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Anthropogenically driven environmental changes affect our planet at an unprecedented scale, 19 

and are considered to be a key threat to biodiversity. According to the World Health 20 

Organisation, anthropogenic noise is one of the most hazardous forms of anthropogenically 21 

driven environmental change and is recognised as a major global pollutant. However, crucial 22 

advances in the rapidly emerging research on noise pollution focus exclusively on single 23 

aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems or by 24 

focusing on certain taxa. Given that more than two thirds of our planet is covered with water, 25 

there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in 26 

aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic 27 

noise on an individual’s development, physiology, and/or behaviour in both invertebrates and 28 

vertebrates. We also found that species differ in their response to noise, and highlight the 29 

potential underlying mechanisms for these differences. Finally, we point out challenges in the 30 

study of aquatic noise pollution and provide directions for future research, which will 31 

enhance our understanding of this globally present pollutant.32 
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1. Background 33 

Many species are currently experiencing anthropogenically driven environmental changes, 34 

which can negatively affect the persistence of populations or species [1,2]. One form of 35 

anthropogenically driven environmental change is the change in the acoustic environment 36 

through anthropogenic noise pollution. According to the World Health Organisation, 37 

anthropogenic noise is one of the most hazardous forms of pollution and has become 38 

omnipresent within terrestrial and aquatic ecosystems [3,4]. Anthropogenic noise is any 39 

unwanted or disturbing sound. In aquatic ecosystems, noise is intentionally produced for 40 

seismic exploration, harassment devices or sonar, or an unintentional by-product such as 41 

industry, shipping and recreational boating [5]. 42 

 43 

Sound is the propagation of a mechanical disturbance through a medium, such as air or 44 

water, taking the form of acoustic waves [6]. Underwater sound has both a pressure and a 45 

particle motion component, and hearing can be defined as the relative contribution of each of 46 

these sound components to auditory detection [7]. Therefore, hearing may involve the 47 

detection of pressure, and/or particle motion. Particle motion perception differs from pressure 48 

perception by limiting the detectable frequency range to a few hundred Hertz, by restricting 49 

the detectable sound intensities to higher levels, and also by shortening distances over which 50 

sounds can be perceived [8]. 51 

 52 

In recent years, a number of excellent reviews focusing on single aspects of noise 53 

pollution have been published, e.g. behaviour [9]; physiology [10]; conservation: [11-14], 54 

terrestrial ecosystems [15,16] or by focusing on certain taxa e.g.[17-25]. Given that more 55 

than two thirds of our planet is covered with water, there is a pressing need to specifically 56 
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understand the effects of anthropogenic noise in aquatic ecosystems. To close this gap, we 57 

review how noise pollution in the aquatic environment affects species across the taxonomic 58 

scale by looking how noise affects an individuals’ development, physiology and/or behaviour. 59 

Then, we discuss why species may differ in their susceptibility to anthropogenic noise and 60 

critically evaluate challenges in the study of aquatic noise pollution; finally, we provide 61 

directions for future studies, which will enhance our understanding of this important global 62 

pollutant. 63 

 64 

2. Effects of anthropogenic noise 65 

Anthropogenic noise can affect an individual’s anatomy, physiology, and/or behaviour in 66 

several ways [26]: (i) hearing damage, including permanent threshold shifts, and other non-67 

auditory tissue damage from exposure to very loud sounds; (ii) temporary threshold shifts 68 

from acoustic overexposure; (iii) masking of sounds hindering the perception of acoustic 69 

information [27]; (iv) changing hormone levels, leading to stress responses and lack of sleep. 70 

At least for the first three of these, direct auditory effects strongly depend on the level and 71 

duration of noise exposure, which often correlates with the proximity of the individual to the 72 

noise source [25]. There is evidence that intense and impulsive sounds can damage tissues 73 

and potentially result in mortal effects when animals are close to a noise source, but far more 74 

individuals are likely to be exposed to sounds at some distance from the noise source where 75 

the intensity is lower, with effects being more likely to be behavioural rather than physical 76 

[25,26]. Thus, the effects of anthropogenic noise can range from small, short-term 77 

behavioural adjustments to large behavioural or physiological changes resulting in death 78 

(figure 1). 79 

 80 
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(a)  Development 81 

Noise can affect both the anatomy and the morphology of an organism, by mechanically 82 

damaging single cells as well as entire organs. For example, noise can damage statocysts in 83 

invertebrates, ears and/or swim bladders in fish, and auditory organs in marine mammals 84 

[28,29]. Such noise induced damages can negatively affect perception and orientation, and/or 85 

buoyancy control, which may result in mass strandings in both invertebrates and vertebrates 86 

(e.g., [28,29]). 87 

 88 

Noise can also affect organisms during various stages of ontogeny. While early life 89 

stages may be able to tolerate natural environmental fluctuations, anthropogenically induced 90 

environmental changes can reach beyond the natural range. Consequently, anthropogenic 91 

noise can lead to morphological malformations [30], reduce the successful embryonic 92 

development and increase larvae mortality [31]. This suggest that noise may affect 93 

developmental instablity, i.e. the inability of the genome to buffer developmental processes 94 

against disturbances [32] and canalisation, i.e. the ability of a population to express the same 95 

phenotype regardless of variablity of its environment or genotype [33]. Such changes early in 96 

life will result in fitness cost and may impact on population dynamics and resilience, with 97 

potential implications for community structure and function (figure 1). 98 

 99 

However, not all species are affected by noise during early life stages: whilst 100 

anthropogenic noise did not affect crab larvae survival [34] it increased mortality in some fish 101 

larvae ([35], but see [36]). One explanation for these contrasting results is that the fry of some 102 

species rely on detection of reef noise for habitat selection [37], which may explain why 103 

embryonic coral reef fish respond to noise [38]. On the other hand, the lack of an effect on 104 
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early life stages in other species may be explained by embryos and fry developing hearing 105 

capacity to detect sounds later during ontogeny [36]. 106 

 107 

(b) Physiology 108 

One of the changes in response to noise that links anatomy, morphology and physiology is the 109 

impact on hearing. Noise exposure can change hearing capabilities by increasing the auditory 110 

threshold level [39,40]. Following noise exposure, several regions of saccules can exhibit 111 

significant loss of hair bundles demonstrating damage caused by noise, but with the potential 112 

of recovery [41], depending on both the duration of noise exposure and the frequency [39]. 113 

Anthropogenic noise can also influence the endocrine system, leading to an increase in 114 

secretion of the stress hormone cortisol in fish ([40,42] but see [43]) and mammals [44]. 115 

Although the exact mechanism remains unclear, physiological stress caused by noise is a 116 

likely source for developmental delays and growth abnormalities [30,31,35] but also may 117 

hamper reproduction, growth and immunity [45]. 118 

 119 

Anthropogenic noise can also affect the metabolism of both invertebrates and 120 

vertebrates. Crustaceans exposed to ship-noise consumed more oxygen than those exposed to 121 

ambient harbour noise [46]. In Perciformes, anthropogenic noise elicited a rise in cardiac 122 

output [47] and increased lactate and haematocrit levels reflecting increased muscle 123 

metabolism [48]. Since muscle activity can be a large part of the fish energy budget, noise 124 

may thus result in an increase of metabolic costs [49]. Thus, noise can affect various aspects 125 

of an individual’s physiology, that are negatively associated with metabolism, immune 126 

responses, survival and recruitment as well as affecting development [10]. 127 

 275 



7 
 

(c) Behaviour 276 

Initial responses of individuals to changes in the environment are often behavioural [50]. 277 

Consequently, noise pollution can induce a variety of behavioural changes by (i) overlapping 278 

with the hearing range of species (figure 2), (ii) overlapping with the bandwidth of acoustic 279 

information (figure 2), i.e. the acoustic information is masked, (iii) distracting individuals 280 

[51] even if acoustic information is not energetically masked [52], and (iv)  affecting 281 

behaviour across sensory modalities: cuttlefish, for example, changed their visual signals 282 

when exposed to anthropogenic noise [53], and aquatic mammals may alter the use of their 283 

primary communication channel [54]. 284 

 285 

Broadly speaking, species can use sound to provide or extract information by actively 286 

producing sound, e.g. in communication and/or echolocation, and passively by extracting 287 

information from environmental cues. Mitigating the effects of anthropogenic noise during 288 

communication is crucial because noise reduces the range at which a signal can be detected 289 

and processed. Ship noise, for example, reduces communication range of Ziphiidae by a 290 

factor of more than five [55]. One of the most common behavioural responses mitigating 291 

increasing noise levels is the adjustment of acoustic signals [56] to maintain their detection 292 

and efficiency [57]. In addition to communication, some species produce sound such as 293 

echolocation to gather information about their environment. In Delphinidae, noise decreased 294 

the accuracy to detect objects with sonar and increasing noise levels ceased the production of 295 

sonar clicks due to a decrease in effectiveness [58]. Thus, acoustic information used in 296 

navigation and prey location is disrupted by noise, individuals will have difficulties locating 297 

indispensable resources, e.g. suitable habitats and food. 298 

 299 
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Noise can affect the perception of environmental cues which many species use to gather 300 

information about the environment [59]. Acoustic cues play an important role for larval 301 

orientation and settlement decisions, e.g. in reef fish and crustaceans, because these cues can 302 

indicate both the presence and suitability of particular habitat types [60-62]. Furthermore, 303 

noise may affect predator-prey interactions: fish can use sound generated by prey to hunt 304 

efficiently [63], and prey, on the other hand, may suppress acoustic behaviour in response to 305 

predator sounds [64-67]. Moreover, noise can increase the risk of predation or affect anti-306 

predator behaviour by reducing anti-predator defence in both invertebrates and vertebrates 307 

([68,69] but see [70]). 308 

 309 

Foraging might not only be affected through masking of cues that are important to detect 310 

prey (see above). When experimentally exposed to noise, fish showed increased handling 311 

errors and decreased discrimination between food and non-food items [71] or ceased feeding 312 

[72], whereas shore crabs disrupted their feeding [69]. Thus, anthropogenic noise can lead to 313 

significant impacts on an individual’s foraging and feeding efficiency in both invertebrates 314 

and vertebrates. Noise pollution can also alter small scale movements leading to avoidance of 315 

noise, e.g. fish and squid which alter their position in the water column in response to 316 

anthropogenic noise [73,74], whereas large scale movements can lead to the abandonment of 317 

habitats [75]. 318 

 319 

Noise may also negatively affect the social structure between pairs and groups, leading to 320 

weakened social bonds and instability in group cohesion by increasing the aggression 321 

between individuals [68]. Such behavioural changes can impede defence against predators of 322 

eggs and fry [68], reduce the ability to maintain territories [76], or alter the reproductive 323 
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behaviour and output of individuals by negatively influencing mate choice, courtship and 324 

parental care [17]. An increase in agonistic behaviours, including the quantity and quality of 325 

contests between individuals, may increase the amount of energy used or the likelihood of 326 

injury or death [68]. 327 

 328 

3. Challenges and directions for future studies 329 

There are a few challenges in the study of aquatic noise pollution, which fall into four broad 330 

categories: (a) linking proximate and ultimate individual responses to ecological effects; (b) 331 

interactions among multiple environmental stressors; (c) species-specific responses; and (d) 332 

study design, i.e. experiments with suitable controls and replicates. Only by addressing these 333 

issues we will be able to get a better understanding of the effects of noise pollution and set 334 

the right conservation actions. 335 

 336 

(a) Bridging the gap: linking proximate and ultimate individual responses to ecological 337 

effects 338 

Due to the complexity of ecosystem processes, we currently have only little understanding of 339 

how proximate and ultimate individual responses may translate into ecological effects (figure 340 

1). While we have found experimental evidence of how noise affects behaviour, development 341 

and physiology, we have only little experimental data how these changes may translate into 342 

individual fitness and population-level consequences. One example illustrating how 343 

increasing noise may affect ultimate individual responses is the effect of noise on predator-344 

prey interactions: acoustic disturbance can impair anti-predator responses in fish, which 345 
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directly affects the likelihood of survival [77]. Whether these ultimate individual responses 346 

translate into ecological effects in the wild remains to be shown. 347 

 348 

(b) Interactions among multiple environmental stressors 349 

Anthropogenic stressors, such as noise pollution, have an ever increasing effect on the 350 

environment, but these stressors rarely act in isolation [78]. Often organisms are exposed to 351 

several environmental stressors and the resulting interactions among them simultaneously. 352 

For example, the impact of anthropogenic noise in the marine environment may be amplified 353 

by ocean acidification and/or an increase in water temperature both affecting transmission of 354 

sound in water. Ocean acidification has led to a decrease in pH, which reduces the absorption 355 

of sound in oceans, making them noisier by decreasing sound absorbing abilities for low 356 

frequencies [79,80]. Increasing temperatures, on the other hand, lead to a decrease of speed at 357 

which sound travels. Carefully planned experiments are needed to investigate the complexity 358 

of such multifaceted interactions of environmental stressors. 359 

 360 

(c) Species specific responses 361 

Anthropogenic noise affects a wide range of aquatic invertebrates and vertebrates and 362 

responses to noise can differ between species (figure 2). Non-mutually exclusive explanations 363 

why species respond differently to anthropogenic noise are: Firstly, differences in auditory 364 

capabilities and sensitivities to detect sound pressure and/or particle motion (e.g. [81-83]). 365 

Notably, the role that particle motion plays in the biology and ecology of species is still 366 

largely unknown [84]. The detection of pressure is well described in mammals and certain 367 

fish with morphological specialisations that use the swimbladder as a pressure-to-particle 368 
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motion converter [7]. In contrast, the detection of particle motion is found in cartilaginous 369 

and some teleost fish that do not have specialised adaptations to detect or process sound 370 

pressure [8,85]. At least a third of all teleost species developed structures for sound pressure 371 

detection where air-filled cavities within the body, e.g. the swim bladder, undergo volume 372 

changes because air is more compressible than fluids in a sound field [8]. These changes will 373 

result in oscillations transmitted to the inner ear improving hearing capabilities, functioning 374 

as pressure-to-particle motion transducers [8]. However, if a noise source is more than a few 375 

metres away from an organism, noise may have less impact on species relying on particle 376 

motion, because it can only be detected over short distances, in a small frequency range and 377 

at sound intensities at higher levels (see above). In contrast, species relying on sound pressure 378 

detection will detect sound pressure changes over large distances and thus may be more 379 

vulnerable to increasing noise levels than species relying on particle motion alone. Hence, 380 

aquatic mammals and fish species able to detect sound pressure may be more vulnerable to 381 

increasing noise than species relying on particle motion alone. Due to the variety of 382 

perception modes among species, more work is needed to understand the interplay between a 383 

species’ sound detection mechanisms and its vulnerability to increasing noise levels. To 384 

unravel the link between hearing mechanisms and vulnerability to anthropogenic noise is 385 

particularly important for conservation and species management.  386 

 387 

Secondly, species might also respond differently to different types of noise, e.g. 388 

whether it is chronic or not, and/or has daily fluctuations. To assess the effects of different 389 

types of anthropogenic noise in aquatic environments it is necessary to quantify the 390 

distinctive characteristics of individual noise sources because aquatic environments can be 391 

complex in their characteristics [19]. Some of the noise produced by human activities is 392 

impulsive and intense, particularly close to the sound source (e.g. explosions, seismic air 393 
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guns, impact pile driving), whereas other human noises are less pronounced but are chronic 394 

(e.g. wind farms, vessels). This added complexity, i.e. differences in response to different 395 

noise sources, is seen in both behavioural and physiological responses to noise. For example, 396 

Balaenopteridae reacted differently to ship noise and noise generated by air guns, with the 397 

latter causing avoidance behaviour and changes to communication, whilst the former only 398 

affected communication [86]. These differences in response could be related to temporal 399 

differences (e.g. [87]) or structural differences in the characteristics of the noise stimuli. 400 

Therefore, caution must be taken when extrapolating results from one species or noise type to 401 

another [25]. 402 

 403 

The importance of noise pollution has been recognised in conservation in both aquatic 404 

and terrestrial ecosystems [11-14]. Often, the aim of conservation is to protect entire 405 

ecosystems, but conservation can only be successful if we understand how and why species 406 

are affected by environmental changes, as individual changes can have population 407 

consequences [88]. While there are some attempts to understand why terrestrial species differ 408 

in their response [e.g. [89,90] and the how noise affects species composition [91,92], we still 409 

need such formal comparison for aquatic species. To fill this knowledge gap is important, 410 

because the effects of noise have often been oversimplified, by suggesting that species are 411 

either sensitive and abandon an area or are not and remain [14]. However, as our review 412 

shows there is compelling evidence that the effects of noise can be quite subtle by affecting 413 

developmental and physiological processes in species quite differently (see above). 414 

 415 

(d) Demonstrating cause and effect relationships 416 
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A major challenge in understanding how anthropogenically induced environmental changes 417 

affect organisms is establishing cause and effect relationships. Only carefully designed 418 

experiments can control for potentially confounding factors [93], which allow to draw robust 419 

conclusions about the effects of noise. Noise exposure experiments in free ranging aquatic 420 

animals are difficult to conduct, therefore, tank-based experiments have been successfully 421 

used as an alternative (e.g. [77,94,95]), and alternative approaches in semi-open settings are 422 

starting to emerge (e.g. [96,97]). 423 

 424 

There is an ongoing debate on how efficacious tank-based experiments can be [98]: 425 

Firstly, the sound field produced in small tanks is complex and is dominated by the particle 426 

velocity element of the sound field [99]. Thus, the noise animals are exposed to in a tank-427 

based setup may differ from real world conditions e.g. [70,77]. Secondly, loud speakers do 428 

not have a linear response and thus change the spectral quality of the sounds played, resulting 429 

in a different balance between the sound pressure and particle velocity components of sound 430 

[100]. Thus, the particle motion generated from tank-based playback experiments may not 431 

closely mimic real-world situations. However, tank-based experiments also have some major 432 

advantages. Firstly, tank-based experiments mimic common ecological circumstances faced 433 

by many species where individuals cannot avoid noise polluted areas [72]. Secondly, in some 434 

situations only experiments carried out under controlled laboratory conditions allow us to 435 

understand the underlying mechanisms that lead to an animals’ response, which is the basis 436 

for successful conservation [12]. Finally, most noise exposure experiments have been short-437 

term, and there is only very little known about long-term effects of noise. To understand the 438 

long-term effects of noise pollution the repeated or long-term exposure of the same 439 

individuals to noise is necessary. This may prove particularly difficult in the field, but could 440 
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be achieved in laboratory settings. Work of this nature will highlight whether species 441 

habituate to noise over time, or become sensitised to the noise stimulus. 442 

 443 

4. Conclusions 444 

Anthropogenic noise is rapidly becoming omnipresent in both aquatic and terrestrial 445 

environments. We found comprehensive evidence that noise affects an individual’s 446 

development, physiology, and/or behaviour. As aquatic and terrestrial habitats differ in their 447 

sound propagation properties [6], i.e. sound in water travels faster and greater distances, and 448 

attenuates less than sound in air, noise pollution in aquatic ecosystems may be more far-449 

reaching than in terrestrial ecosystems by covering larger areas. The interplay with other 450 

environmental stressors may also intensify the problems for species inhabiting noise-polluted 451 

aquatic habitats. The patterns highlighted here illustrate how noise in aquatic ecosystems 452 

causes major changes and potentially impacts a wide range of species. Given the mixed 453 

results from studies investigating the impact of aquatic noise pollution on different species 454 

and life history stages, care must be taken when extrapolating results between species. As 455 

many invertebrates and fish are sensitive to particle motion, rather than sound pressure, it is 456 

crucial to monitor particle motion along with sound pressure. However, as this field continues 457 

to grow, and research questions become more fine-tuned, we see that the impact noise has on 458 

aquatic species involves complexities, such as hearing abilities and noise types. These 459 

complexities will affect the nature of responses, and thus should be highlighted and examined 460 

if we are to develop effective noise mitigation strategies to conserve and protect the world’s 461 

aquatic wildlife more efficiently. 462 

 463 

 464 
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Figure 1. The effects of anthropogenic noise on  individuals’ anatomy, physiology and 469 

behaviour. Changes in the acoustic environment through increasing noise levels can lead to 470 

immediate proximate responses, resulting in variety of emergent responses. Anthropogenic 471 

noise can have non-mutually exclusive interrelated effects on proximate and ultimate 472 

individuals responses leading to large scale ecological effects.  473 

 474 

Figure 2. (a) Examples of hearing and signal production ranges of different taxa that can be 475 

affected by anthropogenic noise (modified and extended from [17]). We used the minimum 476 

and maximum value reported in the literature (hearing range: dark blue bars, signal 477 

production range: light blue). Note: fish have a huge diversity in hearing and production 478 

mechanisms [7]; therefore, examples were chosen to illustrate the variety of their hearing and 479 

perception. The noise ranges (shown in grey) indicate where the majority of sound sources 480 

have most of their energy [5]. Data obtained from various studies (for details see 481 

supplementary material ESM 1). (b) The effect of noise pollution across taxa. The majority of 482 

studies published found a relationship with noise. Dark grey bars indicate the number of 483 

cases that did find a significant effect and light grey bars those that did not (for details see 484 

supplementary material ESM 2).  485 
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