
Apt-pbo: Solving the Software Dependency Problem using
Pseudo-Boolean Optimization

Paulo Trezentos
ISCTE/ADETTI/Caixa Magica

Av.Forças Armadas
Lisbon, Portugal
prrt@iscte.pt

Inês Lynce
INESC-ID/IST/TU Lisbon

Av. Rovisco Pais
Lisbon, Portugal

ines@sat.inesc-id.pt

Arlindo L. Oliveira
INESC-ID/IST/TU Lisbon

Av. Rovisco Pais
Lisbon, Portugal

aml@inesc-id.pt

ABSTRACT
The installation of software packages depends on the correct
resolution of dependencies and conflicts between packages.
This problem is NP-complete and, as expected, is a hard
task. Moreover, today’s technology still does not address
this problem in an acceptable way. This paper introduces a
new approach to solving the software dependency problem
in a Linux environment, devising a way for solving depen-
dencies according to available packages and user preferences.
This work introduces the “apt-pbo” tool, the first publicly
available tool that solves dependencies in a complete and
optimal way.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]

General Terms
Algorithms,Reliability

1. INTRODUCTION
Software installation is the process of installing programs

assuring that specifically required software is pre-installed
and that defined actions are taken before or after the copy
of the files into the file-system [24, 29]. Although this is a
common problem among Microsoft and Free / Open Source
Operating Systems (Linux, BSD,...) [30] we will focus on the
later ones, since a progress in this field would be applicable
to all environments, including applications like Eclipse or
Firefox [13].

The installation process comprises retrieving the pack-
age, solving the software dependency tree, retrieving and
installing the software dependencies and finally installing
the package and executing the associated install scripts [6].

The dependency graph represents the software dependen-
cies and sub-dependencies needed for a package to work
properly after installation [4]. The restrictions imposed by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

the graph may have no solution (for instance, due to bro-
ken dependencies), only one solution, or several solutions.
Criteria such as the minimum number of packages or up-to-
date packages can be defined to rank the solutions in terms
of their quality. Finding a solution consists in defining the
sub-set of packages that meets the dependency requirements.
This process is called dependency solving.

There are three main contributions in this paper. First,
our main finding is an efficient encoding of the dependen-
cies and conflicts as a pseudo-Boolean optimization problem
without the need for Integer Linear Programming (ILP) or
Satisfiability (SAT) extra-steps, thus providing a tool ca-
pable of finding a solution in every possible case. Second,
we achieve this goal by proposing a flexible algorithm that
can be adjusted to user preferences without sacrificing per-
formance, a critical issue for a tool with user interaction.
Finally, the developed tool is available under a free license,
allowing enhancements and benchmarking by the research
community.

This paper is organized as follows. In the next section
we review the basic principles of the Dependency Solving
problem as well as an introduction to Pseudo-Boolean Opti-
mization. Section 3 describes the methodology used, provid-
ing a system overview and discussing different optimization
criteria. Section 4 presents experimental results and Sec-
tion 5 describes related work. Finally, section 6 presents the
concluding remarks.

2. BACKGROUND

2.1 Dependency Solving Problem
The dependency solving was proved to be NP-complete

[14]. This confirms a well known relationship: an increase
in the number of packages causes a rapid increase in the
complexity of the problem, for which no efficient solutions
are known.

Finding a solution becomes rapidly more difficult as the
number of available packages grows and the number of ver-
sions of each package increases [20]. Existing installers like
Apt, YUM, Smart or URPMI are known to report no solu-
tion even if one exists, since the search performed is incom-
plete.

2.1.1 Problem Definition
A package is installable if all of its package dependen-

cies can be satisfied using packages in active repositories
(repositories being a collection of packages that are com-
monly stored remotely). The number of dependencies and

conflicts between packages can become very high in the scope
of open source repositories of software [11].

Although Open Source Systems (OSS) and namely Linux
distributions share the basic software components (glibc,
gcc,...), the packaging system is slightly different amongst
them. Some distributions use the RPM format (Red Hat
Package Management system), others use the DEB format
(Debian system) and a minority use the almost deprecated
Tarball system. The dependency solving problem applies
equally to RPM and DEB, given that the existing differ-
ences are in format specification and do not compromise a
universal definition of the problem.

The following definitions are needed to define the Depen-
dency Solving problem [5, 14]:

• Package: A package p is a pair (u, v) where u is a
unit and v is a version. Units are represented by strings
and versions are represented by non-negative numbers.
The set of all packages in a repository is denoted by
P.

• Dependencies: A dependency1 of a package p is a
set of sets of packages d1, . . . , dk. A dependency may
include a package version constraint defined by one of
the following binary operators: <, ≤, ≥, > or =. Such
a dependency corresponds to a set of dependencies,
each of which is called sub-dependency. If p is to be
installed, then each dependency di needs to be satis-
fied, i.e. at least one package in each set of packages
di must be installed.

• Conflicts: A conflict is a symmetric relation between
two packages. Two packages conflict with each other
if that is stated in their metadata information, if they
have an element e with exactly the same location in
the file system or if they are different versions of the
same package 2.

• Repository: A repository can be represented as a
tuple R = (P,D, C), where P is the set of all packages,
D : P → ℘(P)) is the dependency function (with ℘(X)
representing the set of subsets of X) and C : P × P is
the conflict relation.

• Dependency tree: A dependency tree DT of a pack-
age p is an AND/OR graph G where each node corre-
sponds to a package or a set of packages and the edges
correspond to the (sub-)dependencies. The root of the
tree corresponds to package p. The dependencies are
represented with AND edges and the sub-dependencies
are represented with OR edges. Moreover, conflicts
may also be represented.

1

2

3

1
p

x

y

1

2

Figure 1: Generic dependency tree

1Dependencies are defined as Requires in RPM terminology.
2By definition in DEB and by practice with exceptions in
RPM.

Figure 1 depicts a set of packages P that under repository
R has dependencies, sub-dependencies and conflicts3. The
partial representation of repository R in this figure may by
defined by the tuple (P,D, C) with:

• P = {(p, 1), (x, 1), (x, 2), (y, 1),
(y, 2), (y, 3)}

• D((p, 1)) = {{(x, 1), (x, 2)}, {(y, 1), (y, 2), (y, 3)}}
D((x, 1)) = D((x, 2)) = D((y, 1)) = D((y, 2)) =
= D((y, 3)) = {}

• C((y, 3)) = (x, 1)

Empty sub-sets for the dependencies mean that the
package itself meets the dependency requirements.

This concept can be applied to a specific example of a
package installation. For this purpose we present the depen-
dency tree for the car package in Figure 2. The car package
depends on packages engine, wheel and door.

door

engine

2

3
tyre

window

2

2

1
conflicts

glass

glass

wheel
car 2

2

1

turbo 1

1

2

2

0

1
1

Figure 2: Dependency tree for the car package

A successful dependency solving algorithm for package p
should derive the correct set of packages from the corre-
sponding dependency tree DT p. Since, in most cases, sev-
eral solutions can be found, the algorithm should derive the
solution that best meets user preferences. In section 3.2 we
introduce criteria for solution assessment.

2.2 Boolean Satisfiability and Pseudo-Boolean
Optimization

The dependency solving problem can be easily encoded
into Boolean satisfiability (SAT) using the Conjunctive Nor-
mal Form (CNF), where a CNF formula is a conjunction (∧)
of clauses, a clause is a disjunction (∨) of literals and a literal
is a Boolean variable (x) or its negation (x̄).

Each package is represented by a Boolean variable and,
therefore, a variable assigned value true corresponds to an
installed package, whereas a variable assigned value false
corresponds to a package that is not installed. In addition,
dependencies and conflicts are represented by clauses. For
each package p and its dependencies d1, . . . , dk, are created
k clauses: (p̄ ∨ d1), ..., (p̄ ∨ dk). Moreover, a binary clause
(p̄ ∨ p̄′) is created for each conflict between two packages p
and p′.

For example, the dependency tree in Figure 1 is repre-
sented by the following CNF formula:

(p̄1 ∨ x1 ∨ x2) ∧ (p̄1 ∨ y1 ∨ y2 ∨ y3) ∧ (x̄1 ∨ ȳ3)

3For simplicity, the tuple representation of a package as
(p, 2) will be now represented as p2

However, it should be noted that SAT is a decision prob-
lem and any solution to the problem is equally valid. In case
some solutions are better than the others, we move to an op-
timization problem and a extension of the SAT formulation
called pseudo-Boolean optimization (PBO) [22] should be
used instead.

In a pseudo-Boolean formula, variables have Boolean do-
mains and constraints (called PB-constraints) are linear in-
equalities with integer coefficients,

X
i

ci · li ≥ n with i ∈ N, ci, n ∈ Z and li ∈ {0, 1}, (1)

where ci and n are integer constants and li are literals.
The operator ≥ may be replaced by other operators such as
>,=, <,≤.

From an Integer Linear Programming (ILP) point of view,
PB-constraints can be seen as a specialization of ILP where
all variables are Boolean, which explains why this formula-
tion is also known as 0-1 ILP. From a SAT point of view,
PB-constraints can be seen as a generalization of clauses.
For example, clause (p̄1 ∨ x1 ∨ x2) is translated to the PB-
constraint p̄1 + x1 + x2 ≥ 1. If one considers that p̄1 can
be replaced by (1 − p1) then we obtain the equivalent PB-
constraint x1 + x2 − p1 ≥ 0

A pseudo-Boolean formula can be extended with an op-
timization function, in which case the resulting formula is
called a PBO formula. In the context of the dependency
solving problem, the optimization function can be used to
establish preferences between packages. Clearly, some in-
stalled packages are more important than others, and there-
fore guaranteeing that these packages are not uninstalled
should be a priority.

3. METHODOLOGY
In this section we present our methodology for using pseudo-

Boolean optimization for solving dependencies and conflicts
in a package installation.

3.1 System Overview
Figure 3 depicts a typical installation flow of apt-pbo.
The core of the system is the apt-pbo application [26] that

has different hooks to integrate modules. However in the
tests performed, the overhead of the external calls is not
significant since the number of iterations is extremely low.
Note that this architecture allows the exchange of modules.
For example, changing the PBO solver is an extremely easy
task.

solution
apt−get

pbo−install

problem.pbo

parsing
solution

apt−get install

solver
PBO

apt−pbo install car

installed packages

1

Figure 3: High level apt-pbo processing flow

The apt-pbo application is called with the operation install
and the desired package as arguments, which map the usage
of apt-get.

The components of the figure have the following role:

Require: Package to install p1, Pol
1: repeat
2: (f, c)← pboinstall(p1, Pc, Pol,R, P I)
3: S ← solver(f, c)
4: Pc ← {}
5: for all pi ∈ S such that pi = 0 do
6: Pc ← check rdeps(pi)
7: end for
8: for all pj ∈ S such that pj = 1 do
9: Pc ← check rconfs(pj)

10: end for
11: until Pc = {}

Figure 4: Iterative apt-pbo solving algorithm for
package installation problem

• apt-get pbo-install: We have a modified version of
apt-get installation software. Apt is one of the most
used meta-installers and is adopted by different Linux
distributions like Debian, Ubuntu and Caixa Mágica.
Our modifications created a new method called pbo-
install which, given a specific package, calculates the
dependency tree and writes the PBO encoding. The
PBO encoding is composed of PB-constraints and an
objective function.

• PBO solver: The problem.pbo formula is solved by
the PBO solver. We have used and tested different
solvers to be introduced in section 4.4.

• parsing solution: apt-pbo has a module that parses
the solver solution and, if necessary, establishes a new
iteration with apt-get pbo-install.

• apt-get install solution: When the final package set
solution is reached, the user is asked for permission
and the removal and installation of the packages are
performed using apt and dpkg / rpm.

The apt-pbo algorithm in Figure 4 describes the proposed
approach to the process of finding the solution taking into
account the available set of packages and the user defined
policy regarding installation. The solution is the set of pack-
ages that change status due to the install transaction. A
change of status occur when a package is marked to be re-
moved or to be installed.

Given a package to install p1, the universe of available
packages R (repositories), the installed set of packages PI
and the user policy regarding installation Pol we start by
encoding the problem as PBO calling pboinstall . This pro-
cedure returns f as the cost function that minimizes the
problem having the user policy Pol and returns c as the
pseudo-Boolean constraints that must be obeyed during the
optimization process.

Constraints c represent a directed acyclic graph that ag-
gregates all the packages upon which p1 depends on or con-
flicts with as well as their own dependencies and conflicts.

The installation problem encoded in PBO is passed to the
solver that returns the best solutions (line 3).

After having a possible solution returned by the solver,
we will check all elements in S that have a reverse relation

outside c. Recall that S only contains packages that changed
status. If package pi is proposed to be removed, we will
check for pi reverse dependencies4 and add them to pc (line
6). The same is done to Pj , a new package that will be
installed, but with its reverse conflicts.

We continue until the solution does not hold any reverse
dependency not yet added to Pc.

In the next sections, we will discuss criteria that will be
used to define the objective function and present our pro-
posals.

3.2 Optimization of the Criteria
Although different sets of dependency packages can be

found for installing a specific package, it is possible to rank
solutions as more or less desirable. The best solution may
not be the same for every user, as it depends on how the
packages wil be use, the nature of the system (development,
production, home PC, critical data server,...) and the limi-
tations of the resources.

User preferences are ultimately encoded as PBO although
they can be expressed initially in formats like CUDF (Com-
mon Upgradeability Description Format) [25] and then en-
coded into PBO.

A number of policies can be used to optimize the resulting
installation [27]. Three of them were implemented in apt-
pbo:

A Removal policy - Number of installed packages that
will be removed (less is better).

B Number policy - Number of total packages that will
be installed (less is better).

C Freshness policy - Number of packages in the system
that are not the newer ones (less is better).

Other policies could be easily considered, such as the to-
tal download size, the final install size or the popularity.
From our empirical experience with users in the scope of
the deployment of a Linux distribution present in more than
650,000 computers, we found the criteria A, B and C as
preferable.

Although heuristics can and have been used in the past to
optimize a single criterion [18], that approach does not allow
hybrid solutions or flexible changes on the relative values of
each factor in run-time.

Optimization of only one criterion leads in most cases to
a loss of quality with respect to other criteria. This hap-
pens since some of them are correlated and have conflicting
objectives. For instance, getting a fresher package will typi-
cally lead to a larger one, since new features are introduced
and size tends to increase. This is also true for removal and
freshness. If we want to avoid removing packages, this will
most probably compromise the freshness approach.

In the next section we will formulate the installation prob-
lem as a pseudo-Boolean optimization problem. The goal is
to obtain the solution that best fits the user preferences ex-
pressed as multi-dimensional criteria.

4A dependency of p1 is a package pd that must be installed
in order to install p1. A p1 reverse dependency is a package
prd that depends on p1.

car2 ≥ 1
engine2 + engine1 - car2 ≥ 0
engine2 + engine1 ≤ 1
wheel2 + wheel3 - car2 ≥ 0
wheel2 + wheel3 ≤ 1
door1 + door2 - car2 ≥ 0
door1 + door2 ≤ 1
turbo1 - engine1 ≥ 0
tyre1 + tyre2 - wheel3 ≥ 0
tyre1 + tyre2 ≤ 1
window0 + window1 + window2 - door2 ≥ 0
window0 + window1 + window2 ≤ 1
glass1 - window1 ≥ 0
glass2 - window2 ≥ 0
glass2 + tyre2 ≤ 1
glass1 + glass2 ≤ 1

Figure 5: Car problem constraints definition

3.2.1 PBO Encoding for Dependency Solving
The PBO encoding is done in two steps. First, the con-

straints are defined using the dependency tree graph. Sec-
ond, the objective function is defined by weighting different
criteria.

Constraints Definition
In a pseudo-Boolean formula, variables have Boolean do-

mains and constraints are linear inequalities with integer
coefficients.

Encoding relations of the dependency tree as constraints
is a straightforward task. The following translations will be
used:

• Installation: p1 is the package that we want to install:
p1 ≥ 1. In the context of PB constraints, saying vari-
able p1 has to be assigned value 1 implies having a
“greater or equal” constraint.

• Dependency: p1 depends on x1 should be represented
as x1 − p1 ≥ 0. This means that installing p1 im-
plies installing x1 as well, although x1 may be installed
without p1. If p1 also depends of y1, we should add
y1 − p1 ≥ 0.

• Multiple versions: If a package p1 requires the instal-
lation of a package x having different versions, for ex-
ample x1 and x2, then we should encode the require-
ment that installing package p1 requires installing ei-
ther package x1 or package x2. Hence, such require-
ment may be encoded with constraint x1 +x2−p1 ≥ 0.

• Conflicts: If a package has an explicit conflict with
other package, for instance if y3 conflicts with x1, then
this conflict is encoded as x1 +y3 ≤ 1. Remember that
each pair of different versions of the same package is
considered a conflict.

For the example given in figure 2, the constraints would
be defined as presented in figure 5.

Objective Function Definition
The quality of the solution relies on the definition of the

objective function. The policies proposed in section 3.2 can
be easily translated into PBO encoding.

Minimizing Package Removal
To minimize the number of removed packages, even if

newer packages exist, one should use the following objective
function, where PI ′1..P I

′
N are the packages already installed:

f1(P) = min(1− PI ′1) + ...+ (1− PI ′N)

In order to minimize the objective function, the solver will
try to set variable PIi to 1 which will imply not removing
installed packages.

Minimizing the Number of Installed Packages
In this case, the total number of packages installed in the

system is to be minimized. Having P1..PN as the new pack-
ages targeted to be installed - either existent or new - the
objective function will be:

f2(P) = min P1 + ... + PN

Maximizing the Freshness of Packages
If the user wants the most recent version of the packages,

then the objective function should make the system install
the most recent versions, independently of what is already
installed.

Consider P11..P1k1 to be different package versions or
releases of package P1. Also, consider v(P11) to be the nor-
malized distance (a constant, for the purposes of the PBO
problem) between the package P11 and the newest version
present in repository R. Then the optimization function is:

f3(P) =min (P11 ∗ v(P11) + ...+ P1K1 ∗ v(P1K1))+

(P21 ∗ v(P21) + ...+ P2KN ∗ v(P2KN)) + ...

The value of v(PiKi) is zero if the package is the newest
in the repository.

Optimization of only one criterion leads in most cases to
a loss of quality with respect to other criteria. This hap-
pens since some of the criteria are correlated. For instance,
getting a fresher package will typically lead to a larger one,
since new features are introduced and size tends to increase.
This is also true for removal and freshness. If we want to
avoid removing packages this will most probably compro-
mise the freshness approach. In the next section we propose
an approach to overcome this problem.

3.3 Multicriteria Optimization
Trying to satisfy different criteria when finding the set of

packages for a software installation falls in the multicriteria
decision making (MCDM) set of problems [8] and there is
previous work on applying PBO to this research area [1].

Apt-pbo integrates the different objective functions of the
previous section as a multiobjective problem (MOP), seeking
the efficient solutions in the sense of Pareto optimality [9]:

min (f1(P), f2(P), f3(P))

with P as the available packages and f1, f2 and f3 as the
existent objective functions.

The multiobjective problem is solved transforming it into
a single objective problem through weighted sum scalariza-
tion of the form:

min

3X
k=1

λk · fk(P)

where we minimize an additive function of the scalar prod-
uct of λ that denotes the user-defined coefficients and fk(P),
i.e. the objective functions defined before.

Apt-pbo uses the following coefficients, λ, representing the
overall utility for the user:

• Removal Cost (Wr): weight given to the cost of a re-
moval of a package. This coefficient is typically large
when applied to a server in a critical environment.

• Presence Cost (Wp): weight given to the presence of a
new or an already installed package in the solution.

• Version Cost (Wv): weight representing the cost of
having an older version in the solution when a newer
one exists.

The objective function is then defined as:

min (Wr · f1(P) +Wp · f2(P) +Wv · f3(P))

Instead of a weighted sum scalarization transformation,
we could easily compare the criterion vectors (f1(P), f2(P),
f3(P)) in lexicographic order but then would loose some of
the flexibility introduced by the multiobjective approach.

4. EXPERIMENTAL RESULTS
We performed experiments on a large set of different repos-

itories, packages and systems hosted at O2H Lab cluster of
184 Xeon CPU cores5 with Linux installed in Xen virtual
system machines and inside a chroot environment. In the
next sections we report the results of this evaluation.

4.1 Experimental Methodology
The goal of the experiments performed was to simulate

the installation of software in a Linux environment and test
the various criteria under different environments.

We performed two groups of tests: one more oriented to-
wards the finding of a solution and another more focused on
the characterization of the solution itself.

The tested applications were:

• apt-get: the most used meta-installer among Linux dis-
tributions. Apt-get was called with –no-install-recommends
to assure that the goal was exactly the same for all
tested applications.

• apt-pbo: the tool proposed in this paper and tested
with three different policies(freshness, removal and num-
ber). Each policy has a multicriteria function defined
and is given a higher weight to the corresponding fo-
cus.

• Smart: a meta-installer developed in Python with heuris-
tics to solve complex cases [19].

• aptitude: meta-installer with its own engine for depen-
dencies solving [5].

4.2 Experimental Data
The data was generated using Linux Debian Lenny re-

lease as the operating system. Lenny is considered to be
a stable version of Debian and is widely used. This Lenny
installation has the following characteristics:

5The infra-structure is integrated in the ADETTI / ISCTE
centre of RNG Grid.

• The base system is a Linux Debian Lenny system with
Lenny official, updates, backports and debian-multimedia
repositories active, which account for 26,251 distinct
versions of packages, 23,760 normal packages and 165,360
dependencies.

As a common basis for all the tests, we use a typical Linux
installation without X11 graphical interface and comprising
338 base packages. Some of the installed packages are from
Debian Sid, the development version. All tests were per-
formed using a batery of 1,000 installation transactions of
the most popular packages. This information was provided
by the Debian popularity contest [21]. Using the popular-
ity ranking contributes to assure that the tests are repre-
sentative. For this purpose a scheduler / job manager was
developed in Perl which was responsible for scheduling the
installation jobs in the cluster, process the outputs, store
the logs with the results of the installation and control the
timeouts6.

4.3 Comparing Meta-Installer Performance
The first phase of benchmarks consisted in analysing the

main existent Linux meta-installers (apt-get, smart and ap-
titude) against apt-pbo. The time measured refers to the
time between the call of the application and the return of
the solution. Retrieval of packages and installation was not
measured because network latency might introduce spurious
noise. The time spending on building the cache (apt-get up-
date / smart update) was not taken into account since it is
performed in the same way by all meta-installers.

Table 1: Benchmarking of meta-installers (results in
seconds)

Meta-installer Average Time Standard Deviation

Apt-get 00:00.21 00:00.17
Aptitude 00:00.62 00:00.15
Smart 00:02.63 00:00.25
Apt-pbo 00:03.77 00:01.91

The results presented in table 1 reflect the comparison of
apt-pbo and other used meta-installers. In this test, for apt-
pbo was chosen “removal” user-policy as it is eventually the
default of a normal user and it is the one which is closer to
other meta-installers solution.

Although apt-pbo takes longer than the other tools, it still
provides a solution in a reasonable time (3.77 seconds, on
average) that does not compromise the user’s experience of
a package installation.

Figure 6 presents the time taken by each meta-installer
to solve a package installation problem varying the size of
the problem (measured in terms of installed packages). As
expected, with apt-pbo the time of the execution grows with
the size of the problem but the increasing is progressive.
This fact is replicated with the standard deviation results
depicted in table 1, which shows a low standard deviation.

Apt-pbo allows the use of different user policies for the
selection of the packages to install (section 3.2.1). Each
user policy has different weights mapping the importance
of number, removal or ‘freshness’ of packages.

6The time limit was set to 300 seconds. After 300 seconds
the job was killed.

00-00

00-02

00-04

00-06

00-08

00-10

00-12

00-14

 0 20 40 60 80 100 120 140

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Problem size (# installed packages)

apt-get
aptitude

smart
apt-pbo

Figure 6: Execution time of meta-installers

00-00

00-05

00-10

00-15

00-20

00-25

00-30

00-35

 0 20 40 60 80 100 120

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Problem size (# installed packages)

Removal
Number

Freshness

Figure 7: Execution time of apt-pbo according to
different user policies

In figure 7 and table 2, we analyse the apt-pbo execu-
tion time for different size problems when changing the user-
policy (removal, number and freshness). The freshness pol-
icy involves the installation of a large number of packages
which requires more time not only in the solving part but
also in parsing the solution.

Table 2: Benchmarking of apt-pbo user policies (re-
sults in seconds)

Meta-installer Average Time Standard Deviation

Removal 00:03.77 00:01.91
Number 00:04.26 00:02.24
Freshness 00:08.30 00:05.13

4.4 Comparing Different PBO Solvers
A comparison of SAT solvers has been done intensively

in the past through international competitions and bench-
marks [3, 17].

Since the solving algorithm can benefit greatly from the
structure of the problem, it was considered important to test
different PBO solvers in this problem.

As mentioned in section 3.1, apt-pbo is structured in mod-
ular form, allowing the replacement of one solver instance
by another compatible solver.

For testing purposes, four solvers were considered:

• minisat+ [7]: based on minisat, a well known SAT
solver, minisat+ encodes PB-contraints into SAT.

• bsolo [10]: bsolo is a PBO solver which was first de-
signed to solve instances of the Unate and Binate Cov-
ering Problems (UCP/BCP) and later updated with
Pseudo-Boolean constraints support.

• wbo [16]: participated in PB’09 competition, this solver
uses Weighted Boolean Optimization which aggregates
and extends PBO and MaxSAT.

• opbdp [2]: an implementation in C++ of an implicit
enumeration algorithm for solving PBO.

Besides the solvers mentioned above, Pueblo [23] was also
considered but not included since the only available version
is dynamically linked and the libraries needed are old and
not available in the testing infra-structure. Nevertheless, an
old Linux system was installed (Debian Etch) and some ad-
hoc tests were performed with Pueblo. These tests revealed
that Pueblo has in general a bad performance for this specific
type of problems and no further efforts to port Pueblo were
made.

Table 3 summarizes the results. As can be verified, both
wbo and bsolo are able to solve all the instances but wbo has
a better performance (7.79 seconds on average per transac-
tion). Minisat+ comes in third place, not only with a low
number of instances solved, 355, but also with a poorer per-
formance, taking on average more than two minutes to solve
a problem.

Table 3: PBO solvers benchmarking
wbo bsolo minisat+ opbdp

Solved 1,000 1,000 355 47
Timeouts 0 0 645 953
Average time 00:07.79 00:04.45 02:30.16 07:16.49

Figure 8 compares wbo and bsolo varying the number of
the installed packages. There is a smooth growth by wbo
and a more unstable line of growth in a much more unpre-
dictabile fashion by bsolo.

4.5 Unmet Dependencies Analysis
The unmet dependencies are reported by Apt and other

meta-installers when a required dependency is not found.
This could be either the result of a broken dependency in
the repository or the solver just being unable to find it in a
proper way. The first topic has been investigated by differ-
ent groups [14, 31] and has registered a significant progress.
In this section we present the results that demonstrate the
inability of today’s meta-installers - namely apt-get - to find
a solution in every case and, on the other hand, the encour-
aging results of apt-pbo.

A specific example of a unmet dependency is presented in
figure 9.

In figure 9, the package ksplash is represented with multi-
ple dependencies. One of them is kdebase-data that is avail-
able under two versions: 4.2.2-1 and 3.5.9.dsfg.1-6. The

00

05

10

15

20

25

30

 0 20 40 60 80 100 120

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Problem size (# installed packages)

bsolo
wbo

Figure 8: PBO solvers graph

ksplash

kdelibs4c2a libc6 libgcc1 libstdc++6 kdebase-data libx11-6 libxext6

3.5.9.dfsg.1-6 4.2.2-1

Figure 9: Example of an unmet dependency -
ksplash package.

ksplash package has two constraints that say that it requires
kdebase-data (<< 4:3.5.9.dfsg.2) and kdebase-data (>> 4:3.5.
9.dfsg.1) which match with existent package 3.5.9.dsfg.1-6.

Apt-get is only able to backtrack into the newest ver-
sion and unable to find the solution. This is the simplest
category of problems, but over a large group of relations
presents a hard problem. Recall that package dependencies
can have version comparison operators (=,≥,>,<,≤) as well
as Boolean operators (depends on debconf OR debconf-2.0).

The second group of unmet dependencies problems are
related with conflicts. A package might conflict with another
package which results in the need to install another version.

For the assessment of unmet dependencies extension, we
performed tests over a universe of the top 1,000 packages
of popcon list. Apt-get reported the inability to install 123
packages due to unmet dependencies. These packages, cor-
respond to 12.3% of the total packages not being available to
the user, which is an unusual high rate. This high rate is jus-
tified by a base system that contains a mixture of packages
from both Lenny and Sid.

Table 4: Metainstallers and solution characteriza-
tion

Meta-installer Possible No Wrong
Solutions Solutions Solutions

Apt-get 591 123 0
Aptitude 713 0 1
Smart 714 0 0
Apt-pbo 714 0 0

Apt-pbo, as well as Smart, was able to find a solution to

every case of the 1,000 packages. Aptitude performed also
well with the exception of a false positive of a package that
was not installable and was reported as so.

4.6 Package Installation Solutions Assessment
The finding of a solution by apt-pbo is important only

if it is as good or even better than solutions returned by
existent tools and techniques. In what follows we show that
the apt-pbo solutions are equivalent and sometimes better:
fewer packages, newer packages installed or few packages
removed. This varies according to the policy defined.

Table 5 refers to tests with Lenny as characterized before.
The tests generated the transaction (install, upgrade,...) of
83,545 packages in the defined environment. In each column
is presented the sum of packages for the 1.000 installation
transactions that changed status.

Table 5: Total package transactions by metainstaller
(1,000 packages)

Tool Installed Updated Removed Down-
graded

apt-get 7,766 17 12 0
aptitude 8,423 18 161 464
smart 7,786 92 124 479

PBO freshness 6,808 20,449 25 567
PBO removal 7,767 11 162 443
PBO number 7,729 13 102 500

As we can confirm analysing table 5, the results are very
different between meta-installers. Apt-pbo with freshness
policy proposes a lot more updates which is a critical point
for users that want to have their system updated. This
ability to update the system even further than the direct
dependencies tree as also an impact on the Removed factor,
being the lowest of all benchmarks. Apt-pbo removal will
need to have its weighting tweaked to get better results than
freshness.

A
pt-get

A
ptitude

Sm
art

PB
O

-Freshness

PB
O

-R
em

oval

PB
O

-N
um

ber

%
 o

f
to

ta
l

Install
Updates
Remove
Downgrade

Figure 10: Relative transaction distribution by
meta-installer

The graph in figure 10 provides a global overview of the
data in table 5 and shows that the structures of the solutions
are very different.

In what concerns apt-pbo different policies, table 6 presents
the average number of each transaction per installed pack-

Table 6: Average package transactions for Apt poli-
cies

Tool Installed Update Remove Downgrade

PBO freshness 10.07 30.25 0.04 0.84
PBO removal 10.88 0.02 0.23 0.62
PBO number 10.82 0.02 0.15 0.7

age. Apt-pbo with the removal policy performed under ex-
pectations (0.23 seconds for the removal criterion on average
per package installation). Hence, in the future the weights
should be rebalanced to obtain better results in terms of
removed packages. On the other hand, apt-pbo with num-
ber policy outperforms Smart and Aptitude with respect to
removal factor compensating it with the downgrade which
could be a good trade-off for critical servers.

The experimental results are very encouraging and apt-pbo
is starting to be tested by real users. On the other hand, the
PBO approach was able to find a solution to every installa-
tion problem, even when the original Apt installer was not
capable of doing so. The solver finds rapidly a solution for
the instances presented, and the package selection problem
is not only manageable but also very efficient when using
the PBO approach. The freshness cost function gets not
only the solution with newer packages but also the minimal
number of installed packages. The time consumed is very
acceptable for a user interactive application.

4.7 Multi-criteria analysis
In section 3.3, we presented the theory behind the multi-

criteria approach of apt-pbo and in the previous section we
presented a pre-defined set of weights for different user pro-
files (freshness, removal and number). Focusing on freshness
policy and fixing the other weights, we will now analyse the
variation of version cost (Wv) with two values. In the first
scenario, that we call conservative freshness, Wv is set to
3,000. In the second scenario, that we call aggressive fresh-
ness, Wv is set to 30..

Table 7: Varying weights in freshness policy (aver-
age)

Aggressive Conservative

Install 12.98 12.27
Updates 30.18 30.13
Remove 0.06 0.03
Downgrade 0.84 0.85

Time 00:11.18 00:11.50
Timeouts 0 22

From table 7, we conclude that although on average the
changes are not so significant, they have important differ-
ences. For instance, the removal time doubles in the aggres-
sive freshness because we are strongly interested in having
updates, and so the compromise is to allow some packages to
be removed. In the installation of 1,000 packages, 60 pack-
ages have been removed against just 30 packages removed
in conservative freshness.

The best way to check differences is by analysing a real
case: the installation of the at-spi package with different
weights. At-spi is an assistant interface that provides ac-

cessibility to Gnome graphical environment and therefore
exhibits several Gnome package dependencies.

Table 8: Installing at-spi package with conservative
and aggressive freshness weights

Aggressive Conservative

Install 9 37
Updates 35 35
Remove 1 0
Downgrade 7 10

Time 00:19.45 00:17.37

The conservative freshness profile avoids the removal of
packages as can be seen in table 8. However, the trade-off is
extra packages for install and downgrade.

libgnomevfs2-0

2.22

libhal1

0.5

libgconf2-4

2.26 -> 2.22

libbonobo2-0

2.22

conflicts < 2.24 at-spi

1.22

libnautilus-extension1

2.26 ->2.20

file-roller

2.26 ->2.22

breaks < 2.24

...+24

..+2
breaks < 2.24

Figure 11: Package at-spi installation with conser-
vative freshness

Figure 12 presents a graph of a sub-set of at-spi dependen-
cies. In order to install at-spi, we need to install the package
containing libbonobo2-0 library. This package is only avail-
able in version 2.2 which conflicts with libgconf2-4 package,
thus resulting in the proposal of downgrade of this package
from 2.26 to 2.22. However, package file-roller depends on
the previous libgconf2-4 version. In the conservative fresh-
ness, file-roller is downgraded causing the installation of 26
new packages and the downgrade of 3 packages.

libgconf2-4

2.26 -> 2.22

libbonobo2-0

2.22

conflicts < 2.24 at-spi

1.22

file-roller

2.26 ->2.22

libnautilus-extension1

2.26

breaks < 2.24

Figure 12: Package at-spi installation with aggres-
sive freshness

The aggressive freshness (see figure 12) is more tolerant to
removals. The removal of the file-roller package proposed in
this profile avoids the massive installation of packages and
downgrade of a few other. Having that file-roller is not a crit-
ical package but rather a graphical frontend for command-
line compressing tools, this may be the best solution for a
large group of users.

Observe that the simple lexicographical ordering of objec-
tive functions has this exact problem: in package installation

realm we lose by independently optimizing a single criterion
over all the others.

5. RELATED WORK
In the field of component-based systems, the use of PBO

was proposed generically for the assembly of components in
[15].

The use of Boolean Satisfiability (SAT) for solving the
dependency problem has first been proposed in the context
of the EDOS FP6 project [14] which had impact in other
research efforts [12]. An alternative formulation using con-
straint programming techniques has been described in [18],
including the use of different heuristics for improving the
quality of the solution found.

Later on, the use of PBO has been independently pro-
posed by two different research teams [27, 28]. The Opium
tool [28] presents some drawbacks which in our opinion can
invalidate the approach. First, it encodes the whole package
universe as constraints which requires extra computation in
opposition to a selective and incremental choice of the pack-
ages as presented in the algorithm of figure 4. Finally, it
does not provide a formal description for the PBO encoding
and the optimization function which is a critical part of a
meta-installer proposal.

6. CONCLUSIONS
In this work we formulated the installability problem as

a pseudo-Boolean optimization problem in order to be able
to encode not only the constraints implied by the package
dependencies but also the optimization criteria chosen by
the user that characterize each installation.

An open implementation based on Apt has shown that the
developed tool can be easily reconfigured to use this method,
which can be effectively used for real installation problems.

After the intensive testing in Debian (DEB) and Caixa
Magica (RPM) distributions, we propose to continue devel-
oping the current approach, to further extend the tool and
to port it to other distributions. The enhancement of cost
functions for the different criteria will be pursued with the
goal of better performance and improvement of the solutions
provided. Given the complexity of the problem, some tech-
niques will have to be devised to abort the search process
if, in some instances, it is taking too long to find a partic-
ular solution. However, we believe that such behavior will
be more the exception than the rule, and that this method
vastly improves the actual state of the art, where installers
fail with relatively trivial problem sets and obtained solu-
tions are far from perfect.

Acknowledgments
Partially supported by the European Community’s 7th Frame-
work Programme (FP7/2007-2013), grant agreement n◦214898.
Paulo Trezentos thanks John Thomson for interesting dis-
cussions on this topic and proof-reading the article.

7. REFERENCES
[1] B. Alidaee, H. Wang, and Y. Xu. A pseudo-boolean

optimization for multiple criteria decision making in
complex systems. In Proceedings of the 7th
international conference on Computational Science
(ICCS ’07), Part IV, pages 194–201, Berlin,
Heidelberg, 2007. Springer.

[2] P. Barth. A Davis-Putnam based enumeration
algorithm for linear pseudo-Boolean optimization.
Technical report, Technical Report MPI-I-95-2-003,
Max Planck Institute., 1995.

[3] D. L. Berre, O. Roussel, and L. Simon. International
SAT 2009 competition, 2009.
http://www.satcompetition.org/2009/.

[4] L. Bixin. Managing dependencies in component-based
systems based on matrix model. In
NETObjectDays’03, 2003.

[5] D. Burrows. Modelling and resolving software
dependencies, 2005. Debian.

[6] D. Di Ruscio, P. Pelliccione, A. Pierantonio, and
S. Zacchiroli. Towards maintainer script
modernization in foss distributions. In Proceedings of
the 1st international workshop on Open component
ecosystems (IWOCE ’09), pages 11–20, New York,
NY, USA, 2009. ACM.

[7] N. Eén and N. Sörensson. Translating pseudo-Boolean
constraints into SAT. Journal on Satisfiability,
Boolean Modeling and Computation, 2:1–26, March
2006.

[8] M. Ehrgott. Multicriteria optimization. Lecture Notes
in Economics and Mathematical Systems. Springer,
2000.

[9] M. Ehrgott and X. Gandibleux. A survey and annoted
bibliography of multiobjective combinatorial
optimization. OR Spektrum, 2000.

[10] F. Heras, V. Manquinho, and J. Marques-Silva. On
applying unit propagation-based lower bounds in
pseudo-Boolean optimization. In Proceedings of
International FLAIRS Conference, 2008.

[11] N. LaBelle and E. Wallingford. Inter-package
dependency networks in open-source software.
Technical report, Computer Science Department,
University of Northern Iowa, 2004.

[12] D. Le Berre and A. Parrain. On SAT technologies for
dependency management and beyond. ASPL, 2008.

[13] D. Le Berre and P. Rapicault. Dependency
management for the eclipse ecosystem: eclipse p2,
metadata and resolution. In Proceedings of the 1st
international workshop on Open component
ecosystems(IWOCE ’09), pages 21–30, New York, NY,
USA, 2009. ACM.

[14] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source package-based
software distributions. In International Conference on
Automated Software Engineering (ASE’06), pages
199–208. IEEE Computer Society, 2006.

[15] P. Manolios, D. Vroon, and G. Subramanian.
Automating component-based system assembly. In
Proceedings of the 2007 international symposium on
Software testing and analysis (ISSTA ’07), pages
61–72, New York, NY, USA, 2007. ACM.

[16] V. Manquinho, J. Marques-Silva, and J. Planes.
Algorithms for weighted boolean optimization. In
Proceedings of the 12th International Conference on
Theory and Applications of Satisfiability Testing, 2009.

[17] V. Manquinho and O. Roussel. PBO competition
2009, 2009. http://www.cril.univ-artois.fr/PB09/.

[18] S. Mouthuy, L. Quesada, and G. Doom. Search
heuristics and optimisations to solve package
installability problems by constraint programming.
Technical report, Department of CSE, UC Louvain,
October 2006.

[19] G. Niemeyer. Smart package manager, 2009.
http://labix.org/smart.

[20] Pietro Abate, Jaap Boender, R. Di Cosmo, and
S. Zacchiroli. Strong dependencies between software
components. In Proceedings of 3rd International
Symposium on Empirical Software Engineering and
Measurement (ESEM ’09), 2009.

[21] D. project. Debian popularity contest, 2009.
http://popcon.debian.org/.

[22] O. Roussel and V. M. Manquinho. Pseudo-Boolean
and cardinality constraints. In A. Biere, M. Heule,
H. van Maaren, and T. Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 695–733. IOS
Press, 2009.

[23] H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid
pseudo-boolean sat solver. Journal on Satisfiability,
Boolean Modeling and Computation, 2:2006, 2006.

[24] J. A. Stafford and A. L. Wolf. Architecture-level
dependence analysis in support of software
maintenance. In Proceedings of the third international
workshop on Software architecture (ISAW ’98), pages
129–132, New York, NY, USA, 1998. ACM.

[25] R. Treinen and S. Zacchiroli. Expressing advanced
user preferences in component installation. In
Proceedings of the 1st international workshop on Open
component ecosystems (IWOCE ’09), pages 31–40,
New York, NY, USA, 2009. ACM.

[26] P. Trezentos. Apt-pbo homepage, 2009.
http://aptpbo.caixamagica.pt/.

[27] P. Trezentos, R. Di Cosmo, L. Lauriére, M. Morgado,
J. Abecasis, F. Mancinelli, and A. Oliveira. New
Generation of Linux Meta-installers. Research Track of
FOSDEM 2007, 2007.

[28] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner.
Opium: Optimal package install/uninstall manager. In
29th International Conference on Software
Engineering (ICSE 07), pages 178–188, 2007.

[29] M. Vieira and D. Richardson. Analyzing dependencies
in large component-based systems. In Proceedings of
the 17th IEEE international conference on Automated
Software Engineering (ASE ’02), page 241,
Washington, DC, USA, 2002. IEEE Computer Society.

[30] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Effective and scalable software compatibility testing.
In Proceedings of the 2008 international symposium on
Software testing and analysis (ISSTA ’08), pages
63–74, New York, NY, USA, 2008. ACM.

[31] S. Zacchiroli, R. Di Cosmo, and P. Trezentos. Package
upgrades in FOSS distributions: Details and
challenges. In First ACM Workshop on Hot Topics in
Software Upgrades (HotSWUp), October 2008.

