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Abstract

Exocrine and endocrine glands deliver their
secretory product, respectively, at the surface
of the target organs or within the bloodstream.
The release of their products has been shown
to rely on secretory mechanisms often involv-
ing aquaporins (AQPs). This chapter will pro-
vide insight into the role of AQPs in secretory
glands located within the gastrointestinal tract,
including salivary glands, gastric glands, duo-
denal Brunner’s glands, liver, gallbladder,
intestinal goblets cells, and pancreas, as well
and in other parts of the body, including air-
way submucosal glands, lacrimal glands,
mammary glands, and eccrine sweat glands.
The involvement of AQPs in both physiologi-
cal and pathophysiological conditions will also
be highlighted.
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16.1 Role of AQPs in Secretory
Glands Located within
the Gastrointestinal Tract

Aquaporins (AQPs) are expressed to several
secretory glands located within the entire length
of the gastrointestinal tract including salivary
glands, gastric glands, duodenal Brunner’s
glands, liver, gallbladder, intestinal goblets cells,
and pancreas. Figure 16.1 summarizes the
involvement of AQPs in the secretory gland
functions that is detailed in the following
sections.

16.1.1 Salivary Glands

Major salivary glands, namely parotid, subman-
dibular, and sublingual glands, and minor salivary
glands contribute to whole saliva secretion
[1, 2]. The secretory structure of the glands
consists into several lobes subdivided into
lobules. Lobules are made of secretory units
namely acini (consisting into the association of
multiple acinar cells) connected through a net-
work of ducts formed of ductal cells.
Myoepithelial cells surround the secretory
epithelia [3]. The acinar cells are either serous,
mucous or seromucous, based on their secretory
products and characteristics [3]. The ductal sys-
tem can be subdivided into intralobular
(intercalated and striated), interlobular, interlobar
(excretory) ducts. Saliva secretion relies on a two
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Fig. 16.1 Involvement of AQPs in secretory gland functions

steps mechanism in which acinar cells secrete an
isotonic-like fluid rich in NaCl and water and
ductal cells reabsorb some NaCl and secrete
bicarbonate [4, 5]. These two steps mechanism
results into the secretion of a final hypotonic
saliva into the oral cavity.

In the first step, water flows to the lumen of the
acini through the apically-located AQP5 thereof
playing a major role in saliva secretion (Fig. 16.2)
[6, 7]. Indeed, a 60% decrease in pilocarpine-
stimulated saliva secretion, and a more viscous
and hypertonic saliva have been observed in
AQP5 knockout mice [6, 7]. Furthermore, sub-
stantial decrease in water permeability of parotid
(65%) and sublingual (77%) acinar cells has been
shown in AQP5 knockout mice [7]. Therefore,
studies infer that AQP5 is responsible for acinar
water movement [4, 5, 8, 9]. However, it has been
suggested that AQP5 could act as an osmosensor
controlling the tonicity of the transported fluid by
mixing transcellular and paracellular water flows
[10]. In response to muscarinic stimulation induc-
ing intracellular calcium increase, AQP5 traffics

from intracellular vesicles to plasma membrane
[11–13]. Concomitantly to its physiological role,
AQP5 expression is mostly confined to the apical
membrane of serous acinar cells from all human
salivary glands [14, 15] and from submandibular
and parotid glands in rats [15–18] and mice
[11, 19, 20]. The AQP5 expression reported in
rat and mouse ductal cells [11, 18, 21, 22] i
difficult to explain on a physiological point of
view considering ductal cells are water imperme-
able [23]. Noteworthy, a naturally occurring point
mutation of AQP5 has been identified in rats and
associated with decreased AQP5 expression and
saliva secretion [24]. Until now to our knowl-
edge, no AQP5 mutation has been associated
with saliva flow dysfunction in humans.

The use of knockout mice models has not been
able to show the involvement of other AQPs,
i.e. AQP1, AQP4, and AQP8, in saliva secretion
[6, 25, 26]. Therefore, AQP1 expressed in mouse
salivary gland endothelial and myoepithelial cells
[27] is not involved in saliva secretion. AQP1 is
also expressed in human myoepithelial [28] and
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Fig. 16.2 Proposed mechanism of AQP-mediated water
transport in saliva formation in salivary gland acinar cells.
Upon nerve stimulation, acetylcholine and adrenalin bind
to muscarinic receptors M1 and M3 and α1-adrenergic
receptors leading to phospholipase C activation and
subsequent intracellular calcium increase, while noradren-
alin and vasoactive intestinal peptide bind to β1-adrenergic
and VIP receptors leading to adenylyl cyclase activation
and subsequent intracellular cyclic adenosine
monophosphate (cAMP) increase. cAMP leads to protein
kinase C activation and exocytosis of proteins, while intra-
cellular calcium increase leads to Cl- and HCO3

- secre-
tion driving water transport though AQP5 into the acini
lumen. AC acetylcholine, A adrenalin, PLC
phospholipase C, NA noradrenalin, VIP vasoactive intesti-
nal peptide, AC adenylyl cyclase, cAMP cyclic adenosine
monophosphate, PKC protein kinase C

endothelial [14, 15, 29, 30] cells, as well as in rat
endothelial cells [22, 31–34].

Other AQPs have been detected in salivary
glands. In human, AQP3 is located at the
basolateral membrane of serous and mucous
acini, but not the ducts [14, 29, 30] while only
AQP4, AQP6, and AQP7 mRNAs have been
detected [14, 30]. In rat, some controversy still
exists concerning the expression of both AQP3
and AQP4 [21, 22, 35, 36]. In rat parotid glands,
AQP6 is located to secretory granule membrane
[37], while AQP8 is present in myoepithelial cells
[38–40]. In mice, AQP3, AQP4, and AQP8 are
expressed at the basolateral membrane of acinar
and ductal cells [27]; AQP7 is located in endothe-
lial cells; [20] AQP9 distribution remains to be
determined [19, 20, 41]; AQP11 is found in duc-
tal cells [19, 20]. Distinct patterns of AQPs
expression have been found during the develop-
ment of salivary glands in mouse, rat, and human
[22, 42–45].

In some patients suffering from Sjögren’s syn-
drome, an autoimmune disease characterized by
lymphocytic infiltration of exocrine glands and

particularly salivary and lacrimal glands, altered
AQP5 localization is hypothesized to play a role
in the disease pathogenesis and saliva flow reduc-
tion. However, altered AQP5 localization has not
been detected in all patients suffering from
Sjögren’s syndrome [46–48]. These data could
arise from the use of distinct patient subsets
and/or antibodies. In mouse model of Sjögren’s
syndrome, altered AQP5 localization has indis-
putably been reported in several studies [49–
54]. The presence of inflammatory infiltrates
within salivary glands [51], cytokines [55–58],
autoantibodies against muscarinic M3 receptors
[59, 60] have been suggested to play a role in the
modified AQP5 distribution. Even though altered
expression and/or localization of AQP5 could not
totally account for saliva impairment observed in
Sjögren’s syndrome patients, it could still play a
role in the pathogenesis of the disease. Very
recently, in salivary glands from patients
suffering from Sjögren’s syndrome, it has been
shown that altered distribution of prolactin-
inducible protein and ezrin, identified as new
proteins partners of AQP5 in salivary glands
under physiological conditions, may also account
for abnormal AQP5 localization [61–63]. Anti-
AQP5 antibodies have been detected in blood
samples from patients suffering from Sjögren’s
syndrome and have been incriminated in disease
manifestations. Indeed, anti-AQP5 antibodies
may be directly linked to salivary gland dysfunc-
tion [64] and may represent additional useful
biomarker for Sjögren’s syndrome diagnosis.
However, this remains to be confirmed as anti-
AQP5 antibodies have not been detected in all
patients with Sjögren’s syndrome [65], possibly
due to distinct patient subsets and methods of
determination. Concerning AQP1, studies using
knockout mice showed that this AQP is not
involved in saliva secretion [6, 25]. However,
decreased AQP1 expression in salivary gland
myoepithelial cells from Sjögren’s syndrome
patients and reduced saliva flow [29] can be
counteracted using Rituximab depleting B-cells
[66]. Autoantibodies have been detected in
patients with Sjögren’s syndrome patients
[65, 67] but were not associated with decreased
saliva flow rate [67]. Therefore, further
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investigation is required to better understand the
role of AQP1 in salivary gland function. Abnor-
mal distribution of AQP4 has also been described
in salivary glands from patients suffering from
Sjögren’s syndrome [68], but its physiological
significance remains to be further studied consid-
ering this AQP does not appear to be involved in
saliva secretion using knockout mice [6, 25].

In patients with head and neck cancer treated
with ionizing radiation therapy, decrease or loss
of AQP5 expression [69, 70] and/or impaired
AQP5 trafficking [71] could account for
xerostomia. In mice and rats, ionizing radiation
also induced decrease in AQP5 expression [72–
76]. Pilocarpine, a muscarinic receptor agonist
restored AQP5 expression and saliva flow in
irradiated rats [77].

In diabetes, it is presently unclear whether
high glucose induces [78] or not [79] an altered
distribution of AQP5 and decreased AQP5
expression [80]. Distinct mouse species, experi-
mental conditions, and analytical methods could
account for these distinct results.

In salivary glands, AQPs represent new thera-
peutic targets or can be used as therapeutic agents
to treat xerostomia. Cevimeline restored proper
AQP5 trafficking [81–83]. DNA demethylation
agents increased AQP5 expression [57, 84]. Treat-
ment with cystic fibrosis transmembrane regula-
tor (CFTR) corrector and potentiator allowing the
correction of CFTR activity restored AQP5
expression and saliva secretion in mouse model
of Sjögren’s syndrome [85]. Furthermore, the
delivery of a recombinant adenovirus vector cod-
ing for AQP1 (AdhAQP1) to irradiated glands of
animals and human led to saliva flow restoration
[86–90], as well as resolution of inflammation
[91]. New viral vectors allowing more efficient
and persistent expression of a transgene, such as,
for instance, hAQP1, in salivary glands, would be
useful to further study the usefulness of gene
therapy to treat xerostomia. The use of CRISPR-
CAS9 gene editing allowing the replacement of
endogenous AQP1 gene promotor with the cyto-
megalovirus (CMV) promoter led to increased
AQP1 expression and could open avenues to
new gene therapy [92]. The gene therapy
approaches described hereabove represent

promising therapies for patients suffering from
xerostomia consequent to head and neck irradia-
tion therapy or Sjögren’s syndrome, but the pres-
ence of autoantibodies against AQP1 may
represent an obstacle to such therapeutic
approach.

16.1.2 Gastric Glands

Mammalian gastric glands found in gastric pits
within the gastric mucosa are composed of fundic
glands (in the cardia), cardiac glands (in the fun-
dus and body of the stomach), and pyloric glands
(in the antrum of the pylorus). Gastric glands are
made of distinct cell types with specific function.
Indeed, foveolar cells produce mucous, parietal
cells secrete gastric acid and bicarbonate ions,
chief cells secrete pepsinogen, G cells secrete
gastrin, and enterochromaffin-like cells release
histamine [93].

Many AQPs have been localized to various
areas of the stomach. The fundus express AQP1,
AQP3, AQP4, AQP5, AQP7, AQP8, AQP10, and
AQP11 mRNA and the antrum of the pylorus
express AQP1, AQP2, AQP3, AQP5, AQP7,
and AQP11 mRNAs [94–96]. Both parietal and
chief cells express AQP4 protein at their
basolateral membrane [36, 97–100]. AQP4
internalizes in a vesicle-recycling compartment
and undergo phosphorylation upon histamine
stimulation in gastric cells [101]. AQP4 is
unlikely involved in acid and fluid secretion as
shown using AQP4 knockdown mice [102], even
though other AQPs could compensate for the lack
of AQP4. However, it remains to be determined if
AQP4 could still be involved in gastric cell vol-
ume maintenance. AQP5 is strictly localized to
the apical and lateral membranes of pyloric
glands [103].

Several AQPs promote or are involved in
chronic gastritis and gastric cancer [96, 104–
111]. Particularly AQP3 and AQP5 play signifi-
cant roles in gastric cancer [112] and promote
gastric cancer cell epithelial-mesenchymal transi-
tion [106, 113]. Lower levels of miR-877 and
miR874, shown to regulate AQP3 and AQP5
expression, respectively, may account for the
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increased AQP3 and AQP5 expression and epi-
thelial mesenchymal transition [114, 115]. AQP3
and AQP5 expression has been shown to be posi-
tively correlated with gastric mucosal disease
progression in gastric carcinoma and other stages
of gastric diseases as well as with Helicobacter
pylori infection [116, 117]. Helicobacter pylori
promote AQP3 and AQP5 expression (through
the activation of downstream HIF-1α or ERK1/
2, MEK, respectively) that could be used as novel
molecular targets for therapeutic interventions
[116, 117]. Furthermore, as the expression of
certain AQPs is associated with better or poor
overall survival of patients with gastric cancer, it
can be used as predictive prognostic gastric can-
cer biomarker [110, 118].

In light of the involvement of AQPs in gastric
cancers, they have been considered as additional
molecular targets for therapeutic
intervention [119].

16.1.3 Duodenal Brunner’s Gland

The role of AQPs in duodenal Brunner’s gland
function remains poorly understood due to the
limited number of studies performed so far.
Brunner’s gland cells express AQP5 at their api-
cal, lateral, and secretory granule membranes
[103] and AQP1 at their apical and lateral
membranes [120]. The secretion of bicarbonate
and protein as well as the overall flow rate of rat
Brunner’s gland are increased by the vasoactive
intestinal peptide (VIP) acting though a cAMP-
dependent signaling pathway [121]. In addition,
VIP induces the trafficking of AQP5, but not of
AQP1, from secretory granules to apical plasma
membrane [120, 122]. The resulting presence of
AQP5 at the apical plasma membrane could
account for increased water flow and fluid secre-
tion. This hypothesis is further supported by the
co-localization and co-trafficking of cystic fibro-
sis transmembrane conductance regulator (CFTR)
and AQP5 providing a parallel pathway for elec-
trolyte secretion and osmotic water movement
[122]. The expression of AQP5 in Brunner’s
gland was decreased in celiac disease and cystic
fibrosis and may consequently be involved in the

pathogenesis of these diseases characterized by
altered duodenal secretion [122].

16.1.4 Liver, Bile Ducts,
and Gallbladder

Bile is a complex fluid composed of an aqueous
solution (95% of water) of organic and inorganic
compounds [123]. The major organic compounds
are represented by three lipids, bile acids, choles-
terol, and phospholipids, and the bile pigments.
Proteins and metabolites deriving from various
endogenous substances (i.e., hormones) are pres-
ent at low concentrations [123]. Ions Na+, K+,
Ca++, Mg++, Cl-, and HCO3

- are the major inor-
ganic electrolytes whose concentrations in the
common duct bile are very close to those found
in plasma.

Bile is the main route for the excretion of body
cholesterol in the form of unesterified cholesterol
or as bile acids. In turn, biliary bile acids assist the
emulsification and absorption of lipids at intesti-
nal level. Also, bile mediates the elimination of
drugs and toxins from the body. In health,
humans secrete about 0.8–1.0 L of hepatic bile
daily at a rate of 30–40 mL per hour. Bile produc-
tion is about six times higher in rats [124], a
species lacking gallbladder. Human canalicular
bile is remodeled into the lumen of the bile
ductules and duct through secretory and absorp-
tive processes operated by the ductal epithelial
cells. Bile is stored and concentrated in the gall-
bladder, and released into the duodenum
[125, 126]. Bile water is mostly reabsorbed in
the proximal segment of the small intestine
[127] while bile salts are recovered in distal
ileum to be carried back to the liver by the
enterohepatic circulation [128, 129]. Bile forma-
tion starts at the bile canaliculus triggered by an
osmotic process that involves solutes and water
and where the driving force needed to bile forma-
tion is represented by the active concentration of
bile acids and other biliary constituents in the bile
canaliculi [124]. Canalicular bile flow can also be
found in the absence of bile acids or at low bile
acid outputs, indicating the existence of two
components for canalicular bile formation, the
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bile acid-dependent bile flow (i.e., bile flow
related to bile acid secretion) and the bile acid-
independent bile flow (i.e., bile flow attributed to
active secretion of osmotically active inorganic
electrolytes and organic anions). Lastly, total
bile flow consists of constant ductal/ductural
secretion and total canalicular bile flow with a
linear relation in both total bile flow and total
canalicular bile flow.

The epithelial cells of the mammalian
hepatobiliary tract express several AQPs vari-
ously localized among the different system
sections (Table 16.1). Endothelial cells express
AQP1 [34] and AQP7 [130]. AQPs are also

Table 16.1 Reported localization and suggested physiological relevance of hepatobiliary aquaporins expressed at
significant levels

Hepatobiliary
Cellular
location and
species

Subcellular

Liver
parenchyma

AQP3 Hepatocytes (h) Undefined Unclear
AQP7 Hepatocytes (h) Undefined Unclear
AQP8 Hepatocytes (r,

m, h)
APM,
SAV,
IMM, SER

Canalicular bile secretion; cytoplasmic osmotic
homeostasis; mitochondrial ammonia detoxification
and ureagenesis; mitochondrial H2O2 release
hepatocyte cholesterol biosynthesis; regulation of
metabolic signaling

AQP9 Hepatocytes (r,
m, h)

BLM Uptake of glycerol during starvation; lipid
homeostasis; import of water from sinusoidal blood;
catabolic urea extrusion

AQP11 Hepatocytes
(m)

RER RER homeostasis; liver regeneration

Intrahepatic
bile ducts

AQP1 Cholangiocytes
(m, r, h)

APM,
SAV, BLM

Secretion and absorption of ductal bile water

AQP4 Cholangiocytes
(m, r)

BLM Secretion and absorption of ductal bile water

Gallbladder AQP1 Epithelial cells
(m, h)

APM,
BLM, SAV

Cystic bile absorption/secretion

AQP8 Epithelial cells
(m, h)

APM, SAV Cystic bile absorption (?)

Portal
sinusoids;
PVP; BV

AQP1 Endothelial
cells (h)

APM, BLM Bile formation and flow

Other hepatic
cell types

AQP3 Kupffer cells
(h)

PM Cell migration and proinflammatory cytokines
secretion (?)

AQP8 Kupffer cells (r) PM Repopulation of Kupffer cells during liver
regeneration (?)

AQP3 Stellate cells (h) PM Adiponectin-mediated inhibition of hepatic stellate
cells activation

AQP11 Stellate cells (r) Undefined Control of activated hepatic stellate cells proliferation

APM apical plasma membrane, BLM basolateral plasma membrane, BV blood vessels, IMM inner mitochondrial
membrane, PM plasma membrane, PVP peribiliary vascular plexus, RER rough endoplasmic reticulum, SAV subapical
membrane vesicles, SER smooth endoplasmic reticulum

present in Kupffer cells [130, 131] and hepatic
stellate cells [132–136].

16.1.4.1 Liver
Rodent hepatocytes express AQP8, AQP9, and
AQP11 [130, 137–142]. Two more homologues,
AQP3 and AQP7, have been reported in human
hepatocytes. The distinctive subcellular localiza-
tion and transport selectivity featured by these
AQP channels may explain their redundancy in
hepatocytes [143]. Important roles have been
ascribed to AQP8, AQP9, and AQP11 in
hepatocytes whereas the function (if any) of
hepatic AQP3 and AQP7 is unclear.
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Likely due to its multiple subcellular
localizations [138, 139] and ability to allow trans-
port of ammonia and hydrogen peroxide in addi-
tion to water, several functions have been
suggested for AQP8 in hepatocytes such as
those of facilitating the secretion of canalicular
bile water [144], preserving the cytoplasm osmo-
larity during the synthesis and degradation of
glycogen, [139] transporting ammonia in mito-
chondrial ammonium detoxification and
ureagenesis [145–147], and mediating the release
of hydrogen peroxide from mitochondria [148,
149]. Peroxiporin mitochondrial AQP8 has been
suggested to intervene in the hepatocyte choles-
terol biosynthesis controlled by the sterol regu-
latory element-binding protein (SREBP) [150–
152]. The AQP8-facilitated diffusion of H2O2

across the hepatocyte plasma membrane has
been recently reported to be involved in the dif-
ferential regulation of metabolic signaling by α1-
and β-adrenoceptors (ARs) and to induce Ca2+

mobilization. Since H2O2 inhibits the
β-AR-mediated activation of the glycogenolytic,
gluconeogenic, and ureagenic responses induced
by α1-AR this observation was suggested to be a
novel NOX2-H2O2-AQP8-Ca

2+ signaling cas-
cade acting downstream of α1-AR in hepatocytes.
The inhibitory effect exerted by H2O2 on β-AR
signaling leads to negative crosstalk between the
two pathways [153]. Intense is the investigation
addressed to the role exerted by AQP8 in the
secretion of canalicular bile. After stimulation
by choleretic agonists, such as dibutyryl cyclic
adenosine monophosphate or glucagon, subapical
AQP8 was suggested to translocate to the apical
plasma membrane via phosphatidylinositol-3-
kinase-dependent microtubule-associated traf-
ficking [154]. This redistribution raises the hydric
permeability of the canalicular plasma membrane
facilitating the osmotically driven transport of
water into the bile canaliculus (Fig. 16.3) [144,
155, 156]. A similar cAMP-induced redistribu-
tion to the canalicular membrane also occurs for
carriers implicated in canalicular bile secretion
such as the isoform 2 of the Cl-/HCO3

-

exchanger (AE2) and the multidrug resistance-
associated protein 2 (MRP2). This mechanism is
in line with a work with rat primary hepatocytes

where glucagon increased the expression AQP8
reducing its degradation through a process
involving cAMP-PKA and PI3K signal pathways
[157]. However, in another study, hepatocytes
isolated from AQP8 knockout mice showed
water permeability comparable to that of
hepatocytes from wild type mice [26]. This appar-
ent discrepancy may be explained by the redun-
dancy of AQPs in hepatocytes and/or to the
functional modification to which other genes
may undergo in response to the disruption of the
Aqp8 gene. On the other hand, in rat hepatocytes
it has been observed that a 60% decrease in AQP8
level in the apical membrane leads to a 15%
decrease in the overall osmotic permeability of
the canalicular membrane [158].

AQP9 is an aquaglyceroporin of broad selec-
tivity allowing transport of a wide variety of
non-charged solutes including glycerol and other
polyols, hydrogen peroxide, urea, carbamides,
nucleosides, monocarboxylates, purines,
pyrimidines, and metalloid arsenic besides to
water. It is mainly expressed in liver parenchyma,
at the sinusoidal plasma membrane of
hepatocytes [137]. In rodents, AQP9 is the main
pathway through which glycerol is taken up from
portal blood to hepatocytes during short-term
fasting [159–161]. Once transported into the
cells, by means of the glycerol kinase glycerol is
promptly converted into glycerol-3-phosphate
(G3P) to be used as substrate for gluconeogene-
sis. Hepatocyte AQP9 is also involved in lipid
homeostasis as G3P is required for the synthesis
of triacylglycerols (TAGs) [162]. AQP9 has also
been suggested to contribute to rodent bile forma-
tion [163] and to the extrusion of catabolic urea
[164]. In rodents, the transcriptional expression of
hepatocyte AQP9 is negatively regulated by insu-
lin [165], an observation that may explain why
liver AQP9 is increased in conditions of insulin
resistance [166, 167]. Functional significance for
AQP9 in glucose and lipid homeostasis and
energy balance is also indicated by Aqp9 knock-
out mice where the ablation of AQP9 is
associated to reduced liver glycerol permeability
and increased levels of plasma glycerol and
TAGs [164, 168]. Mouse models of obesity and
obese patients with type 2 diabetes show reduced
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Fig. 16.3 Proposed mechanism of AQP-mediated water
transport in canalicular bile formation and secretion in
hepatocytes. AQP8 facilitates the osmotic secretion of
water into the bile canaliculus, whereas AQP9 contributes
to the diffusion of water from the sinusoidal blood into the
cell. Choleretic hormones, such as glucagon, can stimulate
the microtubule-dependent canalicular targeting of AQP8-
containing subapical vesicles. AQP8 is also found in

mitochondria and smooth endoplasmic reticulum where
it is suggested to play other roles other than facilitating
the canalicular secretion of bile water. AQP9 is also the
main pathway through which glycerol is imported by
hepatocytes (see Table 16.1). BC bile canaliculus, PKA
protein kinase A, SAV subapical vesicles, ST salt
transporters

levels of hepatocyte AQP9 with a significant
decrease of the liver glycerol permeability
[169, 170]. Liver AQP9 is also regulated by leptin
[162, 171]. However, the regulation played by
both insulin and leptin on the gene transcription
of AQP9 seems to differ between rodents and
humans [167]. Sex-specific dimorphism of
hepatic AQP9 expression is found both in rodents
and humans consistent with the differences with
which the two genders handle glycerol [171–
174].

Sex-dependent differences were also seen
regarding two other aquaglyceroporins of meta-
bolic relevance, AQP3 and AQP7, in fat tissue
[171]. Hepatocyte AQP9 has been recently found
to be involved in the lipid-lowering activity of the
nutraceutical phytocompound silybin through

modulation of autophagy and lipid droplets com-
position [175]. A role of liver AQP9 in the early
acute phase of the inflammatory reactions trig-
gered by TLR4 ligands has been suggested
where AQP9-facilitated uptake of hydrogen per-
oxide would be implicated in the production of
inflammatory NO and O2

- through the involve-
ment of the NF-kB pathway [176]. AQP11 has
been found in mouse and human hepatocytes
where roles are suggested in rough endoplasmic
reticulum homeostasis and liver regeneration
[130, 141]. The recent functional identification
of AQP11 as a peroxiporin opens new horizons
about the potential function of this homologue to
the regulation of intracellular H2O2 homeostasis
to prevent ER stress [177]. Further studies are
expected to assess the role of AQP11 in liver.
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16.1.4.2 Bile Ducts
Cholangiocytes, the epithelial cells lining the bil-
iary tree, account for secretin-induced ductal bile
secretion through a cAMP-dependent pathway
[124] and activation of Cl- efflux via cystic fibro-
sis transmembrane conductance regulator (CFTR)
that drive the extrusion of HCO3

- into the lumen
via apical AE2 (i.e., the chloride/bicarbonate
exchanger). Both HCO3

- and Cl- provide the
main driving force for the osmotic movement of
water by means of apical AQP1 into the biliary
lumen [124]. AQP1 is expressed in human and
rodent cholangiocytes [34, 178] where it plays a
key role in the apical water secretion during both
basal- and hormone-regulated ductal bile forma-
tion [179]. AQP1 is also located in subapical
membrane vesicles [180] where co-expression
with AE2 and CFTRwas observed [181]. Secretin
regulates the exocytic insertion of these vesicles
into the cholangiocyte apical membrane leading
to the novel concept of functional bile secretory
unit [180, 181]. At their basolateral plasma mem-
brane cholangiocytes express AQP4 and AQP1
[180, 182]. AQP-facilitated water movement
would allow the relative isosmolar status of the
cell to be maintained during ductal bile formation.
This is consistent with the physical association
between the basolateral membrane of
cholangiocytes and the peribiliary vascular plexus
that surrounds bile ducts and from which bile
water originates explaining the relative isosmolar
status seen during ductal bile formation
(Fig. 16.4) [143, 183]. Surprisingly,
cholangiocytes from Aqp1-/- knockout mice
did not show impairment in water movement
[184]. Lack of AQP1 could lead to compensatory
upregulation of other AQPs expressed in mouse
cholangiocytes [185, 186] such as AQP8.
Intrahepatic bile ducts not only secrete but also
absorb water. Osmotically induced net water
absorption has been demonstrated in isolated
rodent intrahepatic bile duct units [187]. Water
would be absorbed osmotically following the
active absorption of sodium-coupled glucose
and bile salt by means of the SGLT1 and ASBT
cotransporters, respectively [124]. Hormones

decreasing the intracellular levels of
cholangiocytes cAMP such as somatostatin, gas-
trin, and insulin could act by inhibiting the
secretin-induced vesicular transport of AQP1,
CFTR, and AE2 to the cholangiocytes apical
membrane with a decrease of the ductal bile
secretion. This mechanism could explain why
somatostatin can cause inhibition of ductal secre-
tion and stimulation of net ductal water
absorption.

16.1.4.3 Gallbladder
The mammalian gallbladder acts as a storage
compartment for bile fluid produced by
hepatobiliary secretion with important roles in
maintaining digestive and metabolic homeostasis.
Water movement across gallbladder epithelium is
driven by osmotic gradients created from active
salt absorption and secretion. Human and mouse
gallbladder epithelial cells express AQP1 and
AQP8. Both in human and mouse AQP1 is
localized at the apical and basolateral domains
of the plasma membrane of the epithelial cells
that line the neck of the organ [188, 189]. In
mouse gallbladder, additional immunoreactivity
was seen at the corpus portion with staining at
level of subapical vesicles and over the plasma
membrane [190]. Leptin was found to slightly
upregulate AQP1 in mouse gallbladder
[191]. AQP8 has been found at the plasma mem-
brane and, at lesser extent, at intracellular level of
the gallbladder epithelium of different species
[34, 138]. Recently, liver X receptor β (LXRβ),
an oxysterol-activated transcription factor
strongly expressed in the gallbladder epithelium,
was seen to regulate the expression of AQP1 and
AQP8 and the cystic fibrosis transmembrane con-
ductance regulator (CFTR) [192]. Constitutively
high water permeability in mouse gallbladder epi-
thelium involving transcellular water transport
through AQP1 was found in a study using
AQP1 knockout mice [193]. Subapical AQP1
was hypothesized to translocate to the apical
membrane to secrete water as in the bile duct
epithelium, a functional homologue of the gall-
bladder epithelium. Based on its pattern of
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Fig. 16.4 Proposed mechanism of AQP-mediated water
movement in ductal bile secretion. Intrahepatic bile ducts
cholangiocytes. Secretin hormone, via cAMP, induces the
microtubule-dependent apical targeting and exocytic
insertion of subapical vesicles containing AQP1 and
CFTR Cl- channels, and the Cl-/HCO3

- exchanger
AE2 into the apical membrane. The efflux of Cl- via
CFTR provides the luminal substrate to drive the extrusion

of HCO3
- into the lumen by means of AE2. HCO3

- and
Cl- ions provide the osmotic driving force for the move-
ment of water from blood plasma (mostly through
basolateral AQP4) to biliary lumen (through apical
AQP1). AE2 anion exchanges isoform 2, CFTR cystic
fibrosis transmembrane conductance regulator, SAV sub-
apical vesicles

Fig. 16.5 Proposed mechanism of AQP-mediated water
in cystic bile absorption/secretion. Gallbladder epithelial
cells. AQP8 and AQP1 facilitate the osmotic absorption
and secretion of water into and from the gallbladder lumen,
respectively. Basolateral AQP1 mediates the entry/extru-
sion of water into/out of the epithelial cells. SAV subapical
vesicle

subcellular localization gallbladder AQP8 was
suggested to contribute to the secretion of water
and to facilitate the absorption of water
(Fig. 16.5) [138]. However, the physiological
importance of AQP1 and AQP8 roles in gallblad-
der function remain debated matter due to the
discrepant results reported in literature. Bile salt
concentration was of similar extent in
gallbladders from wild type and Aqp1 knockout
mice with AQP8 that was not appearing to func-
tionally substitute for AQP1 [193]. This observa-
tion was not consistent with previous studies
showing temporal association between decreased
gallbladder concentrating function and reduced
AQP1 or AQP8 expression [190], and leptin-
deficient mice submitted to leptin replacement
where leptin was altering the gallbladder volume
likely by influencing the AQP-mediated absorp-
tion/secretion of water [194]. Additional work is
needed to clarify the question.
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16.1.5 Intestinal Goblet Cells

Current knowledge concerning the role of AQPs
in intestinal goblets cells is very limited. So far,
only AQP9 mRNA has been detected in a subset
of mucus-secreting intestinal goblet cells
[195]. Therefore, additional studies would be
valuable to further study the expression and func-
tion of AQPs in these cells.

16.1.6 Exocrine Pancreas

The exocrine pancreas accounts for about 90% of
the total pancreas and morphologically resembles
salivary glands despite few differences. Indeed, it
contains serous acinar cells only and centroacinar
cells (extension of intercalated ducts into each
acinus). In addition, the exocrine pancreatic fluid
secretion drains into a main collecting duct. The
major role of pancreatic fluid is to neutralize the
stomach acid and the food digestion. Pancreatic
fluid secretion is regulated by several
neurotransmitters (i.e., acetylcholine, cholecysto-
kinin, and secretin) that stimulate both pancreatic
enzyme and fluid secretion or mainly fluid secre-
tion, and that exert potentiated effects [196].

AQP1, AQP3, AQP4, AQP8, and AQP12
mRNAs are expressed in human exocrine pan-
creas. However, only few AQPs proteins have
been detected, i.e., AQP1, AQP5, and AQP8
[197, 198]. Endothelial cells, centroacinar cells
(apical membrane), intercalated ductal cells
[197], and pancreatic zymogen granules express
AQP1 [199, 200]. Intercalated ductal cells (apical
membrane) express AQP5 [197]. AQP12 expres-
sion localization remains to be determined [198].

AQP1, AQP4, AQP5, AQP8, but not AQP12,
mRNAs are expressed in rat exocrine pancreas
[197, 198, 201]. AQP1 is localized to the apical
and basolateral membranes as well as caveolae
and vesicle-like structures of intralobular and
intralobular ductal cells [202, 203], in acinar
zymogen granules [199] and in endothelial cells
[201]. AQP5 is expressed at the apical membrane
of centroacinar and intercalated ductal cells
[204]. AQP8 is located at the apical acinar cell
membrane [198].

AQP1, AQP5, and AQP12 are expressed in
mouse exocrine pancreas. Indeed, AQP1 and
AQP5 are located at the apical membrane of
interlobular ductal cells, and AQP5 is also
expressed at the apical membrane of intercalated
and intralobular ductal cells [204]. AQP12 is
expressed intracellularly in acinar cells [205].

Pancreatic juice is produced by acinar cells
secreting a small volume of isotonic fluid and
ductal cells secreting ions and ensuring most of
the water movement [4, 206]. The presence of
AQP8 located at the apical acinar cell membrane,
AQP1 located at both apical and basolateral duc-
tal cell membranes, and AQP5 located at the
apical ductal cell membrane ensure water move-
ment to the acinar or ductal lumen [204]. AQP8
accounts for most water permeability (90%) in rat
pancreatic acinar cells [201]. However, exocrine
pancreatic function is unmodified in AQP8
knockout mice, possibly due to the fact the
much contribution of acinar cells than ductal
cells to the overall water movement [26]. In rat
pancreatic acinar zymogen granules, AQP1
contributes to basal and GTP-mediated vesicle
water movement and swelling [199, 200]. In rat
interlobular ductal cells, AQP1 account for most
of secretin-stimulated pancreatic juice secretion
[203]. However, AQP1 knockout mice display
normal exocrine pancreatic function, like the
AQP5 knockout mice [197]. These data may be
due to weak level of AQP1 and AQP5 expression
or functional redundancy. In this context, double
AQP1 and AQP5 knockout mice might be useful
to assess the specific contribution of each of these
AQP to the exocrine pancreatic function. In addi-
tion, further studies are necessary to shed light on
the possible role of AQP12 in pancreatic juice
secretion.

16.1.7 Endocrine Pancreas

Endocrine pancreatic cells account for a minor
fraction of total pancreatic cells (about 10). They
form the islets of Langerhans composed of
insulin-producing β-cells surrounded by
glucagon-producing α-cells, somatostatin-
producing δ-cells, and pancreatic polypeptide-
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producing PP cells [207]. The major function of
human endocrine pancreas, and in particular of
the β-cells, is to secrete insulin [208, 209]. Insulin
secretion by β-cells relies on the following
subsequent steps: glucose entry via the glucose
transporter type 2 (GLUT2), glucose
metabolization, intracellular ATP concentration
increase, ATP-sensitive K+ channels inhibition,
membrane depolarization, voltage-dependent
Ca2+ channels opening, intracellular calcium ele-
vation, and finally insulin-containing granules
exocytosis [208]. Moreover, glucose induces
β-cell swelling [210] that triggers subsequent
volume-regulated anion channel (VRAC) activa-
tion, cell membrane depolarization, voltage-
dependent Ca2+ channels activation, calcium
entry and insulin secretion [211, 212].

Although to our knowledge the expression of
AQPs in human endocrine pancreas remains to be
assessed, it has been shown that rat β-cells
express AQP7 [213–215] and mouse β-cells
express AQP5, AQP7, and AQP8 [214]. Never-
theless, the expression of AQPs remains to be
determined in the other cell types composing the
rat and mouse islets of Langerhans.

Functional studies have shown the involve-
ment AQP7 in the regulation of intracellular glyc-
erol content, insulin production, and secretion in
β-cells. Indeed, AQP7 knockout mice displayed a
reduction in β-cell size and mass, insulin content
and cAMP-driven glycerol release [215, 216] and
an increase in basal and glucose-stimulated insu-
lin secretion rates, glycerol and triglyceride
contents and glycerol kinase activity [215]. How-
ever, genetic background influences the AQP7
knockout mouse phenotype. Indeed, according
to their genetic background, AQP7 knockout
mice had hyperinsulinemia [215, 216] with
[216] or without [215] hyperglycemia, or had
normal glycaemia with undetermined insulin
levels [217]. In both β-cells and rat pancreatic
β-cell line BRIN-BD, the addition of extracellular
isosmotic glycerol induces sequential cell
swelling, VRAC activation, membrane depolari-
zation, electrical activity, and insulin secretion
(Fig. 16.6) [213, 218, 219]. The entry of glycerol

glycerol Cl-
AQP7A

cell swelling
VRAC

+
+
+
+

+

Ca++

Ca++

insulin

exocytosis

Fig. 16.6 Proposed mechanism of AQP7-mediated insu-
lin secretion in pancreatic β-cells. Glycerol entry via AQP7
induces sequential cell swelling, VRAC activation, mem-
brane depolarization, electrical activity, and insulin secre-
tion. VRAC Volume-regulated anion channel

and its subsequent metabolization are likely
contributing to the activation of β-cells
[213]. Compared to AQP7 wildtype mice, AQP7
knockout mice had reduced insulin release in
response to increased D-glucose concentration,
extracellular hypotonicity or extracellular isos-
motic addition of glycerol [214]. AQP7 regulates
insulin release by allowing both glycerol entry
and exit, and by acting directly or indirectly at a
distal downstream site in the insulin exocytosis
pathway [214]. So far, no clear conclusion has
been drawn regarding the association between
mutations or single-nucleotide polymorphisms
of AQP7 and diabetes and/or obesity [220–
224]. In rat pancreatic β-cell line RIN-m5F,
tumor necrosis factor α decreased AQP7 expres-
sion and insulin expression but increased AQP12
expression, while lipopolysaccharides increased
AQP7 and AQP12 expression but decreased insu-
lin secretion. In addition, in cells treated by tumor
necrosis factor α or lipopolysaccharides,
overexpression and silencing of AQPs revealed
the involvement of AQP7 in insulin secretion and
of AQP12 in inflammation [225]. In rat RIN-m5F
β-cells, AQP8, located in the mitochondrial and
plasma membranes, has been shown to play a role
in attenuating cytokine-mediated cell toxicity
[226]. Further studies are required to pursue
deciphering the physiological and pathophysio-
logical role of AQPs within β-cells.
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16.2 Airway Submucosal Glands

Airways submucosal gland are present in the
human trachea and bronchial airways or in rat
and mouse trachea. They are made of serous and
mucous acinar cells forming secretory tubules,
and ductal cells forming lateral and collecting
ducts [227]. The airway submucosal glands
secrete a fluid rich in water, ions, and mucins to
ensure proper hydration of the airway surfaces,
mucociliary transport, and reception of secreted
molecules such as mucins [227]. Acetylcholine
and VIP stimulate submucosal gland secretion
[227]. The secretion of Cl- and HCO3

- creates
an electrical gradient allowing paracellular move-
ment of cations such as Na+. This leads to the
formation of an osmotic gradient driving the
transcellular movement of water to the glandular
lumen [227]. AQP5, located at the apical mem-
brane of submucosal serous epithelial cells, plays
a role in the transcellular water movement
[228, 229] as shown in AQP5 knockout mice
displaying a 50% reduction in submucosal secre-
tion as compared to wild type mice [230]. Inter-
estingly, in patients suffering from chronic
obstructive pulmonary disease, AQP5 expression
is decreased in submucosal glands and correlated
to the disease’s severity [231]. Submucosal
glands from asthmatic patients displayed
increased AQP5 expression [232]. In an animal
model of asthma, AQP5 deletion decreased both
mucin secretion and inflammatory cytokines
levels [232]. Therefore, it is hypothesized that
AQP5 is involved in the development of mucous
hyperproduction and inflammation during
chronic asthma [232, 233]. Further studies will
contribute to a better understanding of the regula-
tion and role of AQP5 in submucosal glands in
relation to pulmonary diseases.

16.3 Lacrimal Glands

Lacrimal glands are made of multi lobules. Each
lobule is made of acinar cells secreting a fluid into
a network of ducts made of intralobular, interlob-
ular, intralobar, interlobar, and ducts. Acinar cells

are surrounded by myoepithelial cells. Acetylcho-
line and adrenalin are the major neurotransmitter
controlling lacrimal glands secretion. The main
function of lacrimal glands is to secrete a fluid
rich in water, lipids, mucins, and antimicrobial
substances to protect cornea from exogenous
and environmental insults, thus facilitating the
maintenance of a refractive surface necessary for
clear vision [234].

Rat lacrimal glands express several AQPs.
Indeed, AQP1 and AQP5 are expressed in endo-
thelial cells express. Acinar cells express AQP3 at
their basolateral membrane, AQP4 at their lateral
membrane, AQP5 at their apical membrane, and
AQP11 intracellularly [235]. Mouse lacrimal aci-
nar cells express AQP3 only in fetal tissue but not
in adult tissue [236], AQP4 at their basolateral
membranes, and AQP5 at their apical membranes
[16, 236, 237]. Mouse lacrimal ductal cells
express AQP5 at their apical membrane
[236, 238]. Mouse lacrimal ductal and
myoepithelial cells express both AQP8 and
AQP9 [236].

Lacrimal fluid secretion results from the for-
mation of a primary isotonic fluid by acinar cells
and its subsequent modification by the ductal
cells [239]. However, ductal cells have been con-
sidered to also play a role in electrolytes and
water secretion [240, 241]. The final lacrimal
fluid composition may vary according to the
flow rate and species considered [239]. AQPs
expressed in both acinar and ductal cells are likely
contributing to tear secretion. However, the
involvement of AQPs in lacrimal fluid secretion
has not been confirmed using knockout mice for
AQP1, AQP3, AQP4, or AQP5 [238, 242]. How-
ever, one study showed significant in situ tear film
hypertonicity in AQP5 knockout mice
[243]. Recently, it was shown that AQP5 knock-
out mice presented primary dye eye phenotype
that may result from the differential expression of
circular RNA [244]. Genetic background and/or
ways to generate AQP5 knockout mice could
account for these phenotypic differences in
terms of lacrimal fluid secretion. Therefore, fur-
ther studies are necessary to address the assump-
tion that AQPs may not be required for low rates
such as in lacrimal glands [245] and to further
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study the role of AQPs in lacrimal glands, and
particularly AQP8 that has recently been shown
to be expressed in ductal cells.

Defective AQP5 trafficking has been shown in
lacrimal acinar cells from patients suffering from
Sjögren’s syndrome, an autoimmune disease
characterized by dry eyes and dry mouth
[246]. In addition, animal model of Sjögren’s
syndrome displayed modified AQP5 mRNA and
protein levels in ductal (increased) and acinar
(decreased) cells, as well as AQP4 expression in
ductal cells (decreased) [247]. Altered calcium
signaling and volume regulation occurring in
Sjögren’s syndrome may account these
modifications [248]. Further experimentation is
necessary to decipher the role of AQPs
pathologies affecting lacrimal glands.

16.4 Mammary Glands

Mammary glands are apocrine glands made of
alveoli lined with milk-secreting cuboidal acinar
cells surrounded by myoepithelial cells, and lac-
tiferous ducts (intralobular and interlobular ducts)
draining milk to the openings in the nipple
[249]. Milk is composed of sugars, lipids,
proteins, vitamins, minerals, and water
[250]. According to species and physiological
status considered, milk contains variable percent-
age of water [251].

Rat and mouse mammary glands express
AQP3 at the basolateral membrane of acinar
cells and in intralobular and interlobular ductal
cells, and AQP5 at the apical membrane of acinar
cells [252]. They also express AQP1 at the apical
and basolateral membranes of endothelial cells
[253]. Bovine mammary glands express AQP3
and AQP4 respectively at the basolateral mem-
brane of acinar cells and at the apical membrane
of some ductal cells [254]. In addition, AQP7 is
present at the apical membrane of some acinar
cells and AQP1 is expressed in endothelial and
myoepithelial cells [254].

AQP3 may be involved in both water and
glycerol transport that are essential for milk syn-
thesis and secretion [253]. Glycerol uptake via
AQP3 may participate to milk triglycerides

synthesis [253]. Interestingly, the expression pat-
tern of AQP3 and AQP5 is distinctly regulated by
lactogenic hormones in acinar and ductal mam-
mary cells before and after parturition
[255]. Besides, AQP5 may regulate milk osmo-
larity [255]. In mammary glands with mastitis,
proinflammatory cytokines reduce milk produc-
tion possibly by inducing decreased AQP3
expression [256]. Higher AQP3 expression
induced by polyherbal formula accounts for
increased milk production in rats [257]. AQPs
are likely to play a role in mammary tumors and
breast cancer [107, 258, 259]. However, it is
unclear whether altered AQP expression is the
cause or the consequence of neoplasia
[258]. The use of Aqp knockout mice models
and further studies will be valuable for a better
understanding of the role of AQPs in milk secre-
tion under physiological and pathological
conditions, and to determine if AQPs could be
used as therapeutic targets, diagnostic or prognos-
tic biomarkers.

16.5 Eccrine Sweat Glands

Eccrine sweat glands are made of single tubular
structure containing acinar cells and ductal cells.
Mouse, rat, and human eccrine sweat gland acinar
cells express AQP5 at their apical membrane
[260–262]. Upon stimulation, AQP5 traffics to
that location [260]. Acinar cells secrete a primary
fluid rich in ions and water that undergoes salt
reabsorption when reaching the ductal cells [263].

Whether AQP5 plays a role in eccrine sweat
glands remains an open debate due to variable
data obtained using different Aqp5 knockout
mice strains and methods to assess the secretion
[261, 264]. Therefore, further studies will help
precising the role of AQP5, and possibly as well
other AQPs, in sweat secretion.

Various skin pathologies are characterized by
modified AQP5 expression within the eccrine
sweat glands [265–267]. Activin a receptor type
1 and cholinergic receptor nicotinic alpha 1 sub-
unit are involved in the AQP5 overexpression
detected in hyperhidrosis [268, 269]. In addition,
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mutations of AQP5 gene are responsible for
palmoplantar keratoderma [270–273].

16.6 Conclusions

A variety of exocrine and endocrine gland
express AQPs that play a role in exocrine or
endocrine secretory processes. Furthermore,
some AQPs are involved in some secretory
gland dysfunction or diseases. Despite consider-
able efforts made to understand the role of AQPs
in the physiology and pathophysiology of secre-
tory glands, further studies are still necessary to
further advance the current knowledge in the
field.
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