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Abstract: Designing efficient and flexible approaches for placement of Virtual 

Network Function (VNF) chains is the main success of Network Function 

Virtualization (NFV). However, most current work considers the constant bandwidth 

and flow processing requirements while deploying the VNFs in the network. The 

constant (immutable) flow processing and bandwidth requirements become critical 

limitations in an NFV-enabled network with highly dynamic traffic flow. Therefore, 

bandwidth requirements and available resources of the Point-of-Presence (PoP) in 

the network change constantly. We present an adaptive model for placing VNF chains 

to overcome this limitation. At the same time, the proposed model minimizes the 

number of changes (i.e., re-allocation of VNFs) in the network. The experimental 

evaluation shows that the adaptive model can deliver stable network services. 

Moreover, it reduces the significant number of changes in the network and ensures 

flow performance. 

Keywords: Virtual Network Function, Network Function Virtualization, Point-of-

Presence (PoP), Traffic Flow, Flow Processing. 

1. Introduction 

Network Function Virtualization (NFV) is a promising technology that replaces 

hardware-based network devices with computer programs (software-based network 

functions). These computer programs can run on Commercial-Off-The-Shelf (COTS) 

servers using virtualization technology. A computer program running on a COTS 

server using virtualization technology is known as Virtual Network Function (VNF). 

The replacement of hardware-based network devices with computer programs brings 

several benefits: (i) it reduces the network operational expenses; (ii) it minimizes the 

maintenance cost by a cheaper update of the network functions than the expensive 

hardware upgrade; (iii) it provides flexible placement of VNF chains across the 

geographically distributed network [1]. 

NFV has made progress on several fronts, from the design and placement of 

VNFs [2-4] to the management and orchestration of network services (VNF chains) 

[5-8]. Despite the progress made on different facets of NFV, several research 
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opportunities still need to be explored. VNF placement and chaining are one of them. 

In this problem, we study how to determine the places for locating the VNFs in a 

given set of PoPs and how to route the network traffic among them according to the 

given description in Service Function Chaining (SFC) [9]. Software-Defined 

Networking (SDN) can realize traffic routing [10], enabling the flexible placement 

of VNFs and traffic routing. The problem complexity depends on the constraints and 

requirements that must be satisfied during the placement and chaining, such as the 

computing power of the PoPs (the place where the network functions will be 

deployed), end-to-end delay, and bandwidth between the PoPs. It has been proven 

that the VNF placement and chaining problem is NP-hard [11, 12]. This problem has 

been studied widely with different objectives, such as maximization of the network 

resource utilization and minimization of the network operational cost [2-4, 12-15]. 

When deploying a traffic request set, the existing VNF placement and chaining 

approaches consider the fixed and immutable VNF operational cost and available 

resources on PoPs. However, the changes in the available resources of PoPs and the 

operating cost of VNFs depend on the number of network requests [16]. The network 

requests are highly dynamic with respect to time. Therefore, constant operational cost 

and available resources on PoPs is the main limitation of the VNF placement and 

chaining problem. According to SFC specifications, traffic processing requirements 

may be violated during peak hours. The existing approaches mitigate this issue by 

observing the behavior of individual VNFs and instantiating the more number of 

VNFs while increasing the network requests. The individual search in the solution 

space for local solutions may lead to a different solution to balance the demand and 

supply for the VNF placement and chaining problem. Moreover, it may increase the 

waste of resources due to the failure to explore the idle processing capacity in 

VNFs/PoPs. 

To overcome the above-mentioned limitation, we propose an adaptive model for 

orchestrating the VNFs. This model allows the service provider to (re)arrange the 

previously allocated network functions to deal with the dynamic character of requests 

and fluctuating resources in the PoPs. For this, the adaptive model (re)chains the 

traffic requests through VNFs with available computing power and bandwidth. 

Moreover, this model (re)allocates the VNFs on the PoPs with more available 

resources. In this article, we extend the research work [12] by providing: (i) the 

exhaustive discussion on an Integer Linear Programming (ILP) formulation that 

ensures the best provisioning of the network requests consideration with the dynamic 

changes in the demand and available network resources (physical or virtual);  

(ii) detailed evaluation of the ILP model in terms of effectiveness.  

The remaining part of the article is organized in the following way: Section 2 

comprises experimental evidence showing how VNFs perform due to the varying 

workload; Section 3 consists of an ILP formulation of adaptive provisioning of VNFs; 

Section 4 comprises an architecture for adaptive VNF chain placement; Section 5 

includes the experimental results with evolution scenarios; Section 6 comprises the 

existing work related to our proposed work; Section 7 consists of the final 

consideration with some light on the future direction.    
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2. Effect of network traffic on VNF 

In the context of the adaptive VNF provisioning model, it is to understand the VNF 

performance with the varying network loads. To illustrate the network function 

performance, we have experimented with different traffic patterns in the NFV-

enabled network. Finally, we summarize the finding of the experiments in the form 

of CPU utilization, throughput, and packet loss. 

We have conducted the experiments in an environment with two servers, A and 

B. Each server is equipped with Intel Xeon CPU E5-2623 (8 cores with 3.00 GHz), 

16 GB RAM, 1 Gbps Network Interface Card (NIC), 1 TB hard disk, and Ubuntu 

18.04 LTS. NIC of server A physically connected to the NIC of server B through the 

LAN wire. We have configured the Open vSwitch and KVM hypervisor on top of 

Ubuntu 18.04 on both servers. On top of the KVM hypervisor on server A, we have 

built a Virtual Machine (VM) with two vCPU, 1 GB RAM, and two logical interfaces. 

The virtual interfaces of the VM are associated with a virtual switch, which is 

logically associated with the physical NIC. Similarly, we have configured two VMs 

on top of the KVM hypervisor on server B. Each interface of the VM is associated 

with the virtual switch, and the virtual switch is logically associated with the physical 

NIC of server B.  

The description of the experimental setup is as follows. The first VM of server 

B is configured as an Iperf client in UDP mode, whereas the second VM of server B 

is configured as an Iperf server in UDP mode. VM of server A receives data packets 

from one interface and forwards these data packets to another interface. At the time 

of the experiment, the Iperf client (running on server B) generates the traffic (data 

packets), and these data packets come back to the Iperf server (running on server B) 

via VM (running on server A). In this experiment, VM configured on server A 

worked as a traffic forwarder. We have chosen this arrangement so that the traffic 

generation process will not affect the performance of VMs because our objective is 

to measure the performance of the VMs. In addition to that, we have carried out two 

different experiments with the bellow mentioned configurations: (i) VM with static 

routing and (ii) VM with routing functionality executing on Click Router [17]. For 

each experiment, we have evaluated the CPU usage by VM, host operating system, 

and other processes which are associated with this investigation. The experimental 

outcomes are an average of 20 executions. 
 

 
(a)  

 
(b)  

Fig. 1. Metrics measurement and their relationship with service chain: throughput vs CPU usage (a); 

throughput vs packet loss (b) 
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Fig. 1 illustrates that packet loss occurs when CPU usage approaches 100%. 

Predicting the starting point when the network function degrades the performance is 

possible. For example, the packet loss rate is approximately 0.06% when CPU usage 

is 95%, and throughput is 500 Mbps – the packet loss rate increases to 10% for 100% 

CPU usage and 750 Mbps throughput. We have observed that the additional overhead 

occurs with routing as a network function on Click. As a result, packet loss increases 

exponentially as CPU usage increases by 100%. We have observed that no significant 

variation occurs in memory usage.  

It is essential to mention that higher throughput can be obtained using packet 

processing optimization technologies such as Data Plane Development Kit (DPDK) 

[18] and Single Root I/O Virtualization (SR-IOV) [19]. These packet optimization 

techniques can shift the bottlenecks to points other than those depicted in the graph, 

but it would still happen. In brief, the above result and discussion strengthen the need 

for an adaptive approach proposed in this article. 

3. Adaptive VNF provisioning model  

To deal with the fluctuating nature of network traffic and rearrange the VNF 

allocation without degrading the network performance or wasting the physical 

resources of the network. It is necessary to review the available formulations and 

heuristics for the VNF placement problem. To this end, we have selected an adaptive 

version of the ILP formulation proposed by B a r i  et al. [12]. They have formulated 

the static placement and chaining of VNFs by applying constraints in a linear system. 

We present an adaptive ILP formulation for the placement and chaining of virtual 

network functions. 

3.1. Formal model 

Input. The ILP model presented by B a r i  et al. [12] considers a batch of traffic 

requests T and a geographically distributed network G = (V, L) where V and L are a 

set of nodes and links, respectively. Assume that the x86 servers are located at the 

different locations within the network and the VNFs are placed on these servers. The 

positions of servers within a network are called the Point-of-Presences (PoPs). The 

number of available servers in a network can be represented by S. There is a binary 

variable ℎ𝑠𝑣 ∈ {0, 1} that defines a server 𝑠 ∈ 𝑆 is associated to a switch (node)  
𝑣 ∈ 𝑉. The computing capacity of any arbitary server 𝑠 ∈ 𝑆 is represented by 𝑐𝑠. The 

bandwidth of a physiacl link (𝑢, 𝑣) ∈ 𝐿 is represented by 𝐵𝑢𝑣 and the propagation 

delay of a physical link (𝑢, 𝑣) ∈ 𝐿 is represented by 𝐷𝑢𝑣. There is a function 𝜂(𝑢) 

that return a set of adjacent node for the node u. 

(1)  𝜂(𝑢) = {𝑣|(𝑢, 𝑣) ∈ 𝐿}, where 𝑢, 𝑣 ∈ 𝑉. 
A network service is formed with the various combinations of the different types 

of VNFs. There is a symbol 𝑃 to denote the possible types of VNFs. Each type of 

VNF 𝑝 ∈ 𝑃 has following constraints. The required computing resource of a VNF 

type 𝑝 ∈ 𝑃 is represented by 𝑘𝑝. Moreover, processing capacity of a VNF type 𝑝 ∈ 𝑃 

is represented by 𝐶𝑝, whereas processing delay of a VNF type 𝑝 ∈ 𝑃 is represented 

by 𝐷𝑝. The actual values of a VNF characteristic depend on many parameters. To 
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simplify the proposed model, we choose the constant values for the VNF 

characteristic mentioned above. Here, we consider that VNF is a piece of software 

that can be deployed on any server.  

A network traffic 𝑡 ∈ 𝑇 can be represented by 5-tuple 𝑡 = 𝑢𝑡 , 𝑣𝑡, 𝜇𝑡 , 𝐵𝑡 , 𝐷𝑡, 

where 𝑢𝑡 ∈ 𝑉 is a source and 𝑣𝑡 ∈ 𝑉 is a destination. A sequential order of VNFs 

(i.e., proxy → firewall → IDS) that has to traverse by a traffic 𝑡 ∈ 𝑇  is denoted by 

𝜇𝑡 .  The bandwidth demand of a traffic 𝑡 ∈ 𝑇 is denoted by 𝐵𝑡 whereas, the maximum 

acceptable delay of a traffic 𝑡 ∈ 𝑇 is denoted by 𝐷𝑡. In this model, sequential order 

of VNF µ𝑡 can be represented by a directed graph 𝐺𝑡 = (𝑉𝑡 , 𝐿𝑡), where 𝑉𝑡 represents 

the traffic nodes and 𝐿𝑡 denotes the links between the nodes. Here, we define a 

function 𝜂𝑡(𝑢1) to obtain the adjacent node of 𝑢1 ∈  𝑉𝑡: 

(2)  𝜂𝑡(𝑢1) ={𝑢2|(𝑢1, 𝑢2) ∈ 𝐿𝑡}, where 𝑢1, 𝑢2 ∈ 𝑉𝑡. 
We consider that  𝑢1 < 𝑢2 iff  𝑢1 appears before 𝑢2 in a directed acyclic graph. 

Also, we define a binary variable 𝑞𝑢𝑝
𝑡  to denote the type of node 𝑢 is 𝑝 in a network 

traffic 𝑡:   

(3)  𝑞𝑢𝑝
𝑡 = {

1
0

 if  node 𝑢 ∈ 𝑉𝑡 is of type  𝑝 ∈ 𝑃,
otherwise.  

 

Enumeration of VNFs. To simplify the solution of the VNF placement 

problem, we enumerate all the VNFs in the network by computing the number of 

VNFs of each type that can be hosted on the servers. The number of hosted VNFs on 

a server can be computed by dividing the server resources to the required resources 

of VNF type. For example,  a server consists of 16 CPU cores and the required CPU 

cores by proxy and IDS is 4 and 8 CPU cores, respectively. Therefore, 4 proxy and 

2 IDS can be deployed on the server. The enumerated VNFs in the network a denoted 

by a symbol 𝑀. Each VNF 𝑚 ∈ 𝑀 is associated to a perticular server 𝑠 ∈ 𝑆. To 

express this relationship, we have a function 𝜎(𝑚),  
(4)  𝜎(𝑚) = 𝑠 if VNF 𝑚 is associated to server 𝑠. 

We also have another function Ω(s) that represent the reverse association, 

(5)  𝛺(𝑠) = {𝑚|𝜎(𝑚) = 𝑠}, where 𝑚 ∈ 𝑀 and 𝑠 ∈ 𝑆. 
Now, we define a variable 𝑑𝑚𝑝 ∈ {0, 1} that represent the type of a VNF: 

(6)  𝑑𝑚𝑝 = {
1
0

if VNF 𝑚 ∈ 𝑀 is type of 𝑝 ∈ 𝑃,
otherwise.  

 

There is a function 𝜆(𝑚) that returns the VNF type 𝑚, 

(7)  𝜆(𝑚) = {𝑝|𝑑𝑚𝑝 = 1}, where 𝑝 ∈ 𝑃 and 𝑚 ∈ 𝑀. 

We have a binary variable 𝑥𝑚={0, 1} to indicate the VNF m is active or not, 

(8)  𝑥𝑚 = {
1  if VNF 𝑚 is active,
0  otherwise.              

 

Output. ILP model is formulated using a set of binary variables that are 

described in this section. The binary variable 𝑦𝑢𝑚
𝑡  represents the mapping of node 

node 𝑢 of traffic 𝑡 to the VNF 𝑚:  

(9)  𝑦𝑢𝑚
𝑡 = {

1  if traffic node 𝑢 ∈  𝑉𝑡  is provisioned on a VNF 𝑚 ∈ 𝑀,
 0  otherwise.                                                                                     

 

The binary variable �̂�𝑢𝑚
𝑡  represents that the current placement of node u of 

traffic 𝑡 has changed to its previous placement.   
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Now, we have another variable that determines the mapping of a traffic node to 

the node in the physical network:   

(10)  𝑧𝑢𝑣
𝑡 = {

1 if traffic node 𝑢 ∈ 𝑉𝑡  is provisioned on node 𝑣 ∈ 𝑉 of the physical network,
0 otherwise,                                                                                                                           

 

𝑧𝑢𝑣
𝑡  is can be derived from the 𝑦𝑢𝑚

𝑡 : 𝑧𝑢𝑣
𝑡  = 1 if 𝑦𝑢𝑚

𝑡 = 1 and ℎ𝜎(𝑚)𝑣 = 1. 

Similarly, the variable �̂�𝑢𝑣
𝑡  indicates that current allocation of a traffic node has 

changed to its previous allocation.  

Finally, we define a decision variable 𝑤𝑢𝑣
𝑡𝑖𝑗

 that represents the placement of 

network traffic link (𝑖, 𝑗) on the physical network link (𝑢, 𝑣):  

(11) 𝑤𝑢𝑣
𝑡𝑖𝑗

= {
1 if network traffic link (𝑖, 𝑗) ∈ 𝐿𝑡  map on the physical network link (𝑢, 𝑣),
0 otherwise.                                                                                                                    

 

The decision variable �̂�𝑢𝑣
𝑡𝑖𝑗

 indicates that placement of a network traffic link has 

changed to its previous placement.   

3.2. Objective function and constraints  

The proposed model comprises a multi-objective function that minimizes the 

following: (i) network resource consumption (server resources (PoPs), physical links, 

and VNFs), and (ii) modifications in the placement due to variation in the demand of 

allocated network requests (i.e., reassignment of network request, and provisioning 

of new network functions). The objective function consists of two components. The 

first component minimizes resource consumption. The resource consumption is 

reduced by minimizing the allocated VNFs (denoted by 𝑧𝑢𝑣
𝑡 ) and links (denoted by 

𝑤𝑢𝑣
𝑡𝑖𝑗

). The second component of the objective function consists of two parts. The first 

part of the second component minimizes the changes made in the previously allocated 

VNFs, whereas second part of the second component minimizes the changes made in 

the previously allocated traffic links. Here, α and β are the weighted factors for setting 

the relative importance. 

Objective: 

Minimize (∑ ∑ ∑ 𝑧𝑢𝑣
𝑡

𝑣∈𝑉

+ ∑ ∑ ∑ 𝑤𝑢𝑣
𝑡𝑖𝑗

(𝑢,𝑣)∈𝐿(𝑖,𝑗)∈𝐿𝑡𝑡∈𝑇𝑢∈𝑉𝑡𝑡∈𝑇

) − 

− (𝛼 ∑ ∑ ∑ �̂�𝑢𝑣
𝑡

𝑣∈𝑉

+

𝑢∈𝑉𝑡𝑡∈𝑇

𝛽 ∑ ∑ ∑ �̂�𝑢𝑣
𝑡𝑖𝑗

(𝑢,𝑣)∈𝐿(𝑖,𝑗)∈𝐿𝑡𝑡∈𝑇

) 

Subject to: 

(12)  ∑ 𝑥𝑚𝑚∈Ω(s) × 𝑘𝑚 ≤ 𝑐𝑠 , ∀𝑠 ∈ 𝑆, 

(13)  ∑ ∑ 𝑦𝑢𝑚
𝑡 × 𝐵𝑡 ≤ 𝑐𝜆(𝑚)𝑢∈𝑉𝑡𝑡∈𝑇 , ∀𝑚 ∈ {𝑥|𝑥 ∈ 𝑀,   𝑎𝑥 = 1}, 

(14)  𝑦𝑢𝑚
𝑡 × 𝑞𝑢𝑝

𝑡 = 𝑑𝑚𝑝 , ∀𝑡 ∈ 𝑇, 𝑢 ∈ 𝑉𝑡 , 𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 

(15)  ∑ ∑ 𝑦𝑢𝑚
𝑡

𝑢∈𝑉𝑡𝑡∈𝑇 = 1,          ∀𝑚 ∈ 𝑀, 

(16)  𝑤𝑢𝑣
𝑡𝑖𝑗

+ 𝑤𝑣𝑢
𝑡𝑖𝑗

≤ 1, ∀(𝑖, 𝑗) ∈ {(𝑐, 𝑑)|𝑐 ∈ 𝑉𝑡 , 𝑑 ∈ 𝜆𝑡(𝑐), 𝑑 > 𝑐},   𝑢, 𝑣 ∈ 𝑉, 
(17) ∑ ∑ (𝑤𝑢𝑣

𝑡𝑖𝑗
+ 𝑤𝑣𝑢

𝑡𝑖𝑗
)𝑣∈𝑉𝑢∈𝑉 × 𝐵𝑡 ≤ 𝐵𝑢𝑣 , ∀𝑡 ∈ 𝑇, ∀(𝑖, 𝑗) ∈ {(𝑐, 𝑑)|𝑐 ∈ 𝑉𝑡 , 𝑑 ∈ 𝜂𝑡(𝑐), 𝑑 > 𝑐}, 

(18)  ∑ ∑ (𝑤𝑢𝑣
𝑡𝑖𝑗

− 𝑤𝑣𝑢
𝑡𝑖𝑗

) = 𝑐𝑖𝑢
𝑡 − 𝑐𝑗𝑢

𝑡 , ∀𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ {(𝑐, 𝑑) |𝑐 ∈ 𝑉𝑡 , 𝑑 ∈ 𝜂𝑡(𝑐), 𝑑 > 𝑐}𝑣∈𝑉𝑢∈𝑉 , 

(19) ∑ ∑ (𝑤𝑢𝑣
𝑡𝑖𝑗

+ 𝑤𝑣𝑢
𝑡𝑖𝑗

)𝑣∈𝑉𝑢∈𝑉 ≥ 1, ∀𝑡 ∈ 𝑇, ∀(𝑖, 𝑗) ∈ {(𝑐, 𝑑)|𝑐 ∈ 𝑉𝑡 , 𝑑 ∈ 𝜂𝑡(𝑐), 𝑑 > 𝑐}. 
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The set of constraints mentioned above constructs the model described below. 

The first four constraints are related to the resource limitation of the network 

infrastructure. Equation (12) ensures that the total provisioned computational 

resources to all VNFs on a server will be, at most, the available resources in the 

server. Equations (13) provides that the amount of passing traffic through a VNF will 

stay within the functional capacity of the VNF. Equation (14) is responsible for 

mapping a traffic node to an appropriate type of VNF. Equation (15) ensures the 

mapping of each traffic node to exactly one VNF. 

Equation (16) to (19) describes the chaining constraints of the network traffic 

requests. Each traffic link is mapped only to the single direction on the physical 

network link. Equation (16) satisfies the single-direction link mapping constraints to 

the link of the physical network. The traffic bandwidth demand is, at most, the 

physical link on which it is mapped. Equation (17) is responsible for satisfying the 

bandwidth constraints of the physical path. The flow conservation constraints must 

meet at all intermediate nodes. The incoming and outgoing traffic must be equal at 

each switch (node) except for the source and destination nodes of the mapped traffic. 

Equation (18) ensures the flow conservation constraint. Each traffic link is mapped 

on the physical network in the way they will build a network path. This model 

consists of Equation (19) to ensure that each traffic link is mapped on the path of the 

network. 

4. Architecture for adaptive VNF chain placement 

This section presents the architecture for the placement and orchestration of the VNF 

chain. This architecture relies on the proposed ILP model, which enables the dynamic 

allocation of VNFs in response to the changes in the processing requests. It also 

follows the basic building blocks and interface standards recommended by the ETSI 

MANO (MANagement and Orchestration).  

 

Fig. 2. Overview of the NFV architecture [1] 
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Fig. 2 demonstrates the architecture for the placement and orchestration of 

requested network requests. According to the functionalities of architecture, it can be 

grouped into three layers – Optimization Layer, Orchestration Layer, and 

Infrastructure Layer.  

4.1. Optimization Layer 

This layer comprises two modules – Optimizer and Planner. Optimizer and Planner 

modules work together to optimize and plan the instantiation of VNFs to satisfy the 

processing required in the network infrastructure. When (re)planning the VNF 

allocation in the network infrastructure, these modules are processed both deployed 

and to-be-deployed processing requests. 

The optimizer module computes the best feasible locations for allocating the 

VNFs in the network infrastructure. It considers the deployed and to-be-deployed 

processing requests along with the current network state (available N-PoPs and link 

resources). For this work, the Optimizer module incorporates the ILP model 

discussed in Section 3. The outcome of the Optimizer module is forwarded to the 

Planner module. The Planner module is responsible for carrying out the necessary 

changes on VNF placement and their corresponding chaining in the network 

infrastructure. The objective of this module is to maintain the network state close to 

optimal with the minimum number of changes. Various strategies can be adopted to 

ensure the transition between states and the network infrastructure must avoid service 

disruption [20, 21]. 

4.2. Orchestration Layer 

The Orchestration layer comprises several modules. All modules work together to 

provide the service chains in the network infrastructure. A Provisioner module is 

responsible for VNF chains placement according to the service chains mapping 

received from the Optimization Layer. The next module is the Metric Collector, 

which monitors the deployed VNFs in the network infrastructure and consolidates 

the operational statistics of deployed VNFs. Moreover, it gauges the operational 

states of VNF to determine required reallocations to deal with changes in traffic 

requests. The consolidated VNF performance measures are forwarded to the 

Optimization Layer. 

Both modules communicate to the controller through Controller Interface to 

perform the orchestration and monitoring activities of VNFs on the network 

infrastructure. This interface can further categorize into two sub-modules: SDN 

northbound interface and NFV northbound interface. The SDN northbound interface 

translates chain installation requests and state queries to the protocol used by the SDN 

controller. The NFV northbound interface is used to transform the requests related to 

the VNFs into the protocol used by the NFV platform of the network infrastructure.  

4.3. Infrastructure Layer 

The Infrastructure Layer consists of all elements of the physical network. The 

physical network contains COTS servers, the SDN controller, the NFV platform, and 

VNFs that can execute on these COTS servers. SDN controller has complete 
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information about the physical network, including the location of each network 

component and its connectivity. Both the SDN controller and NFV platform can 

interact with the physical network using the southbound interface.   

5. Evaluation 

We have performed a couple of experiments to prove and validate the behavior of the 

proposed model. The experimental work is carried out in a machine with 

configuration Intel(R) Core(TM) i7-4790 3.60 GHz processors and 12 GB RAM. We 

have installed the Ubuntu18.04 operating system. 

5.1. Experimental setup and workload 

We adopt a similar strategy employed in the state-of-the-art [12] experiment. We use 

the Internet2 [22] topology as a network infrastructure with 12 nodes (switches) and 

15 links. There are seven servers within the network; each server has 16 CPUs. These 

servers are associated with nodes 1, 3, 4, 5, 9, 10, and 11 of the network infrastructure. 

Each network link has a uniform bandwidth and delay of 10 Gbps and 10 ms, 

respectively. 

We have four types of VNF images: firewall, proxy, nat, and IDS. These VNF 

images are chosen randomly to create a network request. Moreover, network requests 

follow a line topology, and endpoints are selected randomly in a traffic request. The 

30 network requests are submitted in a batch to perform the evaluation. The length of 

each network request is uniform (i.e., three) in a batch. 

Our analysis focuses on the solution that the optimization model generates. To 

evaluate the model’s capability for re-designing the network with minimum 

disordering, we have provisioned the number of network requests between the regular 

and peak-hour workloads. Therefore, re-planning for placing the VNFs is necessary 

to maintain the stability and performance of the network. We have compared the 

proposed model with B a r i  et al. [12]. If re-planning is required, all network requests 

are submitted again on the optimization model. The optimization model provides the 

location for instantiating the VNFs in the network. 

5.2. Required changes in the network 

Fig. 3 a shows the number of changes in the VNF locations for some variations in the 

traffic requests, and Fig. 3b shows the number of changes in the mapping of service 

chains. The number of network requests varies from 10 to 80% of the total allocated 

services in the network. Moreover, the demand for network requests surpasses the 

provisioning capacity from 10 to 80%. Different curves are used to illustrate various 

scenarios. The values of the relative weighting factors (i.e., α and β) are chosen to be 

1 for this experiment. Observe that a constraint does not bind all possible values of 

these weighting factors since the network characteristics (i.e., load and size) may 

influence the effectiveness of any setting for them. We leave the analysis of the 

relationship among the weighting factors for future research.   

We have perceived that the count of modifications required (y-axis) to fine-tune 

the network for the new traffic demand is proportional to the following: (i) the 
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percentage of service chains with the increased demand, and (ii) the outreached 

demand values (x-axis). Moreover, the number of modifications in the positions of 

VNFs is significantly lesser than the reassignment of the service chains. This shows 

that the proposed model is feasible for real-world applications because the time 

required for programming a routing device is lower than that of the instantiation or 

migration of VNF. From Fig. 3a, one can observe that the proposed model reduces 

up to 25% of changes in the VNF placement compared to the baseline. Moreover, the 

proposed model can reduce more than two times in the VNF chaining compared to 

the baseline. 
 

 
(a) 

 

 
(b) 

Fig. 3.  Reassignment of VNFs for fluctuating traffic requests (a), reassignment of service chain for 

fluctuating traffic requests (b) 

5.3. Over-commitment effect on the network 

We initially have deployed the 40 service chains over the network under the expected 

workload, increasing the flow processing demand by 40%. The over-commitment 

value of the VNFs varies from 10% up to 40%. The higher value of over-commitment 

increases the possibility of performance degradation of some VNFs. Fig. 4 shows the 

required number of modifications in the network to adjust the service chain in 

response to the varying network traffic demand. Fig. 4 illustrates that the excessive 

over-commitment value decreases the network’s number of modifications. The 20% 

over-commitment reduces the 20% overall changes in the network infrastructure 

compared to the 10% over-commitment. 
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Fig. 4. Effect of over-commitment on the network 

5.4. Efficiency in re-planning the service chains  

Fig. 5 illustrates the average time required to find the best solution for the service 

chain re-planning problem. The proposed model can get the result within 5 s for all 

cases. We have observed that our model solves the problem in lesser time than the 

case in which all service chains are re-assigned. 

 
Fig. 5. Average times to re-allocate the service chains  

We have observed that the increased number of service chains in the usual case 

requires more time to discover the solution. Though VNF placement and chaining is 

an NP-hard problem, these results propound that attaining an exact solution is 

possible for medium and small-scale problems. But, more research is required to 

evaluate the computing time limits for the large-scale problem. 

6. Related work 

The VNF placement and traffic routing problem has attracted many researchers to 

develop various methods with different objectives. Many researchers have 

considered the VNF placement problem extension of the Virtual Network Embedding 

[23, 24]. The network services form a chain of VNFs. The VNF chain can be 

represented as a directed graph. This graph is mapped over a substrate network to 

accomplish a network service. More than one VNF can be mapped on a server (PoP), 

and each graph link is mapped on a physical connection. However, VNF and VNF 

placement and chaining problems have different objectives and mapping constraints. 
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The abovementioned problem has been investigated as NP-hard [12, 13, 25-27]. 

The existing techniques for solving the VNF placement and chaining problem can be 

categorized as exact, heuristic, and meta-heuristic. The same approach finds all 

possible solutions for the NP-hard problem. The search space increases exponentially 

as increase the problem size [12, 13, 27]. Therefore, the exact approach obtains the 

optimal solution for small and medium-scale problems. Heuristics are problem-

dependent, so the heuristic approach is formulated to solve the situation. The heuristic 

approach determines the solution quickly but compromises the solution optimality 

[12, 27]. The meta-heuristic techniques are the extension of the heuristic. These 

approaches offer a problem-independent framework that finds the near-optimal 

solution by enhancing the solutions in each step concerning quality measures. 

We have reviewed the existing exact, heuristic, and meta-heuristic approaches. 

Most researchers have used Integer Linear Programming (ILP) to solve the VNF 

placement and chaining problem. R i g g i o  et al. [26] presented an ILP model for 

jointly solving VNF placement and scheduling problems in the radio access network. 

Additionally, they design a heuristic algorithm, Wireless Network Embedding 

(WiNE), to solve the VNF placement and scheduling problem. B h a m a r e  et al. [27] 

present service chain placement approaches for geographically distributed clouds. 

The authors have designed an affinity-based allocation algorithm to solve the 

problem. The authors have presented an ILP model that minimizes inter-cloud traffic 

and response time in multi-cloud scenarios. S u n  et al. [28] formulate an ILP model 

to solve the VNF placement problem and reduce deployment costs. The authors have 

designed an affiliation-aware VNF placement heuristic that is time-efficient. L i, 

H o n g  and X u e  [29] formulate an ILP model for placing the VNFs over cloud data 

centers. ILP formulation aims to reduce the total resource consumption by 

minimizing the number of active servers. Moreover, the authors have designed a 

multi-stage heuristic based on a greedy search and adjustment approach for mapping 

the service chain requests. Y i, W a n g  and H u a n g  [30] address the scalable issue 

in provisioning the requested service chain and present an ILP model. Additionally, 

they give a backtrack proactive and reactive heuristic for the defined problem. 

There are some solutions based on Mixed Integer Linear Programming. 

M a r o t t a  et al. [31] formulate a MILP model for placing VNFs and routing problem 

considerations with the demand uncertainties and latency constraints. Additionally, 

they propose a time-efficient heuristic that minimizes the solution complexity. S a n g  

et al. [32] formulate the MILP model and have presented a greedy heuristic to solve 

the proposed VNF allocation problem. Q u  et al. [33] have obtained the optimal 

solution for the VNF placement and traffic routing problem using MILP formulation. 

They have developed a heuristic algorithm that uses a greedy approach to get the k-

shortest path. The problem objective maximizes the service acceptance rate and 

minimizes the end-to-end delay. Z h u  et al. [34] also have developed the MILP 

model for the service chain mapping problem. The problem objective maximizes the 

service acceptance ratio and minimizes resource fragmentation. M e c h t r i, G h r i b i  

and Z e g h l a c h e  [35] present an eigendecomposition-based heuristic for jointly 

solving the distributed cloud’s VNF placement and chaining problem. 
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Some researchers have selected single-objective meta-heuristic approaches to 

place the VNFs in an NFV-enabled network. K i m  et al. [36] present a Genetic 

Algorithm (GA) based Algorithm for deploying the VNFs in the cloud environment. 

The problem objective is to minimize the total power consumption and meet the 

required service latency. X i n g  et al. [37] propose a Gray Wolf Optimizer (GWO) 

for placing the VNFs in the NFV-enabled network. The objective of the optimizer is 

to minimize the end-to-end delay of requested services. C h a n t r e  and F o n s e c a  

[38] identify the redundant placement of VNFs in NFV-enabled networks. They have 

selected Particle Swarm Optimization (PSO) to mitigate the problem of redundant 

VNF placement and minimize the end-to-end delay of requested services. F a r s h i n  

and S h a r i f i a n  [39] mix the features of Ant Colony Optimization (ACO) and 

GWO to solve the VNF placement and traffic routing problem. They have used ACO 

to create the best routing path, and then VNFs are deployed on servers that fall on the 

selected route. The service chains are distributed over the different cloudlets. These 

cloudlets are connected to each network router, so each service chain somewhat 

utilizes the cloudlet resources. GWO tunes the controllable components of ACO. The 

mixed meta-heuristic performs better load balancing but suffers from high time 

complexity. 

L a z a r o v  [40] presents a mathematical model for analyzing the effect of 

malware attacks in computer networks. It suggests applying the different stochastic 

distributions of malware attacks to generalize the results. P e t r o s y a n  and 

A s t s a t r y a n  [41] have developed an architecture that enables HPC workloads to 

be serverless on the cloud. Shoc (Serverless HPC over Cloud) architecture integrates 

scaling and scheduling policies to deal with Cloud platforms like Azure, Alibaba 

Cloud, Salesforce, OpenStack, and Amazon Web Services. B h a r g a v i  and S h i v a  

[42] use the Dyna-Q-Learning task scheduling technique to manage behavioral and 

primary uncertainty task and resource parameters. 

Limited research uses multi-objective meta-heuristic approaches for mapping 

the service chains in the NFV-enabled network. K h e b b a c h e, M a k h l o u f  and 

Z e g h l a c h e  [43] have presented a Non-dominated Sorting Genetic Algorithm 

(NSGA) to solve the multi-objective VNF placement problem. The objective of the 

proposed meta-heuristic is to reduce the total mapping expenses and bandwidth 

usage. The experimental results demonstrate that the proposed NSGA functions 

better than some heuristic approaches. B e z e r r a  et al. [44] have formulated virtual 

network function placement across the distributed Micro-Data Centers (MDCs) as a 

multi-objective optimization problem. They propose NSGA-II and Generalized 

Differential Evolution 3 (GDE3) to solve the optimization problem for the cellular 

network scenarios. The Servicing Gateway (SGW) and Packet Data Gateway (PGW) 

are the responsible network functions for the data plane in the Long-Term Evolution 

(LTE) architecture. The experimental results demonstrate that GDE3 can attend to 

two conflicting objectives (minimize failure and maximize energy consumption), 

whereas NSGA-II prioritizes energy consumption.  

Despite the various advances in VNF placement and chaining, existing solutions 

do not consider the bottleneck scenario and localized fluctuation due to varying traffic 

volumes in the network. An ad hoc approach deals with these fluctuations by 
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executing the VNF placement algorithm again and rearranging the previous 

placement according to obtained results. Although this ad hoc strategy is effective, it 

is computationally expensive and needs to allow it to respond effectively to dynamic 

traffic volumes. The research works in articles [45, 46] are close to an effective 

solution to this problem. In these papers, the authors combine fuzzy logic [47] and 

genetic algorithms [48] to solve the virtual network function placement and routing 

problem with scalable computing capability. These solutions isolate network 

functions without considering global optimizations, such as traffic routing for high-

capacity VNFs with similar requirements. 

Considering the limitations mentioned above, this article presents an adaptive 

model to re-adjust the network infrastructure against the varying network traffic 

demand by identifying bottlenecks in the flow processing, rearranging the previous 

placement and chaining of network functions, and aiming to reduce the disruption in 

the flow processing. 

7. Conclusion   

In this article, we have studied the VNF chain placement problem. The existing 

approaches for the VNF placement problem have considered the constant flow 

processing and bandwidth requirement, which becomes a critical limitation. We 

present a formal adaptive model for re-adjusting the VNFs and logical links for 

varying network traffic demands to deal with this limitation. Meantime, the adaptive 

model reduces the number of changes in the network. The experimental results 

demonstrate that the proposed adaptive model reduces 25% in re-positioning the 

VNFs and two times in the VNF chaining.  

In the recent future, we will develop a method for traffic prediction and integrate 

this method into the formal model.  
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