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Abstract
This paper reviews the current state-of-the-art, limitations, critical issues, and new directions in freshwater plant ecotoxicology.
We selected peer-reviewed studies using relevant databases and for each (1) publication year, (2) test plant species, (3) reference
plant group (microalgae, macroalgae, bryophytes, pteridophytes, flowering plants), (4) toxicant tested (heavy metal, pharmaceu-
tical product, hydrocarbon, pesticide, surfactant, plastic), (5) experiment site (laboratory, field), and (6) toxicant exposure
duration. Although aquatic plant organisms play a key role in the functioning of freshwater ecosystems, mainly linked to their
primary productivity, their use as biological models in ecotoxicological tests was limited if compared to animals. Also, toxicant
effects on freshwater plants were scarcely investigated and limited to studies on microalgae (80%), or only to a certain number of
recurrent species (Pseudokirchneriella subcapitata,Chlorella vulgaris, Lemnaminor,Myriophyllum spicatum). Themost widely
tested toxicants on plants were heavy metals (74%), followed by pharmaceutical products and hydrocarbons (7%), while the most
commonly utilized endpoints in tests were plant growth inhibition, variations in dry or fresh weight, morpho-structural alter-
ations, chlorosis, and/or necrosis. The main critical issues emerged from plant-based ecotoxicological tests were the narrow range
of species and endpoints considered, the lack of environmental relevance, the excessively short exposure times, and the culture
media potentially reacting with toxicants. Proposals to overcome these issues are discussed.
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Introduction

Ecotoxicological studies have increased significantly in the
last decades following the exponential growth in the produc-
tion and use of chemicals in agriculture, medicine, and various
industrial sectors, leading to an increasing release of toxic
contaminants into waters globally (Paixao et al. 2008; Decou
et al. 2018; Ma et al. 2019). In particular, inland waters are
among the most threatened habitats worldwide by this

indiscriminate pollution (Reid et al. 2019) and their protection
ought to be part of the priorities of environmental conservation
and management policies, considering both the peculiarity of
their biocenoses and the fundamental role that these habitats
assume for humans as a direct source of cultural and socio-
economic resources, activities, and ecosystemic services
(Aylward et al. 2005; Pham et al. 2019). Consequently, mon-
itoring activities of water quality and health environmental
status assume considerable importance and, from this perspec-
tive, ecotoxicological studies play an evident role in assessing
contaminant effects on aquatic habitats and human health
(Paixao et al. 2008; Mkandawire et al. 2014).

Nowadays, government policies aim at estimating and mon-
itoring the impact of detrimental chemicals on both environmen-
tal and human health by using diverse strategies involving tox-
icological and ecotoxicological tests, developed to provide suit-
able tools for analyzing negative effects of toxicants. Through
legislations, policy makers may provide new tools to researchers
and institutions which are interested in preserving the quality of
the environment, for evaluating and mitigating the effects of
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pollutants on the ecosystems, such as the Water Framework
Directive (WFD; 2000/60/EC). Following this directive, in order
to detect environmental hazards and potential risks to human
health, the employment of sentinel species as early environmen-
tal warning systems is strongly encouraged. In fact, traditional
water chemical analyses combined with biological monitoring
activities allow an integrated and more complete assessment of
the water quality status.

In this context, plant-based ecotoxicological tests assume an
evident role, considering that many contaminants enter the eco-
system through the plant organisms (i.e., autotrophic organ-
isms) that are the first and obligate step of the main trophic
chains. Thus, plants can accumulate toxicants, and herbivores
will be contaminated with the potential of food chain contam-
ination by bioaccumulation and biomagnification processes.
Among the plant models that may be exploited in ecotoxico-
logical investigations in freshwater ecosystems, there is a wide
variety of aquatic plant organisms ranging from algae, bryo-
phytes, pteridophytes, and flowering plants. These usually are
utilized as bioindicators of water quality status (e.g., Ceschin
et al. 2010, 2012; Søndergaard et al. 2010;Wu et al. 2017), and
of hydro-morphological alterations of river and lake ecosys-
tems (e.g., Daniel et al. 2006; Benítez-Mora and Camargo
2014; Tombolini et al. 2014; Abati et al. 2016), as well as
phytoremediation agents for the removal of toxicants from civ-
il, agricultural, and industrial wastewater (e.g., Tripathi and
Shukla 1991; Mkandawire et al. 2014; Li et al. 2018; Ceschin
et al. 2019, 2020). In the first case, the sensitivity of some plant
species to certain contaminants or alteration conditions is
exploited, while in the second case, the focus is on the capabil-
ity of other species to tolerate the presence of contaminants and
bioaccumulate them in their tissues. These properties, recog-
nized in various freshwater plant organisms, lend themselves
considerably to be exploited also in the ecotoxicological sector
when evaluating the contamination status of freshwaters.

On the basis of the above mentioned, it appears surprising
that the use of aquatic plants as biological models in ecotox-
icological tests is still rather limited (Blinova 2004; EPA
2020); in fact, the most frequently used organisms for these
tests are bacteria (e.g., Pseudomonas putida) (Sihtmäe et al.
2013) and, especially, animals such as aquatic micro- and
macroinvertebrates (e.g., Daphnia magna, Gammarus
duebeni) (Chae et al. 2018; Mateos-Cárdenas et al. 2019)
and fish (e.g., the Mozambique tilapia, Oreochromis
mossambicus and the zebrafish, Danio rerio) (Xue et al.
2018; Godoy et al. 2019). When it comes to the toxicological
effects of various contaminants on the different aquatic plant
organisms, the knowledge is equally scarce (Coutris et al.
2011; Alkimin et al. 2019), with most of the available studies
focusing mainly on unicellular algae (Wang 2019).

The neglected use of freshwater plants with respect to ani-
mals could be due to the idea that the former were considered
less sensitive to chemicals (Lewis 1995). Furthermore,

traditionally toxicological studies have focused primarily on
the evaluation of the toxic potential of contaminants present in
water with particular reference to human health and, from this
perspective, plant organisms have often been considered unsuit-
able biological models for such evaluations, since they are bio-
logically too distant from the human organism (Lewis 1995;
Blinova 2004), and therefore less useful, apparently, in assessing
the possible influence of a contaminant on its well-being.

Anyhow, ecotoxicological studies in freshwaters based on
plant organisms become fundamental tools to evaluate and
monitor the quality and health status of both human beings
and aquatic ecosystems, since plant organisms play a structur-
ally and functionally fundamental ecosystemic role as primary
producers (Gubbins et al. 2011); suffice it to say that if plant
organisms bioaccumulate toxicants present in water, first the
herbivores and then the carnivores will be contaminated along
the food chain following a biomagnification process that can
finally lead to the man at the top of this process of contami-
nation. Hence, plant-based ecotoxicological studies have the
potential to identify possible toxicological risks in the envi-
ronment, since contamination phenomena recorded in the
plants directly/indirectly affect all the other organisms and
the health of the entire ecosystem, including humans (Geis
et al. 2000; Costa et al. 2018). In addition, being the first
interface between abiotic and biotic components of an ecosys-
tem, plant organisms can respond to water contamination phe-
nomena earlier than other organisms, assuming the important
role of early warning systems (EWSs), which is fundamental
for intercepting contaminations in advance and allowing a
timely intervention before the processes of biomagnification
along food chain or the diffusion of the contaminant become
too advanced.

An encouragement in using plants in ecotoxicological stud-
ies emerges from an analysis of the Toxic Substances Control
Act (TSCA) for the premanufacturing notifications of chemi-
cal substances that highlighted how freshwater unicellular al-
gae and animals show a different sensitivity to various con-
taminants (Lewis 1995). Therefore, in order to exhaustively
evaluate the toxic effect of a contaminant in the environment,
it is important to carry out ecotoxicological tests, not only on
animal organisms, but also on plants (Coutris et al. 2011;
Alkimin et al. 2019).

Within this context, the present paper reviews the current
state-of-the-art in the use of aquatic plant organisms in eco-
toxicological investigations in freshwater ecosystems. The in-
formation extracted from the literature was summarized and
evaluated by considering (i) the proportion of ecotoxicologi-
cal studies dedicated to plant organisms and different groups
of plants; (ii) the different plant-based ecotoxicological tests
available; and (iii) the main toxicants employed in these tests.
In addition, limitations and critical issues in freshwater plant
ecotoxicology are highlighted, and proposals to overcome
these issues are discussed.
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Methodology

Information sources

International scientific articles were selected from various
sources, such as Scopus, Web of Science, Google Scholar
(1900–February 2020) and, especially, ECOTOX database
(EPA 2020) (1915–February 2020). Research keywords pri-
marily included “ecotoxicology,” “freshwater plants/aquatic
plants/macrophytes/hydrophytes,” “algae,” “unicellular al-
gae,” combined with “toxicants in freshwater ecosystems,”
“ecotoxicological effects/impacts/toxicity,” and various “tox-
icants,” such as “heavy metals, pharmaceutical products, hy-
drocarbons, pesticides, surfactants, plastics”.

Search criteria

The search criteria used to screen literature were (i) articles in
peer-reviewed international journals and contributions in
books, excluding congress proceedings and unpublished dis-
sertations, (ii) studies published in English language, (iii) stud-
ies reporting empirical research, i.e., referring to real data and
analysis, (iv) plant-based ecotoxicological studies, and (v) ex-
perimentations in both laboratory and field conditions.

Data collection

All extracted and selected papers were utilized for elaborating
a digital database where data were grouped according to six
main items: (1) publication year of the article, (2) scientific
name of the test plant species, (3) reference plant group, (4)
toxicant and toxicant category (heavy metal, pharmaceutical

product, hydrocarbon, pesticide, surfactant, plastic), (5) test
site (laboratory, field), and (6) toxicant exposure duration.
As for the reference plant groups, plants were listed as
microalgae, including unicellular algae (mainly diatoms,
chrysophyceans, cryptomonads, unicellular green algae),
macroalgae (pluricellular and thallophytic green/yellow/red
algae, charophyceans), aquatic bryophytes (mosses, liver-
worts, hornworts), aquatic pteridophytes, and flowering
plants.

Results and discussion

Freshwater plant organisms used in ecotoxicology

The main output emerging after the systematic analysis of the
ECOTOX database regarding over 6000 aquatic species used
in water ecotoxicology (including animals, plants, and fungi),
is that only 25% are plant species, and most of these are
microalgae (60%), followed by flowering plants (33%),
macroalgae (around 6%), pteridophytes (1.6%), and aquatic
bryophytes (1%) (Fig. 1). About 65% of the aquatic plant
species used refer to freshwater plant organisms, while the
remaining percentage consists of seawater and brackish taxa.

Several evidence showed that, compared to other aquatic
plant organisms, microalgae are often more sensitive to certain
contaminants found in civil and industrial wastewaters (Lewis
1995; Blinova 2004; Paixao et al. 2008). This would explain the
reason why, among the different plant groups, microalgae were
more widely used as reference species in phytotoxicological
tests (Lewis 1995). In fact, microalgae-based tests were de-
signed to be used with various types of potential toxicants and

Fig. 1 Frequency (%) of use of
taxa belonging to the main plant
groups (microalgae, macroalgae,
pteridophytes, bryophytes,
flowering plants) in
ecotoxicological studies (data
extracted by ECOTOX database,
EPA 2020)
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effluents, and were the first to be developed and standardized
since the 1960s by regulatory development agencies, such as the
Organization for Economic Cooperation and Development
(OECD) and the International Standards Organization (ISO).
Afterwards, starting from these tests, several research projects
have tried to optimize the procedures and perform microscale
tests. In fact, microalgae are suitable for performingminiaturized
tests which have the economic advantage of analyzing the tox-
icity of a wide range of chemicals and water samples at reduced
costs, as well as requiring small sample volumes for the analy-
ses, allowing a large number of samples to be tested at the same
time. Some microalgal species were used more than others in
ecotoxicology studies for testing a wide range of contaminants,
such as Pseudokirchneriella subcapitata (= Selenastrum
subcapitata) and Chlorella vulgaris (Table 1).

With regard to other plant groups, since the 1950s, most
tests was conducted on freshwater species of the genera
Lemma (floating rootless flowering plants) andMyriophyllum
(rooted flowering plants) (Table 1). The latter was used almost
exclusively to determine the toxicity of sediments contaminat-
ed by various toxicants, mainly heavy metals and pharmaceu-
tical products. It is only since the 1970s that some aquatic
bryophytes (e.g., Fontinalis antipyretica) and pteridophytes

(e.g., Azolla pinnata, Salvina molesta) were also used in
phytotoxicological tests, although their frequency was much
lower than the one recorded for other plant groups (Table 1).

Plant-based ecotoxicological tests

There are various ecotoxicological tests that use plant organ-
isms to determine the toxic effects of commercial and agricul-
tural chemical products or industrial and civil derivatives. The
use of plant-based tests started to be relatively significant only
in the last two decades (Razinger et al. 2007; Alkimin et al.
2019; Dumont et al. 2019; Eagles et al. 2019), when plants
have been most acknowledged as useful biomonitors in envi-
ronmental toxicology. This led to an increasing number of
environmental directives and regulations requiring the devel-
opment of specific methodological guidelines for these tests
and for their standardized use (Lewis 1995; Brain and
Cedergreen 2008; Mkandawire et al. 2014). As a result, some
international and national regulatory agencies, in particular the
ISO and OECD, developed specific guidelines for carrying out
ecotoxicological tests and standardized the methodological
procedures, allowing valid comparisons among the various
experimentations on the toxic effects of contaminants on

Table 1 For each plant group
(microalgae, macroalgae,
bryophytes, pteridophytes,
flowering plants), the species
which are most used in
ecotoxicological tests are shown.
For each species, in addition to
the scientific name, the number of
ecotoxicological studies in which
the species was tested, and the
time range (year min and max) in
which these studies were carried
out are reported (data extracted by
ECOTOX database, EPA 2020)

Plant group Scientific name N. paper Year min Year max

Microalgae Pseudokirchneriella subcapitata 489 1973 2019

Chlorella vulgaris 251 1962 2018

Chlamydomonas reinhardtii 167 1970 2018

Chlorella pyrenoidosa 167 1952 2019

Scenedesmus quadricauda 164 1959 2018

Macroalgae Cladophora glomerata 15 1970 2005

Oedogonium cardiacum 25 1973 1986

Spirogyra sp. 20 1931 2010

Chara sp. 22 1960 2007

Zygnema sp. 5 1963 2009

Bryophytes Fontinalis antipyretica 20 1978 2013

Platyhypnidium riparoides 9 1987 2009

Vesicularia dubyana 4 1989 2005

Scapania undulata 4 1983 1999

Fontinalis dalecarlica 2 1984 1998

Pteridophytes Azolla pinnata 15 1979 2005

Salvina molesta 15 1975 2018

Azolla caroliniana 10 1982 2016

Salvinia natans 10 1972 2019

Azolla filiculoides 7 1982 2013

Flowering plants Lemna minor 254 1954 2019

Myriophyllum spicatum 115 1963 2015

Hydrilla verticillata 105 1960 2018

Lemna gibba 93 1971 2017

Myriophyllum sibiricum 9 1967 2005
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freshwater plants utilized as biological models. The methodol-
ogies suggested by ISO and OECD tests differ slightly in de-
sign but all use similar plant species which are exposed during
their growth phase to different concentrations of the toxicant
for a few days (Naumann et al. 2007; Mkandawire et al. 2014;
Ziegler et al. 2016; Farkas and Booth 2017). However, while
the ISO guidelines are designed to determine how plant models
respond to toxicants and mixtures contained in water samples,
treated municipal wastewater, and industrial effluents (i.e., en-
vironmental samples), OECD tests focus on assessing the tox-
icological effects of specific substances and chemical products
on plants (Fomin et al. 2000).

The plant-based ecotoxicological tests available refer to
standardized guidelines which differ according to the type of
freshwater plant organisms used. In particular, guidelines
were formulated for microalgae (OECD 201 2011; ISO
8692 2012), rootless macrophytes (ISO 20079 2005; OECD
221 2006), and rooted macrophytes (ISO 16191 2013; OECD
238-239 2014a, b).

With regard to microalgae, the OECD formulated specific
guidelines in 1984 (OECD 201 1984) which were then up-
dated in 2011, both by revising the data analysis procedures
and by expanding the set of microalgal species used as bio-
logical models which the toxicity of various contaminants
should be tested on. According to these guidelines, the effects
of the contaminant on the growth of certain microalgae, such
as the unicellular green algae Pseudokirchneriella subcapitata
and Desmodesmus subspicatus (= Scenedesmus subspicatus)
and the diatomNavicula pelliculosa, are determined within 72
h. The response is evaluated as a function of the exposure
concentration in comparison with the average growth of rep-
licate, unexposed control cultures. The ISO guidelines de-
signed for this plant group, initially adopted in 1989 and then
revised in 2012 (ISO 8692 1989, 2012), show procedures that
are very similar to the OECD ones, except for the type of
growth medium and the used microalgal species that only
refer to Pseudokirchneriella subcapitata and Desmodesmus
subspicatus.

The OECD guidelines 221 (2006) and ISO 20079 (2005)
use floating rootless flowering plants of the genus Lemna
(L. minor, L. gibba and only L. minor, respectively) as bio-
logical models. In both cases, the toxicological effects of the
contaminant on the plant growth are quantified over 7 days by
measuring the number of fronds, the total surface of the
fronds, and the dry or fresh weight.

The Society of Environmental Toxicology and Chemistry
(SETAC) highlighted that some toxicants had no effect on
algae and rootless plants, probably due to their mode of action
or because they typically occur as precipitates in sediments,
thus leading to plant exposure to the toxicants only through
root uptake (Maltby et al. 2009). This observation, which was
also confirmed by a series of experimental studies (Knauer
et al. 2006; Arts et al. 2008; Maltby et al. 2010), highlighted

the need to develop guidelines that could assess the risk of a
contaminant even on rooted plants. The formulation of the
ISO guidelines 16191 (2013) first, and then to the OECD
238 and 239 (2014a, b), which provide for use and absence
of sediment during the tests respectively, responds to this need
using rooted plants of the genusMyriophyllum (M. aquaticum
in the ISO and M. spicatum in the OECD); these plants have
proved to be among the most suitable aquatic plants when it
comes to performing tests that also analyze sediment contam-
ination (Knauer et al. 2008; Kubitza and Dohmen 2008;
Maltby et al. 2009). The phytotoxicological effects (variations
in shoot length and in fresh or dry weight, stem alterations in
terms of chlorosis, necrosis, and malformations) of a chemical
contaminant on exposed Myriophyllum specimens are evalu-
ated over a longer period of time (i.e., 14 days) than those
adopted in the other guidelines. It should be emphasized that
the need to carry out tests on rooted plants does not arise with
the aim of replacing other phytotoxicological tests to monitor
the ecotoxicological status of freshwaters, but rather for inte-
grating them and for having a more exhaustive assessment of
the risks which the different aquatic plants can be exposed to,
and that also concern the entire environment in which they
live.

Critical issues in standardized plant-based ecotoxico-
logical tests

Some critical issues emerged from the literature about the
protocols proposed by the standardized ISO andOECD guide-
lines. Methodologies and conditions are not always suitable
for the optimal application of ecotoxicological tests based on
freshwater plants (e.g., Cairns and Niederlehner, 1995;
Navarro et al. 2002; Gubbins et al. 2011; Pereira et al. 2018;
Ding et al. 2019) mainly due to the following limitations:

i. Ecosystem complexity. Most of these guidelines refer to
experimental tests carried out exclusively under controlled
laboratory conditions; this obviously involves some prob-
lems (e.g., short time frame, small scale, lack of synergic
effects, and complexity of interaction found in nature) that
restrict the capability to extrapolate the real status of a
natural system from controlled experiments (Carpenter
1996; Petersen et al. 1997; Schindler 1998). Therefore,
the outputs obtained do not fully reflect the actual harmful
effects of tested contaminants on plants in nature. For ex-
ample, the toxic effects of silver nanoparticles (AgNPs) on
Lemna minor (Ding et al. 2019) are mitigated by the pres-
ence of natural suspended substances such as humic acids
(HA). HA appear to reduce the absorption capacity of
AgNPs in Lemna, therefore limiting the phytotoxical ef-
fects in the plant.

ii. Exposition time span. Several studies (e.g., Gubbins et al.
2011; Pereira et al. 2018) showed how the extension of
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exposure compared to the time required by the standard-
ized guidelines (for example from 7 to 14 days) can ampli-
fy the intensity of the response when testing plant models,
providing additional evidence on the contaminant toxicity.

iii. Growth medium tipology. The use of an undiluted stan-
dard growth medium, as proposed by the standardized
guidelines, can interfere with the tested toxicants. For
example, a study on the toxic effect of AgNPs on
Lemna minor by Gubbins et al. (2011) found that
AgNPs had a different impact on the aquatic plant de-
pending on whether a diluted or concentrated growth
medium was used in the experiment. This was due to
the interaction of the toxicant with the medium, and spe-
cifically to how the aggregation and sedimentation prop-
erties of the toxicant were modified. Once this toxicant-
medium interaction was observed, Gubbins et al. (2011)
used a 100-fold dilution of the growth medium to ensure
the growth of the biomodel used, while reducing AgNP-
medium aggregation. This evidence suggests that similar
problems could also occur in other standardized
phytotoxicological tests and, therefore, it becomes man-
datory to perform preliminary tests to verify any interac-
tions between toxicant and medium.

iv. Endpoints. The standardized tests only make use of end-
points which in some cases are proved to be reductive. In
particular, the endpoints concern the vegetative growth
after plant being exposed to contaminants, quantitatively
assessing the produced biomass (total leaf surface, shoot
length, fresh and/or dry weight) or qualitatively observ-
ing some responses, such as chlorosis, necrosis, and/or
morphological deformations during the growth. Some
studies (Navarro et al. 2002; Alkimin et al. 2019;
Dumont et al. 2019) showed that it is necessary to eval-
uate the effects on plants by extending the assessment to
more sensitive plant endpoints. The most frequently used
non-standard endpoints include the content of chloro-
phyll a, b, total, carotenoids, anthocyanins, and
malondialdehyde, the latter being considered a useful
biomarker of oxidative damage in plant tissues (Bailly
et al. 1996).

Toxicants tested in freshwater plant-based ecotoxi-
cological tests

Based on the ecotoxicological studies available in ECOTOX
database (EPA 2020), it emerged that different categories of
toxicants were tested (Fig. 2) for evaluating toxic effects on
plant organisms and finding the limit concentrations (IC50 -
half maximal inhibitory concentration) to avoid health risks.
Among the various toxicants, heavy metals are the most ana-
lyzed (74%), followed by pharmaceutical and personal care
products and hydrocarbons (around 7%). Recently, other

emerging contaminants, such as plastics, attracted the atten-
tion of researchers in assessing their toxicity also in freshwa-
ters (van Sebille et al. 2015; Ma et al. 2019), but only few
studies investigated toxicity responses in freshwater plants
(Kalcíková et al. 2017; Yi et al. 2019).

The methods for testing the various toxicants in plant-
based ecotoxicological tests differ slightly in design but basi-
cally utilize easily cultured plant organisms which are exposed
to different toxicant concentrations for a time range that can
vary from few hours to several days. Generally, the test or-
ganism grows in a nutrient-enriched medium which is often
diluted. At the end of the exposition, the toxicant effects on the
biological model are evaluated by analyzing various endpoints
that can be both at sub-individual (photosynthesis inhibition,
variation in enzymatic activities, chlorophyll fluorescence,
pigment content) and individual level (growth rate, chlorosis,
leaf number, frond area, fresh weight, leaf and root anatomy).

In Table 2 are summarized the experimental conditions
(toxicant concentrations, exposition time (h), growth media,
plant endpoints, test plant species) that are generally adopted
in freshwater phytotoxicity tests. This data was extracted by
some of the more representative studies regarding the different
toxicants analyzed. Below, the main toxicants tested in fresh-
water plant-based ecotoxicological tests are listed.

Heavy metal

Once heavy metals are released into aquatic environment, they
can be absorbed by plants (Costa et al. 2018; Xue et al. 2018)
and then transferred to animals thereby bioaccumulating along
the food chain (Sofyan et al. 2006), turning into a high risk to
the ecosystem safety as well as to human health (Sinnett et al.
2010). Heavy metals occur ubiquitously in natural systems in
different concentrations and chemical forms, which in turn de-
termine their transport efficiency, bioaccumulation pathway
and, thus, toxicity in plants (Wu et al. 2005; Zhao et al. 2015;
Xue et al. 2018).

From the literature, it is clear thatmost phytotoxicological
studies focuses their attention on the effects of heavy metals
on plants (Supplementary Table 1). Furthermore, it emerges
that themost frequently tested heavymetals are copper (Cu),
cadmium (Cd), chromium(Cr), and zinc (Zn),while the plant
species that aremostwidely used to test their effects are listed
in Supplementary Table 1. The most commonly detected
responses by these species in the presence of heavy metals
are: reduction in the growth rate, increase in the rate of ne-
crosis and chlorosis, oxidative stress and photosynthesis in-
hibition (Monferran et al. 2009; Razinger et al. 2010;
Upadhyay et al. 2011; Corcoll et al. 2012), increase in the
content of malondialdehyde (e.g., Das et al. 2016; Decou
et al. 2018), and antioxidant responses (Gonçalves et al.
2019; Li et al. 2018).
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Pharmaceutical and personal care products

Of particular environmental relevance are the pharmaceutical
and personal care products, increasingly used in human and
veterinary medicine, that show properties of environmental
persistence and biological activity, especially considering
long-term exposure (Fent et al. 2006). These are properties,
among others, that make these products a potential risk for
biocenoses and environmental health once they are released
into the aquatic environment. In addition, several studies dem-
onstrated that drug residues in treated wastewater and surface
water are widespread (e.g., Brain et al. 2004a, b; Fent et al.
2006; Küster and Adler 2014; Godoy et al. 2018; Grenni et al.
2019) and once released in the environment they may have
adverse effects on exposed biocenoses (Küster and Adler
2014; Alkimin et al. 2019).

Although studies on the effects of pharmaceutical products
on plants were carried out, they mostly focused on few plant
models, in particular on unicellular algae of the genera
Chlorella and Pseusokirchneriella, and free-floating
flowering plants of the genus Lemna (Supplementary
Table 2). The most common effects of these contaminants
on plants are activation of CAT hydrolytic activity (Alkimin
et al. 2019), decrease of phytomass (Brain et al. 2004a, b), and
plant growth inhibition (Halling-Sorensen et al. 1998; Godoy
et al. 2018).

Hydrocarbons

Several types of substances fall into this category of toxicants,
including mainly polycyclic aromatic hydrocarbons (PAHs),
and nitrogen, sulfur, or oxygen heterocyclic aromatic hydro-
carbons (NSO-HETs).

Over the last 40 years, the interest about hydrocarbons
focused mainly upon PAHs (Achten and Andersson 2015)
based on a priority list of 16 PAHs established by EPA

(Andersson and Achten 2015; Keith 2015). However, few
studies on the toxic effects of PAHs on freshwater plants were
actually carried out, probably because most PAHs are not
acutely toxic under laboratory conditions. In natural condi-
tions, however, in presence of relevant solar radiation, a num-
ber of PAHs were found to be acutely toxic to aquatic organ-
isms at concentrations that were similar to those tested in
laboratory (Landrum et al. 1984; Oris et al. 1984), thus
highlighting the importance of carrying out toxicological
analyses in experimental conditions that are as similar as pos-
sible to those found in field. Also, the knowledge on
ecotoxicity of NSO-HETs to aquatic plants is still rather
scarce (Brendel et al. 2018).

As for negative effects of hydrocarbons on aquatic plants, the
available studies (Supplementary Table 3) show that hydrocar-
bons or their degradation products exhibit toxicity to some
microalgae at low concentrations in themg/L range as genotoxic
and mutagenic agents (Eisentraeger et al. 2008). The most com-
mon responses concern plant growth inhibition, and alteration in
photosynthesis and respiration (Marwood et al. 1999; Aronsson
and Ekelund 2005; Grote et al. 2005; Engel et al. 2015; Bi et al.
2016; Kottuparambil and Park 2019), such as it was also
highlighted by the study of El-Dib et al. (2001), where the in-
crease in hydrocarbon concentration corresponded to a decrease
in plant growth rate and chlorophyll content.

Pesticides

The increasing use of pesticides (herbicides, fungicides, insec-
ticides), linked to the increase in intensive agricultural prac-
tices, contributed to the progressive contamination of the en-
vironment and surface waters (Dumont et al. 2019). These
chemicals enter into aquatic ecosystems through spraying
and drifting, soil leaching, surface runoff, and accidental spills
(Ma et al. 2008), and once entered, their adverse effects on
non-target plants are of particular concern because of their

Fig. 2 Frequency (%) of
toxicants investigated in plant-
based ecotoxicological tests.
Data extracted and elaborated by
ECOTOX (EPA 2000), with the
exception of plastics being avail-
able in other digital information
sources (Scopus, Web of Science,
Google Scholar). “Other” in-
cludes more sporadic contami-
nants (< 1%), such as explosive
products, major ions (e.g., Ca,
Mg, K, Na), and perchlorates
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ever-increasing periodical release (van Der Brink and Ter
Baak 1999). When pesticides reach the aquatic ecosystem,
their toxic potential can vary depending on their solubility
and persistence in water, as well as their potential to be
absorbed by aquatic plants (Neto et al. 2017; Salazar-
Ledesma et al. 2018; Ribeiro et al. 2019).

In some studies (Supplementary Table 4) it was observed
that among the most common effects of pesticides on aquatic
plants there were a lower production of phytomass and alter-
ation of the leaf structure in vascular plants (Ribeiro et al.
2019), and a partial or complete growth inhibition and alter-
ation of the metabolic pathways after 96 h of exposure in some
algal species (Fernández-Naveira et al. 2016; Flood et al.
2018).

Surfactants

Surfactants are mobile organic compounds released into the en-
vironment in great volume, and for this reason, strategies to
enhance their degradation are of great interest. Some surfactants
are metabolically and chemically inert, resisting to both abiotic
degradation (Sharpe 1971; Boudreau et al. 2003) and biotic
(Remde and Debus 1996; Key et al. 1998), thus becoming per-
sistent and bioaccumulable in the environment, such as the non-
biodegradable fluorosurfactant, perfluorooctanoic acid (PFOA).
Perfluoroalkyls (PFAS) are among the most used surfactants in a
wide range of industrial and consumer products (Prevedouros
et al. 2006; Buck et al. 2011) and, specifically, the most used
and studied molecules are perfluorooctanoic acid (PFOA) and
perfluorooctanesulfonic acid (PFOS).

Uptake, metabolism and toxicity of PFAS in terrestrial
plants were studied (Wen et al. 2013; Blaine et al. 2014;
Garcia-Valcarcel et al. 2014; Krippner et al. 2014), while their
effects on aquatic plants are st i l l poorly known
(Supplementary Table 5). In this regard, Boudreau et al.
(2003) and McCarthy et al. (2017) tested the effects of
PFAS on the growth of two different Lemna species,
L. minor and L. gibba, highlighting that the latter showed a
higher sensitivity to PFOS as it was more strongly inhibited in
growth; however, it should be noted that the concentration that
produced the toxic effect was higher (mg/L) than the one
recorded in the surveys on the natural environment (ng/L).
Conversely, Pietrini et al. (2019) demonstrated that at PFAS
concentrations close to those actually detected in nature, in-
hibitory effects in biometric and physiological descriptors
were not found in L. minor. However, the study highlights
the important role of the plant species as primary producers
and, therefore, their potential capability to bioaccumulate
these substances in their tissues, potentially triggering
biomagnification phenomena along the trophic chains.

Regardless of the tested concentrations of surfactants, the
most frequently encountered effects in aquatic plants as re-
sponse to exposition to this toxicant category are growth

inhibition, chlorosis, necrosis, and reduction in the number
of leaves, while one aspect that does not seem to be affected
is the chlorophyll content (Boudreau et al. 2003).

Plastics

As contaminants, plastics are a scientific and social
emerging concern for the conservation of the environment in
which they are released (Ma et al. 2019). Although the prob-
lem of plastic pollution has initially exploded in marine eco-
systems (e.g., Barnes et al. 2009; Browne et al. 2011; Cole
et al. 2011; Arossa et al. 2019), some recent studies underlined
how it is a source of equally serious risk to freshwater ecosys-
tems (Zbyszewski and Corcoran 2011; Zbyszewski et al.
2014; Koelmans et al. 2015; Mattsson et al. 2015; van
Sebille et al. 2015).

To date, ecotoxicological studies testing the effects of
micro- or nano-plastics on freshwater plants are still very
scarce. Very few plant species were tested with these contam-
inants, including microalgal species of the genus Chlorella
and Scenedesmus and flowering plants such as Lemna minor
and Myriophyllum spicatum (Supplementary Table 6).
However, the limited available literature shows that the
phytotoxicological effects of the most commonly encountered
plastics include photosynthesis inhibition and sprout and root
growth (Kalcíková et al. 2017; Bosker et al. 2019; Dovidat
et al. 2019; van Weert et al. 2019), as micro- and nanoplastic
particles adsorbed on external plant tissues form physical
blocks to light and air by hindering photosynthesis and respi-
ration activities (Bhattacharya et al. 2010; Besseling et al.
2014; Kalčíková et al. 2017; Mateos-Cárdenas et al. 2019;
Ma et al. 2019; van Weert et al. 2019; Yi et al. 2019).
However, many of these studies showed that generally plant
species are only affected when the concentrations of micro-
and nanoplastics are higher than those recorded in nature
(Mateos-Cárdenas et al. 2019; van Weert et al. 2019).

Conclusion

The ubiquitous distribution of toxicants in freshwater ecosys-
tems makes a wide range of aquatic communities threatened
by their exposure, inducing a variety of negative effects at
diverse trophic levels, starting from plant organisms as prima-
ry producers, to consumers, to superpredators (including
humans). To date, however, it appears that only few investi-
gations are addressing the processes of toxicant transfer along
the trophic chains so far, and consequently all the implications
for human health arising from consumption of contaminated
aquatic organisms (Wang et al. 2019).

The analysis of studies on the effects of toxicants on fresh-
water plants highlighted that most of them were carried out in
controlled laboratory conditions, which significantly reduces
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the ecological relevance, that is, the possibility of adequately
projecting plant responses in nature. Although many of the
toxicological investigations on freshwaters pass off as ecotox-
icological studies, most of them actually deviate from the
main purpose of ecotoxicological research; such research, in-
deed, consists in analyzing the accumulation, transport, trans-
formation, and degradation of contaminants once they are
introduced into the environment, and their effect on the vari-
ous aquatic biocenoses, and on humans as a consequence of
direct/indirect use of contaminated resources (Cairns and
Niederlehner 1993; Forbes and Forbes 1994). The fact is that
most of these “ecotoxicological” studies recall classical toxi-
cology investigations that analyze the effects of contaminants
on organisms through laboratory tests, without therefore
assessing them in a real context of environmental complexity
that includes a variety of pollutants and their interactions with
organisms (e.g., Wright and Welbourn 2002; Caussy et al.
2003; Peijnenburg and Jager 2003; Dirilgen 2011;
Mestankova et al. 2011; Radić et al. 2011). This criticism also
emerges by analyzing the ECOTOX database (EPA 2020),
filtering the available data under the item “test site”; indeed,
it emerges that over 90% of the plant-based ecotoxicological
studies were carried out under strictly laboratory conditions
(93%), 5% in controlled field, and only 2% in natural field.

Another criticism is that the ecotoxicological studies prove
to be focused mainly on aquatic animal organisms, fact that
reveals the poor monitoring of ecotoxicological effects of tox-
icants on aquatic plants despite their ecological importance
and fundamental functions that play at ecosystem level. In
addition, among aquatic plants, particular attention should be
given to those of freshwater environments whose integrity and
conservation are at risk, and they even more threatened than
those in marine environments (Pang et al. 2017; Cañedo-
Argüelles et al. 2019; Ma et al. 2019). It should be noted
that many of the contaminants found in marine habitats are
transported by rivers (Besseling et al. 2014; Rech et al. 2014;
dos Santos et al. 2018), which thus become the main sources
of pollution in seas and oceans.

In light of the critical issues emerging from this investiga-
tion, the following suggestions are provided for future
phytotoxicological studies in freshwater ecosystems:

& to increase the ecological relevance of ecotoxicolog-
ical studies by reproducing as frequently as possible
the real environmental conditions; in fact, in order to
establish the real toxicity effects of a pollutant in a
waterbody, after having carried out laboratory tests
according to standardized protocols, it is necessary
to design tests that faithfully portray the mechanisms
and the ecosystem complexity, in order to obtain
more reliable responses with respect to what actually
occurs in the environment;

& to use toxicant concentrations that are environmen-
tally relevant; the use of higher toxicant concentra-
tions than those recorded in nature is very useful to
define the toxicity levels, but does not help in (i)
understanding the real effects of the toxicant within
the ecosystem, and (ii) proposing the right mitigating
measures;

& to expand both the range of contaminants to be tested and
the spectrum of aquatic plant species to be used as biolog-
ical models for biomonitoring the toxicological effects of
contaminants released in the environment. In fact, in order
to have a more exhaustive understanding of the toxicolog-
ical effects of a substance on the various biocenoses and
the entire ecosystem, it is necessary to direct the investi-
gations towards an integrated biological approach, carry-
ing out parallel tests on both animals and plants; this ap-
proach follows the principle that analyzing different bio-
logical groups can provide more information than analyz-
ing one group only, by showing different sensitivities and,
therefore, different biological responses to a certain
contaminant;

& to extend the exposure time in order to obtain more am-
plified and, thus, more identifiable plant responses.
Although the extension of exposure time would lead to a
longer experimentation compared to other no-plant organ-
isms, such as aquatic invertebrates and fish (from 48 to 96
h), the identification of toxic effects on plants (i.e., on
primary producers) would imply that the risk of contami-
nation or accumulation along the trophic chain could be
identified at an early stage; therefore, plants can be used as
early warning systems (EWSs), whose monitoring be-
comes essential to promptly intervene in case of environ-
mental contamination;

& to hypothesize, in the case of tests involving the use of a
growth medium, preliminary tests to verify possible inter-
actions and/or aggregations between tested toxicants and
the growth medium;

& to expand the range of plant endpoints; for example, to
consider those biomarker responses that may be more spe-
cific than those endpoints analysed in the standardized
guidelines. The identification of specific responses would
increase the possibility of identifying more precisely the
presence of a certain contaminant;

& to differentiate ecotoxicological studies according to the
type of waterbody (e.g., river, lake, pond), taking into
account the dominant plant communities within it.
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