [62], is an optimization tool with an excel-
lent optimization effect. The main idea is to compare the
fitness of the current feasible solution and its reverse feasible
solution and select the better solution of the two to enter the
subsequent iteration. The opposition-based learning strategy
has been widely used to improve the convergence speed of
swarm intelligence algorithms [63], [64]. The basic definition
of opposition-based learning is as follows:
Definition 1: Opposite Numbers. Let x be a real number

and x ∈ [lb, ub]; the opposite number x̃ obtained after
opposition-based learning of x is defined as:

x̃ = lb+ ub− x. (14)

Definition 2: Opposite Points. Let point P(x1, x2, · · ·,xn)
be a point in n-dimensional coordinates, where x1, x2, · · ·,xn
are real numbers and x1, x2, · · ·,xn∈ [lbi, ubi]. The opposite
point P̃ can be defined as:

x̃i = lbi + ubi − xi. (15)

The introduction of the OBL strategy into PSO is helpful
to expand the search range of the algorithm by diversifying
particles and improving the performance of the algorithm.
If each particle uses the OBL strategy after every position
change, the time complexity of the algorithm will be greatly

improved, and the algorithm search efficiency will decrease.
Therefore, OBL can be applied to the individual and global
optimal particles in PSO at the end of each iteration, which
can not only expand the search scope of the algorithm but
also not greatly improve the time complexity of the algorithm.
According to the definition of OBL, a point has and only
has one opposite point. However, once the individual most
particle or global optimal particle falls into the local optimum
and the fitness of its opposite solution is not as good as
the original feasible solution, then the implementation of
the OBL strategy will be invalid every time. To avoid this
situation, we propose a stochastic opposition-based learning
strategy (SOBL) to prevent the failure of the OBL strategy
when the global optimal particle falls into the local optimum.
SOBL is defined as follows:
Definition 3: Stochastic Opposite Points On the basis of

the opposite points, a stochastic perturbation is taken to xi:

x̃i = lbi + ubi − xi × r, (16)

where r is the random value conforming to a Gaussian distri-
bution in the interval (0,1).

C. THE OPTIMIZATION PROCESS OF APSO
We take the route planned by the improved A ∗ algorithm as
the route to be optimized. The improved PSO will continue
to optimize the route locally from the starting node until the
target node enters the iteration.

First, the initial particles with a certain population size are
randomly generated according to the random strategy, which
can be shown as:

posx = xn + ((xn+2 − xn) × r) , (17)

posy = yn + ((yn+2 − yn) × r) , (18)

where posx and posy represent the x and y coordinates of
randomly generated particles, respectively, and xn and yn
represent the x and y coordinates of node n, respectively. xn+2
and yn+2 represent the x and y coordinates of nodes separated
from node n, respectively. r stands for a random number in
the interval (0,1).

After the population is initialized, the velocity of each
particle in the population is initialized again by a random
strategy, which can be shown as:

vx = vmax × r, (19)

vy = vmax × r, (20)

where vx and vy are the velocity of each particle on the x coor-
dinate and the flying speed on the y coordinate, respectively;
vmax indicates the maximum flight speed; and r stands for a
random number in the interval (0,1).

After the population and population velocity are initialized,
the fitness of each particle is calculated. The particle with
the highest fitness is regarded as the group optimal solution
gbest , the particle without obstacle avoidance has a fitness
value of 0, and the other particles without a fitness value

43242 VOLUME 11, 2023

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

of 0 are regarded as the individual optimal solution pbest .
The fitness calculation is shown as:

f = d × c, (21)

d =

n∑
m=1

√
(xm+1 − xm)2 + (ym+1 − ym)2, (22)

c =

{
1, path ̸= obs
0, path = obs

, (23)

where f is the particle fitness value; d is the particle path
distance; c is the collision test function; and xm and ym
represent the abscissa and ordinate of node m, respectively.
xm+1 and ym+1 represent the abscissa and ordinate of adjacent
nodes of node m, respectively. When m = 1, node m is the
starting node of the local path, and whenm = n, nodem is the
target node of the local path. path and obs are the judgment
functions in Equations (8) and (9), respectively.

After the particle swarm initialization is completed, the
particle velocity and position are updated continuously
through iteration to achieve the goal of continuous particle
optimization. The velocity and position update formulas are
expressed as:

vk+1
i = ωvki + c1r1

(
pbestki − xki

)
+ c2r2

(
gbestk − xki

)
,

(24)

xk+1
i = xki + vk+1

i . (25)

After the position movement of the particle swarm is com-
pleted, SOBL is applied to all individual optimal particles
and global optimal particles in the next iteration, and their
opposite positions are obtained. Then, the fitness of the oppo-
site position of each particle is calculated. If the fitness of
the current position of the particle is inferior to the fitness
of the reverse position, the particle is moved to the opposite
position; if the fitness of the current position of the particle
is superior to the fitness of the opposite position, the current
position of the particle is retained. The process for using
SOBL on particles is as follows:

xki =

{
xki , f

(
xki
)

≤ f
(
x̃ki
)

x̃ki , f
(
xki
)

> f
(
x̃ki
) (26)

Taking path S-A-B-G in Fig. 5-(a) as an example, node S
and node B are first regarded as the starting node and the
target node of local path S-A-B, respectively, so the search for
a more suitable intermediate node A is the goal of this opti-
mization. As shown in Fig. 5-(b), after the improved PSO is
used to find the optimal node A, node A and node G are taken
as the starting node and target node of local path A-B-G, and
the improved PSO is used to optimize the local path A-B-G.
After the optimization of the local path A-B-G is completed,
the target node G of the local path is the same node as that of
the global path, so the algorithm ends. The path optimized by
APSO is finally shown in Fig. 5-(c).

FIGURE 5. The example of APSO optimization process.

D. ALGORITHM IMPLEMENTATION PROCESS
STEP 1: The raster map is established by the raster method,
and the parameters of the A∗ algorithm are initialized;

STEP 2: Create two empty sets, openList and closeList .
openList is used to store the nodes to be searched, and
closeList is used to store the searched nodes. Add the starting
node to openList;

STEP 3: Traverse the nodes in openList , search for the
node with the smallest f (n) value and set it as the current
node n;

STEP 4: Delete the current node n from openList and add
it to closeList;

STEP 5: Judge whether node n is the target node. If it is
the target node, trace back to find the initial path and skip
to step (7); if it is not the target node, the current node n
is used as the parent node to search the surrounding eight
neighborhoods.

STEP 6: Judge whether the points in the eight neighbors
of node N that are not obstacles are in openList . If so,
calculate the f (n) value of these nodes, select the node with
the smallest f (n) value as the next node n+ 1, and return to
step 4. If it is not in openList , add it to openList and calculate
f (n);
STEP 7: The redundant path nodes and redundant transi-

tion points in the node set pathPoints in the initial path are
removed by the redundant node removal strategy;

STEP 8: Traverse the remaining nodes in the pathPoints
set, and the separated nodes n and n+2 are used as the starting
point and ending point of the PSO optimization path in each
iteration.

STEP 9: To initialize the PSO parameters, input the cor-
relation coefficients of inertia weights wmax and wmin, the
self-learning factor c1, the social learning factor c2, the popu-
lation number possize, and themaximum number of iterations
Tmax , and enter the iteration.

STEP 10: Each particle in the population is disturbed
according to the individual optimal pbest and the overall
optimal gbest to generate a new historical optimal population;

STEP 11: Calculate the fitness value of the individual
optimal pbest and the global optimal gbest and compare them
with the fitness value of the reverse position. If the fitness
value of the particle in the reverse position is better, the
particle will be moved to its reverse position; otherwise, the
particle will not be moved.

VOLUME 11, 2023 43243

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

FIGURE 6. Inertia weight curve comparison.

STEP 12: Judge whether the iteration number Tmax is
reached; if so, terminate the iteration and save the local
optimization path; if not, return to STEP 11.

STEP 13: Judge whether the target node enters the iter-
ation; if so, end the algorithm and output the overall path
composed of each local path. If not, return to STEP 8. The
algorithm pseudocode is shown in Fig. 6:

IV. THE PERFORMANCE EVALUATION EXPERIMENT OF
THE IMPROVED PSO
To test the improvement degree of the PSO by the
two strategies of stochastic inertia weight and stochastic
opposition-based learning adopted in APSO, 15 benchmark
functions are introduced in this section, and these 15 bench-
mark functions are popular problems used in the optimiza-
tion literature [65], [66], [67], [68], [69]. The basic PSO is
denoted as PSO, and the improved PSO that adopts stochas-
tic inertia weight and stochastic opposition-based learning
strategy is denoted as OBLPSO. In addition, for a more
intuitive comparison, we reproduced the differential evolu-
tion algorithm (DE) of Storn et al. [22], the gravity search
algorithm (GSA) of Esmat Rashedi et al. [70], the bio-
geography algorithm (BBO) of Simon [71], the Salp swarm
algorithm (SSA) of Esmat Rashedi et al. [72], the sine and

cosine algorithm (SCA) of Mirjalili [73], and the gray wolf
optimization (GWO) of Mirjalili et al. [74]. Tab. 1 shows
the hyperparameters of all the comparison algorithms. After
analyzing the optimization results of eight algorithms in the
benchmark functions, the optimization ability of the proposed
OBLPSO is evaluated. The experiments are conducted using
a computer Core i7-1165G7 with 16 GB RAM and 64-bit
for Microsoft Windows 11. The source code is implemented
using MATLAB (R2021b).

The details of the 15 benchmark functions are shown in
Tab. 2, where f1 − f7 are unimodal functions, which are used
to test the global search ability of the algorithm in the case
of high dimensions. f8 − f11 are multimodal functions, which
are used to test the local search ability and the ability of the
algorithm to jump out of the local optimum in the case of high
dimensions. f12 − f15 are dimension fixed functions used to
test the ability of the algorithm to solve simple problems.

Tab. 3 shows the comparison results betweenOBLPSO and
other algorithms after 20 independent runs in the benchmark
function, where the data in bold are the optimal values in each
data.

Both the average value and the best value can reflect the
optimization accuracy of the algorithm, while the standard
deviation value can reflect the stability of the algorithm in

43244 VOLUME 11, 2023

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

TABLE 1. Hyperparameters of algorithms.

TABLE 2. Benchmark functions.

the search process. Overall, the average value, best value
and standard deviation of OBLPSO in f1 − f4 and f7 − f15
after 20 independent runs were better than those of the
other algorithms. OBLPSO can simultaneously search for the

theoretical optimal value in f1 − f4, f8 − f10 and f12 − f15.
As seen from the convergence curve in Fig. 7, OBLPSO
shows the fastest convergence speed among the 15 bench-
mark functions and has higher search accuracy compared

VOLUME 11, 2023 43245

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

TABLE 3. Comparison of experimental results under the benchmark functions.

43246 VOLUME 11, 2023

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

FIGURE 7. Comparison of convergence curves.

VOLUME 11, 2023 43247

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

TABLE 4. Wilcoxon rank sum test under the benchmark function.

with other algorithms. Therefore, OBLPSO not only outper-
forms basic PSO in terms of optimization accuracy and stabil-
ity but also outperforms some other metaheuristic algorithms.

The above data analysis only visually describes the per-
formance of the algorithm from the optimal value, average
value, and standard difference. Although the performance dif-
ferences between some algorithms can be seen, the analysis
process may not be comprehensive, so it is difficult to explain
the optimal performance of the algorithm. Therefore, we can
conduct certain statistical analyses on the data, evaluate the
performance of the algorithm from the statistical perspective
and judge whether there are significant differences between
the algorithms. First, the Wilcoxon rank sum test [75] was
used to calculate the P-value for significance analysis. Then,
the Friedman statistical test was used to derive the algorithm
ranking and comprehensive evaluation.

Tab. 4 shows the comparison results of each algorithm and
the Wilcoxon rank sum test of OBLPSO under the bench-
mark test function at the significance level of α = 0.05.
If the test result P < 0.05, it indicates that there is a
significant difference between the algorithm results; other-
wise, there is no significant difference. ‘‘+/-/=’’ in Tab. 3
means that OBLPSO is more ‘‘superior/inferior/comparable’’
compared with the performance of the algorithm. In Tab. 3,
the four functions f12 − f15 are dimension fixed functions,
and the problem is relatively simple, so a certain number
of ‘‘1’’ and P-values less than 0.05 are presented in the
results. In addition, most of the P-values of the Wilcoxon
rank sum test after comparing OBLPSO with other algo-
rithms are less than 0.05, indicating that OBLPSO has a
significant difference compared with other algorithms on the
whole.

To further analyze the performance of each algorithm, the
Friedman test was used to rank the algorithms. The ranking
formula can be shown as:

Rj =
1
N

N∑
i=1

r ji , (27)

where i represents the i-th function, j represents the j-th algo-
rithm, N is the number of test functions, and r ji is the ranking
of algorithm j in function i. A smaller value of Rj indicates
a higher ranking algorithm and better performance. It can
be seen from Tab. 5 that OBLPSO, which adopts stochas-
tic inertia weight and stochastic opposition-based learning,
ranks first in the experiment, which is sufficient to show that
OBLPSO has strong search performance.

In summary, OBLPSO can show good performance in a
variety of test functions, with advantages, stability and effec-
tiveness.

V. PATH PLANNING SIMULATION EXPERIMENT
To test the feasibility and effectiveness of APSO in the path
planning scenario of mobile robots, this paper introduces A∗,
PRM, RRT and Bi-RRT and the proposed APSO algorithm
to carry out a simulation experiment of mobile robot static
path planning. Due to the dense obstacles in the environment
map, we found that it was difficult for a single intelligent opti-
mization algorithm to initialize an effective path population
in the experiment, so we did not introduce the relevant path
planning algorithm for comparison. Each algorithm is set to
run independently 20 times in each environment map. The
inertia weight correlation coefficients in APSO are ωmax =

0.9, ωmin = 0.4, self-learning factor c1 = 2, social learning

43248 VOLUME 11, 2023

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

TABLE 5. Ranking of the Friedman test algorithm under the benchmark function.

factor c2 = 2, population possize = 40, and maximum
number of iterations Tmax = 200. The experiment also uses
MATLAB R2021b software to run on a Lenovo X1 Carbon
Gen 9 computer Windows11 system, in which the computer
hardware is an Intel Core i7 processor and 16G memory.

A. PROBLEM DESCRIPTION
The environment of path planning is set in the intelligent
warehouse. After the mobile robot obtains the task, it starts
from the starting point and arrives at the target point after
obstacle avoidance to complete the task. The path planning
process requires the shortest path length and minimum total
turning range.

The following assumptions are made for the environment
map:

(1) Assuming that the environment map is a two-
dimensionalmap, the height information ofmobile robots and
obstacles can be ignored;

(2)Assume that the position and area of obstacles are
determined and do not change;

(3)Assume that the mobile robot is a particle and moves at
a constant speed.

B. MODEL CONSTRUCTION
1) ENVIRONMENT MODELING
The common environment modeling methods of path plan-
ning include the raster method, viewable method, topology
diagram method and so on. In this paper, the raster method
is adopted to create the environment map model, and a
two-dimensional raster map of 20 × 20 is adopted. Fig. 8
lists three types of environment map models created by the
raster method. Among them, the obstacle coverage rate of
environment map 1 in Fig. 8-(a) is 22%, that of environment
map 2 in Fig. 8-(b) is 41.75%, that of environment map 3 in
Fig. 8-(c) is 45.75%, that of environment map 4 in Fig. 8-(d)
is 48.50%, that of environment map 5 in Fig. 8-(e) is 45.25%
and that of environment map 6 in Fig. 8-(f) is 24%. The black
area is the area where the obstacle is located, and the white
area is the driving area. Set the start node of mobile robot
movement as (1,1) and the target node as (20,20).

2) PROBLEM MODELING
In the path planning problem of mobile robots, the primary
goal is to reduce the overall running time of mobile robots.
In most studies, only the path length is used as the objective
function to measure the effect of the path planning algorithm.
However, in reality, the factors that affect the running time of
mobile robots are not only the path length but also the turning

FIGURE 8. Obstacle environment map.

amplitude, the number of nodes in the path and the operation
time of the path planning algorithm. Therefore, we set these
factors into the following objective functions:

a: SHORTEST PATH LENGTH OBJECTIVE FUNCTION
The goal of the path planning algorithm is to minimize the
path length of the mobile robot, and the path length can
directly affect the linear movement time of the mobile robot.
Therefore, the shortest path length objective function should
be set, and its formula is shown as:

minD (x, y) =

n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2, (28)

where n is the number of nodes and xi and yi are the
abscissa and ordinate of node i, respectively. xi+1 and yi+1
are the abscissa and ordinate of the next node of node i,
respectively.

b: PATH NODE MINIMUM OBJECTIVE FUNCTION
When the mobile robot moves on the path, it will judge the
direction of the next movement every time it reaches a node.
The more motion nodes there are, the more judgment times
of the mobile robot will increase, thus affecting its motion
fluency. Therefore, the minimum objective function of the
path node should be set, and its formula is:

minP (n) = n, (29)

c: MINIMUM TURNING AMPLITUDE OBJECTIVE FUNCTION
Each turning amplitude of the mobile robot has a direct
impact on its motion time, smoothness of path and motion

VOLUME 11, 2023 43249

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

FIGURE 9. Simulation experiment of the obstacle environment in map 1.

FIGURE 10. Simulation experiment of the obstacle environment in map 2.

stability. The smaller the turning amplitude is, the shorter the
motion time, the better the path smoothness and the higher

the motion stability. Therefore, the mobile robot should be set
to minimize the turning amplitude, and its objective function

43250 VOLUME 11, 2023

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

TABLE 6. The objective function values of each algorithm in different
maps.

formula is as follows:

minI (θ) =

n−2∑
i=1

θn, (30)

θn =

∣∣∣∣∣arctan
(yn+1−yn

xn+1−xn
−

yn+2−yn+1
xn+2−xn+1

1 +
yn+1−yn
xn+1−xn

×
yn+2−yn+1
xn+2−xn+1

)∣∣∣∣∣ , (31)

where n is the n-th node in the path.

d: SHORTEST ALGORITHM OPERATION TIME OBJECTIVE
FUNCTION
The operation time of the path planning algorithm of the
mobile robot can directly affect the working efficiency of
the mobile robot by affecting the operation efficiency. There-
fore, the operation time of the minimization algorithm of the
mobile robot should be set, and its objective function formula

TABLE 7. Wilcoxon rank sum test.

is shown in Eq.32

minC (a) = ta, (32)

where ta is the running time of algorithm a.
The above objective functions can directly or indirectly

affect the running time of the mobile robot, and there is
no conflict between them. Therefore, after processing these
several objective functions, we can combine them into the
final objective function with the shortest running time of the
mobile robot. The combined objective function is shown as
follows:

minT (n) =
D (x, y)
vm

+ P (n) × tp +
I (θ)

vi
+ C (a) (33)

where vm represents the linear moving speed of the mobile
robot. In this paper, vm= 1m/s. tp represents the judgment
time required by the mobile robot when it reaches a node.

VOLUME 11, 2023 43251

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

FIGURE 11. Simulation experiment of the obstacle environment in map 3.

FIGURE 12. Simulation experiment of the obstacle environment in map 4.

In this paper, tp = 0.2s. vi represents the turning speed of
the mobile robot, that is, the time consumed by each turning
radian. In this paper, vi= πrad/s.

C. OBSTACLE ENVIRONMENT SIMULATION EXPERIMENT
The paths planned by the APSO, A∗, PRM, RRT and
Bi-RRT algorithms in Maps 1 to 6 are shown in Figs. 9-14,

43252 VOLUME 11, 2023

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

FIGURE 13. Simulation experiment of the obstacle environment in map 5.

FIGURE 14. Simulation experiment of the obstacle environment in map 6.

respectively. Intuitively, compared with other comparison
algorithms, the paths planned by the APSO in the six maps
are obviously shorter in length, with fewer path nodes and

turning points, and have higher smoothness. Tab. 6 provides
the average objective function value of each algorithm after
20 independent runs in different maps. Because the number

VOLUME 11, 2023 43253

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

of nodes must be an integer, the average number of nodes
is rounded upward. The bold data in the table are the final
objective function values. It can be seen from Tab. 6 that
in the six maps of APSO, except that the operation time of
the algorithm is slightly higher than that of the A∗, RRT
and Bi-RRT algorithms due to the inevitable increase in
time complexity, the other objective function values are the
best among the algorithms. In map 1 with 22.00% obsta-
cles, the running time of the mobile robot using APSO is
reduced by 17.35% compared with A∗, 3.92% compared with
PRM, 28.76% compared with RRT and 27.43% compared
with Bi-RRT. In map 2 with 41.75% obstacles, the running
time of the mobile robot using APSO is reduced by 14.84%
compared with A∗, 7.69% compared with PRM, 27.38%
compared with RRT and 20.75% compared with Bi-RRT.
In map 3 with 45.75% obstacles, the running time of the
mobile robot using APSO is reduced by 15.31% compared
with A∗, 12.23% compared with PRM, 25.28% compared
with RRT and 24.06% compared with Bi-RRT. In map 4 with
48.5% obstacles, the running time of the mobile robot using
APSO is reduced by 15.21% compared with A∗, 3.26% com-
pared with PRM, 35.35% compared with RRT and 22.57%
compared with Bi-RRT. In map 5 with 45.25% obstacles,
the running time of the mobile robot using APSO is reduced
by 18.97% compared with A∗, 9.41% compared with PRM,
33.41% compared with RRT and 25.19% compared with
Bi-RRT. In map 6 with 24.00% obstacles, the running time of
themobile robot usingAPSO is reduced by 15.70% compared
with A∗, 12.09% compared with PRM, 38.42% compared
with RRT and 30.63% compared with Bi-RRT. It can be seen
that APSO has superior performance in environments with
different obstacle densities.

To prove the validity of the conclusion that ‘‘APSO can
search superior paths among obstacles of different densities’’,
the Wilcoxon rank sum test was used to conduct a statistical
test on relevant data, and the test results are shown in Tab. 7.
Since most of the P values are less than 0.05, the relevant data
of APSO have statistically significant differences compared
with other algorithms, so the conclusion is valid.

VI. CONCLUSION AND FUTURE WORK
Aiming at the problems of multiple nodes and poor path
accuracy of the A∗ algorithm in the path planning problem
of mobile robots, as well as the problems of a difficult
initial population and fast convergence speed of the PSO
algorithm in a complex environment, this paper proposed an
APSO algorithm embedded with an improved A∗ algorithm
and improved PSO algorithm and conducted an algorithm
performance test and path planning simulation test. The per-
formance test of the algorithm shows that the PSO using
stochastic inertia weight and stochastic opposition-based
learning strategy has statistical superiority, stability and effec-
tiveness. Simulation results show that the APSO proposed in
this paper can not only solve the problem of path planning but
also has higher smoothness, shorter route length and stronger
safety, which effectively reduces the running time of mobile

robots and is more in line with the movement conditions of
mobile robots in the actual environment.

Since we focus on the path planning problem in a fixed
environment, the influence of dynamic scenes on mobile
robots is not considered. In dynamic scenarios, the hybrid
algorithm in this paper should be combined with the dynamic
path planning algorithm to meet the real-time obstacle avoid-
ance requirements of mobile robots, which will become the
focus of the next research direction.

REFERENCES
[1] M. A. Hossain and I. Ferdous, ‘‘Autonomous robot path planning in

dynamic environment using a new optimization technique inspired by
bacterial foraging technique,’’ Robot. Auto. Syst., vol. 64, pp. 137–141,
Feb. 2015.

[2] W. Sun, Y. Lv, H. Tang, and M. Xue, ‘‘Mobile robot path planning based
on an improved A∗ algorithm,’’ J. Hunan Univ., Natural Sci., vol. 44, no. 4,
pp. 94–101, 2017.

[3] T.-W. Zhang, G.-H. Xu, X.-S. Zhan, and T. Han, ‘‘A new hybrid algorithm
for path planning of mobile robot,’’ J. Supercomput., vol. 78, no. 3,
pp. 4158–4181, Feb. 2022.

[4] D. Curiac and C. Volosencu, ‘‘A 2D chaotic path planning formobile robots
accomplishing boundary surveillance missions in adversarial conditions,’’
Commun. Nonlinear Sci. Numer. Simul., vol. 19, pp. 3617–3627, Oct. 2014.

[5] X. J. Fan, M. Y. Jiang, and Z. L. Pei, ‘‘Research on path planning of mobile
robot based on genetic algorithm in dynamic environment,’’ Basic Clin.
Pharmacol., vol. 124, p. 54, Dec. 2018.

[6] H.-Y. Zhang, W.-M. Lin, and A.-X. Chen, ‘‘Path planning for the mobile
robot: A review,’’ Symmetry, vol. 10, no. 10, p. 450, 2018.

[7] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numer. Math., vol. 1, no. 1, pp. 269–271, Oct. 1959.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[9] S. Koenig and M. Likhachev, ‘‘Incremental A∗,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2002, pp. 1539–1546.

[10] D. Ferguson and A. Stentz, ‘‘Using interpolation to improve path planning:
The field D∗ algorithm,’’ J. Field Robot., vol. 23, pp. 79–101, Feb. 2006,
doi: 10.1002/rob.20109.

[11] L. E. Kavraki, P. Svestka, J.-C. Latombe, andM.H.Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,’’
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[12] S. Lavalle, ‘‘Rapidly-exploring random trees: A new tool for
path planning,’’ Tech. Rep., 1999. [Online]. Available: https://www.
researchgate.net/publication/2639200_Rapidly-Exploring_Random_
Trees_A_New_Tool_for_Path_Planning

[13] S. Erke, D. Bin, N. Yiming, Z. Qi, X. Liang, and Z. Dawei, ‘‘An improved
A-star based path planning algorithm for autonomous land vehicles,’’ Int.
J. Adv. Robot. Syst., vol. 17, no. 5, Sep. 2020, Art. no. 172988142096226.

[14] H. Liu and Y. Zhang, ‘‘ASL-DWA: An improved A-star algorithm for
indoor cleaning robots,’’ IEEE Access, vol. 10, pp. 99498–99515, 2022.

[15] G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou, ‘‘Geometric A-star
algorithm: An improved A-star algorithm for AGV path planning in a port
environment,’’ IEEE Access, vol. 9, pp. 59196–59210, 2021.

[16] C. Li, X. Huang, J. Ding, K. Song, and S. Lu, ‘‘Global path planning based
on a bidirectional alternating search A∗ algorithm for mobile robots,’’
Comput. Ind. Eng., vol. 168, Jun. 2022, Art. no. 108123.

[17] J. Yu, M. Yang, Z. Zhao, X.Wang, Y. Bai, J. Wu, and J. Xu, ‘‘Path planning
of unmanned surface vessel in an unknown environment based on improved
D∗lite algorithm,’’ Ocean Eng., vol. 266, Dec. 2022, Art. no. 112873.

[18] W. Li, L. Wang, A. Zou, J. Cai, H. He, and T. Tan, ‘‘Path planning for UAV
based on improved PRM,’’ Energies, vol. 15, no. 19, p. 7267, Oct. 2022.

[19] H. Ma, W. Pei, and Q. Zhang, ‘‘Research on path planning algorithm for
driverless vehicles,’’Mathematics, vol. 10, no. 15, p. 2555, Jul. 2022.

[20] J.-G. Kang, D.-W. Lim, Y.-S. Choi, W.-J. Jang, and J.-W. Jung, ‘‘Improved
RRT-connect algorithm based on triangular inequality for robot path plan-
ning,’’ Sensors, vol. 21, no. 2, p. 333, Jan. 2021.

[21] J. H. Holland, ‘‘Genetic algorithms,’’ Sci. Amer., vol. 267, no. 1, pp. 66–73,
1992.

43254 VOLUME 11, 2023

http://dx.doi.org/10.1002/rob.20109

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

[22] R. Storn and K. V. Price, ‘‘Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces,’’ 1995.

[23] M. Dorigo and G. Di Caro, ‘‘Ant colony optimization: A new
meta-heuristic,’’ in Proc. Congr. Evol. Comput. (CEC), vol. 2, 1999,
pp. 1470–1477.

[24] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw. (ICNN), vol. 4, 1995, pp. 1942–1948.

[25] J. Ma, Y. Liu, S. Zang, and L. Wang, ‘‘Robot path planning based on
genetic algorithm fused with continuous Bezier optimization,’’ Comput.
Intell. Neurosci., vol. 2020, pp. 1–10, Feb. 2020.

[26] K. Hao, J. Zhao, B. Wang, Y. Liu, and C. Wang, ‘‘The application of an
adaptive genetic algorithm based on collision detection in path planning of
mobile robots,’’ Comput. Intell. Neurosci., vol. 2021, pp. 1–20, May 2021.

[27] C. Miao, G. Chen, C. Yan, and Y. Wu, ‘‘Path planning optimization of
indoor mobile robot based on adaptive ant colony algorithm,’’ Comput.
Ind. Eng., vol. 156, Jun. 2021, Art. no. 107230.

[28] M. Xie, Y. Bai, M. Huang, Y. Deng, and Z. Hu, ‘‘Energy- and time-aware
data acquisition for mobile robots using mixed cognition particle swarm
optimization,’’ IEEE Internet Things J., vol. 7, no. 8, pp. 7734–7750,
Aug. 2020.

[29] L. Zhang, Y. Zhang, and Y. Li, ‘‘Mobile robot path planning based on
improved localized particle swarm optimization,’’ IEEE Sensors J., vol. 21,
no. 5, pp. 6962–6972, Mar. 2021.

[30] X. Yuan, X. Yuan, and X. Wang, ‘‘Path planning for mobile robot based on
improved bat algorithm,’’ Sensors, vol. 21, no. 13, p. 4389, Jun. 2021.

[31] X. Li, Y. Xu, K. K. Lai, H. Ji, Y. Xu, and J. Li, ‘‘A multi-period vehi-
cle routing problem for emergency perishable materials under uncertain
demand based on an improved whale optimization algorithm,’’Mathemat-
ics, vol. 10, no. 17, p. 3124, Aug. 2022.

[32] F.-F. Li, Y. Du, andK.-J. Jia, ‘‘Path planning and smoothing ofmobile robot
based on improved artificial fish swarm algorithm,’’ Sci. Rep., vol. 12,
no. 1, p. 659, Jan. 2022.

[33] S. K. Pattnaik, S. Panda, and D. Mishra, ‘‘A multi-objective approach for
local path planning of autonomous mobile robot based on metaheuris-
tics,’’ Concurrency Comput., Pract. Exp., vol. 34, no. 10, May 2022,
Art. no. e6801.

[34] Q. Song, S. Li, J. Yang, Q. Bai, J. Hu, X. Zhang, and A. Zhang, ‘‘Intelligent
optimization algorithm-based path planning for a mobile robot,’’ Comput.
Intell. Neurosci., vol. 2021, Sep. 2021, Art. no. 8025730.

[35] H. Arslan and M. Manguoğlu, ‘‘A hybrid single-source shortest path
algorithm,’’ TURKISH J. Electr. Eng. Comput. Sci., vol. 27, no. 4,
pp. 2636–2647, Jul. 2019.

[36] L. Pasandi, M. Hooshmand, and M. Rahbar, ‘‘Modified A∗ algorithm inte-
grated with ant colony optimization for multi-objective route-finding; case
study: Yazd,’’ Appl. Soft Comput., vol. 113, Dec. 2021, Art. no. 107877.

[37] Y. Zhou and N. Huang, ‘‘Airport AGV path optimization model based on
ant colony algorithm to optimize Dijkstra algorithm in urban systems,’’
Sustain. Comput., Informat. Syst., vol. 35, Sep. 2022, Art. no. 100716.

[38] J. Yu, G. Liu, J. Xu, Z. Zhao, Z. Chen, M. Yang, X. Wang, and Y. Bai,
‘‘A hybrid multi-target path planning algorithm for unmanned cruise ship
in an unknown obstacle environment,’’ Sensors, vol. 22, no. 7, p. 2429,
2022.

[39] A. Omar and S. Ahmed, ‘‘An optimal path planning algorithms for mobile
robot,’’ Iraqi J. Comput., Commun. Control Syst. Eng., vol. 21, no. 2,
pp. 44–58, 2021.

[40] O. Wahhab and A. Al-Araji, ‘‘Path planning and control strategy design
for mobile robot based on hybrid swarm optimization algorithm,’’ Int. J.
Intell. Eng. Syst., vol. 14, no. 3, pp. 565–579, Jun. 2021.

[41] H. Min, X. Xiong, P. Wang, and Y. Yu, ‘‘Autonomous driving path plan-
ning algorithm based on improved A∗ algorithm in unstructured environ-
ment,’’ Proc. Inst. Mech. Eng. D, J. Automobile Eng., vol. 235, nos. 2–3,
pp. 513–526, Feb. 2021.

[42] Y. Li, R. Jin, X. Xu, Y. Qian, H.Wang, S. Xu, and Z.Wang, ‘‘Amobile robot
path planning algorithm based on improved A∗ algorithm and dynamic
window approach,’’ IEEE Access, vol. 10, pp. 57736–57747, 2022.

[43] Y. Ou, Y. Fan, X. Zhang, Y. Lin, and W. Yang, ‘‘Improved A∗ path
planning method based on the grid map,’’ Sensors, vol. 22, no. 16, p. 6198,
Aug. 2022.

[44] C. Niu, A. Li, X. Huang, W. Li, and C. Xu, ‘‘Research on global dynamic
path planning method based on improved A∗ algorithm,’’Math. Problems
Eng., vol. 2021, Aug. 2021, Art. no. 4977041.

[45] J. Zhang, J. Wu, X. Shen, and Y. Li, ‘‘Autonomous land vehicle path
planning algorithm based on improved heuristic function of A-star,’’ Int.
J. Adv. Robot. Syst., vol. 18, no. 5, Sep. 2021, Art. no. 172988142110427.

[46] H.Wang, X. Qi, S. Lou, J. Jing, H. He, andW. Liu, ‘‘An efficient and robust
improved A∗ algorithm for path planning,’’ Symmetry, vol. 13, no. 11,
p. 2213, Nov. 2021.

[47] T. Qiuyun, S. Hongyan, G. Hengwei, and W. Ping, ‘‘Improved particle
swarm optimization algorithm for AGV path planning,’’ IEEE Access,
vol. 9, pp. 33522–33531, 2021.

[48] X. Xu and F. Yan, ‘‘Random walk autonomous groups of particles
for particle swarm optimization,’’ J. Intell. Fuzzy Syst., vol. 42, no. 3,
pp. 1519–1545, Feb. 2022.

[49] F. Kong, J. Jiang, and Y. Huang, ‘‘An adaptive multi-swarm competi-
tion particle swarm optimizer for large-scale optimization,’’Mathematics,
vol. 7, no. 6, p. 521, Jun. 2019.

[50] X. Chen, H. Tianfield, and W. Du, ‘‘Bee-foraging learning particle swarm
optimization,’’ Appl. Soft Comput., vol. 102, Apr. 2021, Art. no. 107134.

[51] A. Flori, H. Oulhadj, and P. Siarry, ‘‘Quantum particle swarm optimization:
An auto-adaptive PSO for local and global optimization,’’ Comput. Optim.
Appl., vol. 82, no. 2, pp. 525–559, Jun. 2022.

[52] Y. Zhang, X. Liu, F. Bao, J. Chi, C. Zhang, and P. Liu, ‘‘Particle swarm opti-
mization with adaptive learning strategy,’’ Knowl.-Based Syst., vol. 196,
May 2020, Art. no. 105789.

[53] V. Roberge, M. Tarbouchi, and G. Labonté, ‘‘Comparison of parallel
genetic algorithm and particle swarm optimization for real-time UAV
path planning,’’ IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 132–141,
Feb. 2012.

[54] B. K. Patle, A. Pandey, D. R. K. Parhi, and A. Jagadeesh, ‘‘A review: On
path planning strategies for navigation of mobile robot,’’Defence Technol.,
vol. 15, pp. 582–606, Aug. 2019.

[55] Y. Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez, and
R. G. Harley, ‘‘Particle swarm optimization: Basic concepts, variants and
applications in power systems,’’ IEEE Trans. Evol. Comput., vol. 12, no. 2,
pp. 171–195, Apr. 2008.

[56] Y. Zhang, S.Wang, G. Ji, and Z. Dong, ‘‘AnMRbrain images classifier sys-
tem via particle swarm optimization and kernel support vector machine,’’
Sci. World J., vol. 2013, Aug. 2013, Art. no. 130134.

[57] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, and G. Gencyilmaz, ‘‘A particle
swarm optimization algorithm for makespan and total flowtime minimiza-
tion in the permutation flowshop sequencing problem,’’ Eur. J. Oper. Res.,
vol. 177, no. 3, pp. 1930–1947, 2007.

[58] X. Cheng, J. Li, C. Zheng, J. Zhang, and M. Zhao, ‘‘An improved PSO-
GWO algorithm with chaos and adaptive inertial weight for robot path
planning,’’ Frontiers Neurorobot., vol. 15, Nov. 2021, Art. no. 770361.

[59] A. T. Kiani, M. F. Nadeem, A. Ahmed, I. Khan, R. M. Elavarasan,
and N. Das, ‘‘Optimal PV parameter estimation via double exponen-
tial function-based dynamic inertia weight particle swarm optimization,’’
Energies, vol. 13, no. 15, p. 4037, Aug. 2020.

[60] Y. Shi and R. Eberhart, ‘‘A modified particle swarm optimizer,’’ in Proc.
IEEE Int. Conf. Evol. Comput., May 1998, pp. 69–73.

[61] M. Li, H. Chen, N. Zhong, S. Lu, and X. Wang, ‘‘An improved particle
swarm optimization algorithm with adaptive inertia weights,’’ Int. J. Inf.
Technol. Decis. Making, vol. 18, no. 3, pp. 833–866, 2019.

[62] H. R. Tizhoosh, ‘‘Opposition-based learning: A new scheme for machine
intelligence,’’ in Proc. Int. Conf. Comput. Intell. Modeling, Control Autom.
Int. Conf. Intell. Agents, Web Technol. Internet Commerce (CIMCA-
IAWTIC), 2005, pp. 695–701.

[63] X. Yu, W. Xu, and C. Li, ‘‘Opposition-based learning grey wolf opti-
mizer for global optimization,’’ Knowl.-Based Syst., vol. 226, Aug. 2021,
Art. no. 107139.

[64] J. Li, Y.-X. Li, S.-S. Tian, and J. Zou, ‘‘Dynamic cuckoo search algorithm
based on Taguchi opposition-based search,’’ Int. J. Bio-Inspired Comput.,
vol. 13, no. 1, pp. 59–69, 2019.

[65] L. Abualigah, D. Yousri, M. A. Elaziz, A. A. Ewees, M. A. A. Al-Qaness,
and A. H. Gandomi, ‘‘Aquila optimizer: A novel meta-heuristic optimiza-
tion algorithm,’’ Comput. Ind. Eng., vol. 157, Jul. 2021, Art. no. 107250.

[66] T. Sang-To, H. Le-Minh, S. Mirjalili, M. A. Wahab, and T. Cuong-Le,
‘‘A new movement strategy of grey wolf optimizer for optimization prob-
lems and structural damage identification,’’ Adv. Eng. Softw., vol. 173,
Nov. 2022, Art. no. 103276.

[67] Q. Askari, I. Younas, and M. Saeed, ‘‘Political optimizer: A novel socio-
inspired meta-heuristic for global optimization,’’ Knowl.-Based Syst.,
vol. 195, May 2020, Art. no. 105709.

VOLUME 11, 2023 43255

C. Huang et al.: APSO: An A∗-PSO Hybrid Algorithm for Mobile Robot Path Planning

[68] K. Zervoudakis and S. Tsafarakis, ‘‘A mayfly optimization algorithm,’’
Comput. Ind. Eng., vol. 145, Jul. 2020, Art. no. 106559.

[69] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, ‘‘Multi-verse optimizer:
A nature-inspired algorithm for global optimization,’’ Neural Comput.
Appl., vol. 27, no. 2, pp. 495–513, 2016.

[70] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ J. Inf. Sci., vol. 179, no. 13, pp. 2232–2248, 2009.

[71] D. Simon, ‘‘Biogeography-based optimization,’’ IEEE Trans. Evol. Com-
put., vol. 12, no. 6, pp. 702–713, Dec. 2008.

[72] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and
S. M. Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,
Dec. 2017.

[73] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[74] M. Seyedali, M. M. Seyed, and L. Andrew, ‘‘Gray wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, no. 3, pp. 46–61, 2014.

[75] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

CHANGSHENG HUANG received the B.S., M.S.,
and Ph.D. degrees in management from the China
University of Petroleum, in 1995, 1998, and 2010,
respectively.

Since 1998, he has been a Professor with the
School of Economics and Management, China
University of Petroleum. He is the author of three
books andmore than 60 articles. His research inter-
ests include strategic management, marketing, and
industrial engineering.

YANPU ZHAO received the B.S. degree in
software engineering from Qingdao University,
Qingdao, China, in 2021. He is currently pursuing
the master’s degree in industrial engineering and
management with the School of Economics and
Management, China University of Petroleum.

His research interests include path plan-
ning, intelligent computing, and metaheuristic
algorithm.

MENGJIE ZHANG received the B.S. degree in
software engineering from Qingdao University,
Qingdao, China, in 2021.

Her research interests include software engi-
neering, smart medical care, and intelligent
computing.

HONGYAN YANG received the B.S. degree in
industrial engineering from the Shandong Univer-
sity of Science and Technology, Qingdao, China,
in 2021. She is currently pursuing the master’s
degree in industrial engineering and management
with the School of Economics and Management,
China University of Petroleum.

Her research interests include line balancing and
intelligent computing.

43256 VOLUME 11, 2023

