
ETH Library

Ara: A 1-GHz+ Scalable and
Energy-Efficient RISC-V Vector
Processor With Multiprecision
Floating-Point Support in 22-nm
FD-SOI

Journal Article

Author(s):
De Araujo Cavalcante, Matheus ; Schuiki, Fabian; Zaruba, Florian ; Schaffner, Michael; Benini, Luca

Publication date:
2020-02

Permanent link:
https://doi.org/10.3929/ethz-b-000382487

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28(2), https://doi.org/10.1109/tvlsi.2019.2950087

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-9199-1708
https://orcid.org/0000-0002-8194-6521
https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000382487
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/tvlsi.2019.2950087
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

1

Ara: A 1 GHz+ Scalable and Energy-Efficient

RISC-V Vector Processor with Multi-Precision

Floating Point Support in 22 nm FD-SOI

Matheus Cavalcante,∗ Fabian Schuiki,∗ Florian Zaruba,∗ Michael Schaffner,∗ Luca Benini,∗† Fellow, IEEE

Abstract—In this paper, we present Ara, a 64-bit vector
processor based on the version 0.5 draft of RISC-V’s vector
extension, implemented in GLOBALFOUNDRIES 22FDX FD-SOI
technology. Ara’s microarchitecture is scalable, as it is com-
posed of a set of identical lanes, each containing part of the
processor’s vector register file and functional units. It achieves
up to 97% FPU utilization when running a 256 × 256 double
precision matrix multiplication on sixteen lanes. Ara runs at more
than 1 GHz in the typical corner (TT/0.80 V/25 ◦C), achieving a
performance up to 33 DP−GFLOPS. In terms of energy efficiency,
Ara achieves up to 41 DP−GFLOPS/W under the same conditions,
which is slightly superior to similar vector processors found
in literature. An analysis on several vectorizable linear algebra
computation kernels for a range of different matrix and vector
sizes gives insight into performance limitations and bottlenecks
for vector processors and outlines directions to maintain high
energy efficiency even for small matrix sizes where the vector
architecture achieves suboptimal utilization of the available FPUs.

Index Terms—Vector processor, SIMD, RISC-V.

I. INTRODUCTION

THE end of Dennard scaling caused the race for perfor-

mance through higher frequencies to halt more than a

decade ago, when an increasing integration density stopped

translating into proportionate increases in performance or

energy efficiency [1]. Processor frequencies plateaued, inciting

interest in parallel multi-core architectures. These architectures,

however, fail to address the efficiency limitation created by

the inherent fetching and decoding of elementary instructions,

which only keep the processor datapath busy for a very short

period of time. Moreover, power dissipation limits how much

integrated logic can be turned on simultaneously, increasing

the energy efficiency requirements of modern systems [2], [3].

In instruction-based programmable architectures, the key

challenge is how to mitigate the Von Neumann Bottleneck

(VNB) [4]. Despite the flexibility of multi-core designs, they fail

to exploit the regularity of data-parallel applications. Each core

tends to execute the same instructions many times—a waste in

terms of both area and energy [5]. The strong emergence of

massively data-parallel workloads, such as data analytics and

machine learning [6], created a major window of opportunity for

architectures that effectively exploit data parallelism to achieve

energy efficiency. The most successful of these architectures are

∗Integrated Systems Laboratory of ETH Zürich, Zürich, Switzerland.
†Department of Electrical, Electronic, and Information Engineering Guglielmo
Marconi of the University of Bologna, Bologna, Italy. E-mail: {matheusd,
fschuiki, zarubaf, mschaffner, lbenini} at iis.ee.ethz.ch.

General Purpose Graphics Processing Units (GPUs) [7], which

heavily leverage data-parallel multithreading to relax the VNB

through the so-called single instruction, multiple thread (SIMT)

approach [8]. GPUs dominate the energy efficiency race, being

present in 70% of the Green500 ranks [9]. They are also highly

successful as data-parallel accelerators in high-performance

embedded applications, such as self-driving cars [10].

The quest for extreme energy efficiency in data-parallel

execution has also revamped interest on vector architectures.

This kind of architecture was cutting-edge during another

technology scaling crisis, namely the one related to circuits

based on the Emitter-Coupled Logic technology [11]. Today,

designers and architects are reconsidering vector processing

approaches, as they promise to address the VNB very effec-

tively [12], providing better energy efficiency than a general-

purpose processor for applications that fit the vector processing

model [5]. A single vector instruction can be used to express

a data-parallel computation on a very large vector, thereby

amortizing the instruction fetch and decode overhead. The

effect is even more pronounced than for SIMT architectures,

where instruction fetches are only amortized over the number of

parallel scalar execution units in a “processing block”: for the

latest NVIDIA Volta GPUs, such blocks are only 32 elements

long [13]. Therefore, vector processors provide a notably

effective model to efficiently execute the data parallelism of

scientific and matrix-oriented computations [14], [15], as well

as digital signal processing and machine learning algorithms.

The renewed interest in vector processing is reflected by

the introduction of vector instruction extensions in all popular

Instruction Set Architectures (ISAs), such as the proprietary

ARM ISA [16] and the open-source RISC-V ISA [17]. In

this paper, we set out to analyze the scalability and energy

efficiency of vector processors by designing and implementing

a RISC-V-based architecture in an advanced Complementary

Metal-Oxide-Semiconductor (CMOS) technology. The design

will be open-sourced under a liberal license as part of the PULP

Platform1. The key contributions of this paper are:

1) The architecture of a parametric in-order high-performance

64-bit vector unit based on the version 0.5 draft of RISC-

V’s vector extension [18]. The vector processor was

designed for a memory bandwidth per peak performance

ratio of 2 B/DP−FLOP, and works in tandem with Ariane,

an open-source application-class RV64GC scalar core.

1See https://pulp-platform.org/.

2

The vector unit supports mixed-precision arithmetic with

double, single, and half-precision floating point operands.

2) Performance analysis on key data-parallel kernels, both

compute- and memory-bound, for variable problem sizes

and design parameters. The performance is shown to meet

the roofline achievable performance boundary, as long as

the vector length is at least a few times longer than the

number of physical lanes.

3) An architectural exploration and scalability analysis of

the vector processor with post-implementation results ex-

tracted from GLOBALFOUNDRIES 22FDX Fully Depleted

Silicon on Insulator (FD-SOI) technology.

4) Insights on performance limitations and bottlenecks, for

both the proposed architecture and for other vector pro-

cessors found in the literature.

This paper is organized as follows. In Section II we present

some background and related work with the architectural models

most commonly used to explore data parallelism. Then, in

Section III, we present the architecture of our vector processor.

Section IV presents the benchmarks we used to evaluate our

vector unit. Section V analyzes how our vector unit explores

High-Performance Computing (HPC) workloads in terms of

performance, while Section VI analyzes implementation results

in terms of power and energy efficiency. Finally, Section VII

concludes the paper and outlines future research directions.

II. BACKGROUND AND RELATED WORK

Single instruction, multiple data (SIMD) architectures share—

thus amortize—the instruction fetch among multiple identical

processing units. This architectural model can be seen as

instructions operating on vectors of operands. The approach

works well as long as the control flow is regular, i.e., it is

possible to formulate the problem in terms of vector operations.

A. Array processors

Array processors implement a packed-SIMD architecture.

This type of processor has several independent but identical

processing elements (PEs), all operating on commands from a

shared control unit. Figure 1 shows an execution pattern for a

dummy instruction sequence. The number of PEs determines

the vector length, and the architecture can be seen as a wide

datapath encompassing all subwords, each handled by a PE [19].

PE0

PE1

PE2

PE3

t

ld0

ld1

ld2

ld3

mul0

mul1

mul2

mul3

add0

add1

add2

add3

st0

st1

st2

st3

Fig. 1. Execution pattern on an array processor [20].

A limitation of such an architecture is that the vector length

is fixed. It is commonly encoded into the instruction itself,

meaning that each expansion of the vector length comes with

another ISA extension. For instance, Intel’s first version of

the Streaming SIMD Extensions (SSEs) operates on 128 bit

registers, whereas the Advanced Vector Extension (AVX) and

AVX-512 evolution operates on 256 and 512-bit wide registers,

respectively [21]. ARM provides packed-SIMD capability via

the “Neon” extension, operating on 128 bit wide registers [22].

RISC-V also supports packed-SIMD via DSP extensions [23].

B. Vector processors

Vector processors are time-multiplexed versions of array

processors, implementing vector-SIMD instructions. Several

specialized functional units stream the micro-operations on

consecutive cycles, as shown in Figure 2. By doing so, the

number of functional units no longer constrains the vector

length, which can be dynamically configured. As opposed to

packed-SIMD, long vectors do not need to be subdivided into

fixed-size chunks, but can be issued using a single vector

instruction. Hence, vector processors are potentially more

energy efficient than an equivalent array processor since many

control signals can be kept constant throughout the computation,

and the instruction fetch cost is amortized among many cycles.

LD

MUL

ALU

ST

t

ld0 ld1 ld2 ld3

mul0 mul1 mul2 mul3

add0 add1 add2 add3

st0 st1 st2 st3

Fig. 2. Execution pattern on a vector processor [20].

The history of vector processing starts with the traditional

vector machines from the sixties and seventies, with the

beginnings of the Illiac IV project [14]. The trend continued

throughout the next two decades, with work on supercomputers

such as the Cray-1 [11]. At the end of the century, however,

microprocessor-based systems approached or surpassed the

performance of vector supercomputers at much lower costs [24],

due to intense work on superscalar and Very Long Instruction

Word (VLIW) architectures. It is only recently that vector

processors got renewed interest from the scientific community.

Vector processors found a way into Field-Programmable Gate

Arrays (FPGAs) as general-purpose accelerators. VIPERS [25]

is a vector processor architecture loosely compliant with

VIRAM [26], with several FPGA-specific optimizations. VE-

GAS [27] is a soft vector processor operating directly on

scratchpad memory instead of on a Vector Register File (VRF).

ARM is moving into Cray-inspired processing with their

Scalable Vector Extension (SVE) [16]. The extension is based

on the vector register architecture introduced with the Cray-

1, and leaves the vector length as an implementation choice

(from 128 bit to 2048 bit, in 128 bit increments). It is possible

to write code agnostic to the vector length, so that different

implementations can run the same software. The first system to

adopt this extension is Fujitsu’s A64FX, at a peak performance

3

of 2.7 DP−TFLOPS in a 7 nm process, which is competitive

in terms of peak performance to leading-edge GPUs [28].

The open RISC-V ISA specification is also leading an effort

towards vector processing through its vector extension [18].

This extension is in active development, and, at the time of

this writing, its latest version was the 0.7. When compared

with ARM SVE, RISC-V does not put any limits on the vector

length. Moreover, the extension makes it possible to trade

off the number of architectural vector registers against longer

vectors. Due to the availability of open-source RISC-V scalar

cores, together with the liberal license of the ISA itself, we

chose to design our vector processor based on this extension.

One crucial issue in vector processing design is how to

maximize the utilization of the vector lanes. Beldianu and

Ziavras [12] and Lu et al. [29] explore sharing a pool of

vector units among different threads. The intelligent sharing

of vector units on multi-core increases their efficiency and

throughput when compared to multi-core with per-core private

vector units [12]. A 32-bit implementation of the idea at TSMC

40 nm process is presented at [30]. However, the ISA considered

at such implementation is limited [29] when compared to RISC-

V’s vector extension, lacking, for example, the Fused Multiply-

Add (FMA) instruction, strictly required in high-performance

workloads. Moreover, the wider 64-bit datapath of our vector

unit implies a drastic complexity increase of the FMA units and

a larger VRF, and consequently a quantitative energy efficiency

comparison between Ara and [30] is not directly possible. We

compared the achieved vector lanes’ utilization in Section V-A.

C. SIMT

SIMT architectures represent an amalgamation of the flexi-

bility of multiple instruction, multiple data (MIMD) and the

efficiency of SIMD designs. While SIMD architectures apply

one instruction to multiple data lanes, SIMT designs apply one

instruction to multiple independent threads in parallel [8]. The

NVIDIA Volta GV100 GPU is a state-of-the-art example of

this architecture, with 64 “processing blocks,” called Streaming

Multiprocessors (SMs) by NVIDIA, each handling 32 threads.

A SIMD instruction exposes the vector length to the

programmer and requires manual branching control, usually

by setting flags that indicate which lanes are active for a

given vector instruction. SIMT designs, on the other hand,

allow the threads to diverge, although substantial performance

improvement can be achieved if they remain synchronized [8].

SIMD and SIMT designs also handle data accesses differently.

Since GPUs lack a control processor, hardware is necessary to

dynamically coalesce memory accesses into large contiguous

chunks [12]. While this approach simplifies the programming

model, it also incurs into a considerable energy overhead [31].

D. Vector thread

Another compromise between SIMD and MIMD are vector

thread (VT) architectures [31], which support loops with cross-

iteration dependencies and arbitrary internal control flow [32].

Similar to SIMT designs—and unlike SIMD—VT architectures

leverage the threading concept instead of the more rigid notion

of lanes, and hence provide a mechanism to handle program

divergence. The main difference between SIMT and VT is that

in the latter the vector instructions reside in another thread, and

scalar bookkeeping instructions can potentially run concurrently

with the vector ones. This division alleviates the problem of

SIMT threads running redundant scalar instructions that must

be later coalesced in hardware. Hwacha is a VT architecture

based on a custom RISC-V extension, recently achieving

64 DP−GFLOPS in ST 28 nm FD-SOI technology [33].

Many vector architectures report only full-system metrics of

performance and efficiency, such as memory hierarchy or main

memory controllers. This is the case of Fujitsu’s A64FX [28].

As our focus is on the core execution engine, we will mainly

compare our vector unit with Hwacha in Section VI-C. Hwacha

is an open-sourced design architecture for which information

about the internal organization is available, allowing for a fair

quantitative comparison on a single processing engine.

III. ARCHITECTURE

In this section, we introduce the microarchitecture of Ara, a

scalable high-performance vector unit based on RISC-V’s vector

extension. As illustrated in Figure 3a, Ara works in tandem

with Ariane [34], an open-source Linux-capable application-

class core. To this end, Ariane has been extended to drive the

accompanying vector unit as a tightly coupled coprocessor.

A. Ariane

Ariane is an open-source, in-order, single-issue, 64-bit

application-class processor implementing RV64GC [34]. It

has support for hardware multiply/divide and atomic memory

operations, as well as an IEEE-compliant FPU [35]. It has

been manufactured in GLOBALFOUNDRIES 22FDX FD-SOI

technology, running at most at 1.7 GHz and achieving an energy

efficiency of up to 40 GOPS/W. Zaruba and Benini [34] report

that the core has a six-stage pipeline, namely Program Counter

(PC) Generation, Instruction Fetch, Instruction Decode, Issue

Stage, Execute Stage, and Commit Stage. We denote the first

two stages as Ariane’s front end, responsible for the instruction

fetch interface, and the remaining four as its back end.

Ariane needs some architectural changes to drive our vector

unit, all of them in the back end. Vector instructions are decoded

partially in Ariane’s Instruction Decoder, to recognize whether

they are vector instructions, and then completely in a dedicated

Vector Instruction Decoder inside Ara. The reason for this

split decoding is the high number of Vector Control and Status

Registers—one for each of the 32 vector registers—that are

taken into account before fully decoding such instructions.

The dispatcher controls the interface between Ara and

Ariane’s dedicated scoreboard port. In Ariane, instructions

can retire out-of-order from the functional units [34], while

Ara executes instructions non-speculatively. The dispatcher also

works speculatively, but waits until a vector instruction reaches

the top of the scoreboard (i.e., it is no longer speculative) to

push it into the instruction queue, together with the contents

of any scalar registers read by the vector instruction. Ara reads

from this queue, and then acknowledges the instruction (if

required, e.g., the vector instruction produces a scalar result) or

propagates potential exceptions back to Ariane’s scoreboard.

4

M
em

o
ry

 I
n

te
rc

o
n

n
ec

t

W

D
at

a
W

id
th

 C
o
n
v
er

te
r

W 64

ARIANE

RV64GC

ARA

RV64V

W

Sequencer

I$

D$

OpQueue

Store Unit

VLSU

OpQueueSLDU

Ack
Scalar result

N
·2

·6
4

Operation

N
·3

·6
4

@

2

2

N
·6

4

N
·6

4

Ack
Scalar result

Load Unit

AddrGen

N
·6

4

PC
Gen

Instruction

IF ID Issue EX Commit

S
co

re
b
o
ar

d

IS
S

U
E

R
eg

F
il

e
R

ea
d

S
C

O
R

E
B

O
A

R
D

R
eg

F
il

e
W

ri
te

C
S

R
W

ri
te

Ara front end

FPU

Multiplier

CSR Buffer

ALU

LSU

Decoder

Dispatcher

L
an

e
0

L
an

e
1

…

L
an

e
N

-1

(a) Block diagram of an Ara instance with N parallel lanes. Ara receives
its commands from Ariane, a RV64GC scalar core. The vector unit has
a main sequencer; N parallel lanes; a Slide Unit (SLDU); and a Vector
Load/Store Unit (VLSU). The memory interface is W bit wide.

Lane

Sequencer

VRF Arbiter

8
·1

R
W

 S
R

A
M

Bank 0

Bank 4

Bank 1

Bank 5

Bank 2

Bank 6

Bank 3

Bank 7

Operation

Ack
Scalar result

4·5

4

3·5

4

3·2

FPU MUL

OpQueue

ALU

OpQueue

4
·6

4

3
·6

46
4

6
4

V
L

S
U

 o
p
er

an
d
s

2
·6

4

S
L

D
U

 o
p
er

an
d
s

3
·6

4

3
·6

4
6
4

V
L

S
U

6
4

S
L

D
U

6
4

6
4

S
ca

la
r

re
su

lt

Operation

Operand requests

LANE

8·64

8·64

(b) Block diagram of one lane of Ara. It contains a lane sequencer
(handling up to 8 vector instructions); a 16 KiB vector register file; ten
operand queues; an integer Arithmetic Logic Unit (ALU); an integer
multiplier (MUL); and a Floating Point Unit (FPU).

Fig. 3. Top-level block diagram of Ara.

Instructions are acknowledged as soon as Ara determines

that they will not throw any exceptions. This happens early in

their execution, usually after their decoding. Because vector

instructions can run for an extended number of cycles (as

presented in Figure 2), they may get acknowledged many

cycles before the end of their execution, potentially freeing the

scalar cores to continue execution of its instruction stream. The

decoupled execution works well, except when Ariane expects

a result from Ara, e.g., reading an element of a vector register.

The interface between Ariane and Ara is lightweight, being

similar to the Rocket Custom Coprocessor Interface (RoCC),

for use with the Rocket Chip [36]. The difference between

them is that dispatcher pushes the decoded instruction to Ara,

while RoCC leaves the full decoding task to the coprocessor.

B. Sequencer

The sequencer is responsible for keeping track of the

vector instructions running on Ara, dispatching them to the

different execution units and acknowledging them with Ariane.

This unit is the single block that has a global view of the

instruction execution progress across all lanes. The sequencer

can handle up to eight parallel instructions. This ensures Ara

has instructions enqueued for execution, avoiding starvation

due to the non-speculative dispatch policy of Ara’s front end.

Hazards among pending vector instructions are resolved by

this block. Structural hazards arise due to architectural decisions

(e.g., shared paths between the ALU and the SLDU) or if a

functional unit is not able to accept yet another instruction due

to the limited capacity of its operation queue. The sequencer

delays the issue of vector instructions until the structural hazard

has been resolved (i.e., the offending instruction completes).

The sequencer also stores information about which vector

instruction is accessing which vector register. This information

is used to determine data hazards between instructions. For

example, if a vector instruction tries to write to a vector

register that is already being written, the sequencer will flag the

existence of a write-after-write (WAW) data hazard between

them. Read-after-write (RAW), write-after-read (WAR) and

WAW hazards are handled in the same manner. Unlike structural

hazards, data hazards do not need to stall the sequencer, as

they are handled on a per-element basis downstream.

5

C. Slide unit

The SLDU is responsible for handling instructions that

must access all VRF banks at once. It handles, for example,

the insertion of an element into a vector, the extraction of

an element from a vector, vector shuffles, and vector slides

(vd[i] ← vs[i + slide amount]). This unit may also be extended

to support basic vector reductions, such as vector-add and

internal product. The support for vector reductions is considered

an optional feature in the current version of RISC-V’s vector

extension [18]. For simplicity, we decided not to support them,

taking into consideration that an O(n) vector reduction can still

be implemented as a sequence of O(log n) vector slides and

the corresponding arithmetic instruction [24].

D. Vector load/store unit

Ara has a single memory port, whose width is chosen to

keep the memory bandwidth per peak performance ratio fixed

at 2 B/DP−FLOP. As illustrated in Figure 3a, Ara has an

address generator, responsible for determining which memory

address will be accessed. This can either be i) unit-stride

loads and stores, which access a contiguous chunk of memory;

ii) constant-stride memory operations, which access memory

addresses spaced with a fixed offset; and iii) scatters and gathers,

which use a vector of offsets to allow general access patterns.

After address generation, the unit coalesces unit-stride memory

operations into burst requests, avoiding the need to request the

individual elements from memory. The burst start address and

the burst length are then sent to either the load or the store

unit, both of which are responsible for initiating data transfers

through Ara’s Advanced eXtensible Interface (AXI) interface.

E. Lane organization

Ara can be configured with a variable number of identical

lanes, each one with the architecture shown in Figure 3b. Each

lane has its own lane sequencer, responsible for keeping track

of up to eight parallel vector instructions. Each lane also has

a VRF and an accompanying arbiter to orchestrate its access,

operand queues, an integer ALU, an integer MUL, and an FPU.

Each lane contains part of Ara’s whole VRF and execution

units. Hence, most of the computation is contained within

one lane, and instructions that need to access all the VRF

banks at once (e.g., instructions that execute at the VLSU or

at the SLDU) use data interfaces between the lanes and the

responsible computing units. Each lane also has a command

interface attached to the main sequencer, through which the

lanes indicate they finished the execution of an instruction.

1) Lane sequencer: The lane sequencer is responsible for

issuing vector instructions to the functional units, controlling

their execution in the context of a single lane. Unlike the main

sequencer, the lane sequencers do not store the state of the

running instructions, avoiding data duplication across lanes.

They also initiate requests to read operands from the VRF. We

generate up to ten independent requests to the VRF arbiter.

Operand fetch and result write-back are decoupled from

each. Starvation is avoided via a self-regulated process, through

back pressure due to unavailable operands. By throttling the

operation request rate, the lane sequencer indirectly limits the

rate at which results are produced. This is used to handle data

hazards, by ensuring that dependent instructions run at the same

pace: if instruction i depends on instruction j, the operands

of instruction i are requested only if instruction j produced

results in the previous cycle. There is no forwarding logic.

2) Vector register file: The VRF is at the core of every vector

processor. Because several instructions can run in parallel, the

register file must be able to support enough throughput to

supply the functional units with operands and absorb their

results. In RISC-V’s vector extension, the predicated multiply-

add instruction is the worst case regarding throughput, reading

four operands to produce one result.

Due to the massive area and power overhead of multi-ported

memory cuts, which usually require custom transistor-level

design, we opted not to use a monolithic VRF with several ports.

Instead, Ara’s vector register file is composed of a set of single-

ported (1RW) banks. The width of each bank is constrained to

the datapath width of each lane, i.e., 64 bit, to avoid subword

selection logic. Therefore, in steady state, five banks are

accessed simultaneously to sustain maximum throughput for

the predicated multiply-add instruction. Ara’s register file has

eight banks per lane, providing some margin on the banking

factor. This VRF structure (eight 64-bit wide 1RW banks)

is replicated at each lane, and all inter-lane communication

is concentrated at the VLSU and SLDU. We used a high-

performance memory cut to meet a target operating frequency

of 1 GHz. These memories, however, cannot be fully clock-

gated. The cuts do consume less power in idle state, a NOP

costing about 10% of the power required by a write operation.

A multi-banked VRF raises the problem of banking conflicts,

which occur when several functional units need to access the

same bank. These are resolved dynamically with a weighted

round-robin arbiter per bank with two priority levels. Low-

throughput instructions, such as memory operations, are as-

signed a lower priority. By doing so, their irregular access

pattern does not disturb other concurrent high-throughput

instructions (e.g., floating-point instructions).

Figure 4b shows how the vector registers are mapped onto

the banks. The initial bank of each vector register is shifted in

a “barber’s pole” fashion. This avoids initial banking conflicts

when the functional units try to fetch the first element of

different vector registers, which are all mapped onto the same

bank in a pure element-partitioned approach [24] of Figure 4a.

Vector registers can also hold scalar values. In this case, the

scalar value is replicated at each lane at the first position of

the vector register. Scalar values are only read/written once

per lane, and are logically replicated by the functional units.

3) Operand queues: The multi-banked organization of the

VRF can lead to banking conflicts when several functional

units try to access operands in the same bank. Each lane has

a set of operand queues between the VRF and the functional

units to absorb such banking conflicts. There are ten operand

queues: four of them are dedicated to the FPU/MUL unit,

three of them to the ALU (two of which are shared with

the SLDU), and another three to the VLSU. Each queue

is 64 bit wide and their depth was chosen via simulation.

The queue depth depends on the functional unit’s latency

and throughput, so that low-throughput functional units, as

6

Bank

v0

v1

v2

v3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0

. .

(a) Without “barber’s pole” shift.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0

0 1 2 3 4 5 67

8 9 10 11 12 13 1415

0

0 1 2 3 4 56 7

8 9 10 11 12 1314 15

0

0 1 2 3 45 6 7

8 9 10 11 1213 14 15

0

. .

(b) With “barber’s pole” shift.

Fig. 4. VRF organization inside one lane. Darker colors highlight the initial
element of each vector register vi . In a), all vector registers start at the same
bank. In b), the vector registers follow a “barber’s pole” pattern, the starting
bank being shifted for every vector register.

the VLSU, require shallower queues than the FPUs. Queues

between the functional units’ output ports and the vector register

file absorb banking conflicts on the write-back path to the VRF.

Each lane has two of such queues, one for the FPU/MUL and

one for the ALU. Together with the decoupled operand fetch

mechanism discussed in Section III-E1 and the barber’s pole

VRF organization of Section III-E2, the operand queues allow

for a pipelined execution of vector instructions. While bubbles

occur sporadically due to banking conflicts, it is possible to fill

the pipeline even with a succession of short vector instructions.

4) Execution units: Each lane has three execution units, an

integer ALU, an integer MUL, and an FPU, all of them operating

on a 64-bit datapath. The MUL shares the operand queues with

the FPU, and they cannot be used simultaneously, since we

do not expect the simultaneous use of the integer multiplier

and the floating-point unit to be a common case. With the

exception of this constraint, vector chaining is allowed between

any execution units, as long as they are executing instructions

with regular access patterns (i.e., no vector shuffles).

It is possible to subdivide the 64-bit datapath, trading off

narrower data formats by a corresponding increase in perfor-

mance. The three execution units have a 64 bit/cycle throughput,

regardless of the data format of the computation. We developed

our multi-precision ALU and MUL, both producing 1 × 64,

2 × 32, 4 × 16, and 8 × 8 bit signed or unsigned operands. Ara

has limited support for multi-precision operations, allowing for

data promotions from 8 to 16, 16 to 32, and from 32 to 64 bit.

For the FPU, we used an open-source, IEEE-compliant,

multi-precision FPU developed by Mach et al. [35]. The FPU

was configured to support FMAs, additions, multiplications,

divisions, square roots, and comparisons. As the integer units,

the FPU has a 64 bit/cycle throughput, i.e., one double precision,

two single precision or four IEEE 754 half-precision floating

point results per cycle. Besides IEEE 754 standard floating

point formats, the FPU also supports alternative formats, both

8- and 16-bit wide. Depending on the application, the narrower

number formats can be used to achieve significant energy

savings compared to a wide floating-point baseline [35].

IV. BENCHMARKS

Memory bandwidth is often a limiting factor when it comes

to processor performance, and many optimizations revolve

around scheduling memory and arithmetic operations with the

purpose of hiding memory latency. The relationship between

processor performance and memory bandwidth can be analyzed

with the roofline model [37]. This model shows the peak

achievable performance (in OP/cycle) as a function of the

arithmetic intensity I, defined as the algorithm-dependent ratio

of operations per byte of memory traffic.

Accordingly to this model, computations can be either

memory-bound or compute-bound [38], the peak performance

being achievable only if the algorithm’s arithmetic intensity, in

operations per byte, is higher than the processor’s performance

per memory bandwidth ratio. For Ara, it enters its compute-

bound regime when the arithmetic intensity is higher than

0.5 DP−FLOP/B. The memory bandwidth determines the slope

of the performance boundary in the memory-bound regime. We

consider three benchmarks to explore the architecture instances

of the vector processor with distinct arithmetic intensities that

fully span the two regions of the roofline.

Our first algorithm is MATMUL, a n × n double-precision

matrix multiplication C ← AB + C. The algorithm requires

2n3 floating-point operations—one FMA is considered as

two operations—and at least 32n2 bytes of memory transfers.

Therefore, the algorithm has an arithmetic intensity of at least

IMATMUL ≥
n

16
DP−FLOP/B. (1)

We will consider matrices of size at least 16 × 16 across several

Ara instances. The roofline model shows that it is possible to

achieve the system’s peak performance with these matrix sizes.

Matrix multiplication is neither embarrassingly memory-

bound nor compute-bound, since its arithmetic intensity grows

with O(n). Nevertheless, it is interesting to see how Ara behaves

on highly memory-bound as well as fully compute-bound cases.

DAXPY, Y ← αX +Y , is a common algorithmic building block

of more complex Basic Linear Algebra Subprograms (BLAS)

routines. Considering vectors of length n, DAXPY requires n

FMAs and at least 24n bytes of memory transfers. DAXPY is

therefore a heavily memory-bound algorithm, with an arithmetic

intensity of 1/12 DP−FLOP/B.

We explore the extremely compute-bound spectrum with

the tensor convolution DCONV, a routine which is at the

core of convolutional networks. In terms of size, we took the

first layer of GoogLeNet [39], with a 64 × 3 × 7 × 7 kernel

and 3 × 112 × 112 input images. Each point of the input

image must be convolved with the weights, resulting in a

total of 64 × 3 × 7 × 7 × 112 × 112 FMAs, or 236 DP−MFLOP.

In terms of memory, we will consider that the input matrix

(after padding) is loaded exactly once, or 3 × 118 × 118 double

precision loads, together with the write-back of the result, or

64 × 112 × 112 double precision stores. The 6.44 MiB of mem-

ory transfers imply an arithmetic intensity of 34.9 DP−FLOP/B,

making this kernel heavily compute-bound on Ara.

V. PERFORMANCE ANALYSIS

In this section, we analyze Ara in terms of its peak

performance across several design parameters. We use the

matrix multiplication kernel to explore architectural limitations

in depth, before analyzing how such limitations manifest

themselves for the other kernels.

7

A. Matrix multiplication

Figure 5 shows the performance measurements of the

matrix multiplication C ← AB + C, for several Ara instances

and problem sizes n × n. For problems “large enough,” the

performance results meet the peak performance boundary. For

a matrix multiplication of size 256 × 256, we utilize the FPUs

for 98% of the time for an Ara instance with two lanes and

for 97% for 16 lanes, comparable to Hwacha’s 95+% [33] and

Beldianu and Ziavras’s 97% [30] functional units’ utilization.

The performance scalability comes, however, at a price. More

lanes require larger problem sizes to fully exploit the maximum

performance, even though all problem sizes fall into the

compute-bound regime. Smaller problems, however, cannot

fully utilize the functional units. It is important to note that this

limiting effect can also be observed in other vector processors

such as Hwacha (see comparison in Section V-D).

0.25 0.5 1 2 4 8 16 32

2

4

8

16

32

n 16 32 64 128 256

[24.5%]

[35.8%]

[14.5%]

[17.4%]

[31.0%]

[10.2%]

[10.4%]

[22.5%]

[43.0%]

[5.2%]

[5.8%]

[6.9%]

[21.2%]

[1.8%]

[1.9%]

[2.5%]

[2.8%]

Is
su

e
ra

te

Arithmetic intensity [DP−FLOP/B]

P
er

fo
rm

an
ce

[D
P

−
F

L
O

P
/c

y
cl

e]

ℓ = 2 ℓ = 4 ℓ = 8 ℓ = 16

Fig. 5. Performance results for the matrix multiplication C ← AB +C, with
different number of lanes ℓ, for several n × n problem sizes. The bold red
line depicts a performance boundary due to the instruction issue rate. The
numbers between brackets indicate the performance loss, with respect to the
theoretically achievable peak performance.

This effect is attributed to two main reasons: first, the initial-

ization of the vector register file before starting computation;

and second, the rate at which the vector instructions are issued to

Ara. The former is analyzed in detail in Appendix A. The latter

is related to the rate at which the vector FMA instructions are

issued. To understand this, consider that smaller vectors occupy

the pipeline for fewer cycles, and more vector instructions

are required to fully utilize the FPUs. If every vector FMA

instruction occupies the FPUs for τ cycles and they are issued

every δ cycles, the system performance ω is limited by

ω ≤ Π
τ

δ
. (2)

For the n × n matrix multiplication, τ is equal to 2n/Π. We

use this together with Equation (1) to rewrite this constraint in

terms of the arithmetic intensity IMATMUL, resulting in

ω ≤
32

δ
IMATMUL. (3)

This translates to another performance boundary in the roofline

plot, purely dependent on the instruction issue rate. The

FMA instructions are issued every five cycles, as discussed

in Appendix A. This shifts the roofline of the architecture as

illustrated with the bold line in Figure 5. Note that, for 16

lanes, even the performance of a 64 × 64 matrix multiplication

ends up being limited by the vector instruction issue rate.

The performance degradation with shorter vectors could be

mitigated with a more complex instruction issue mechanism,

either going superscalar or introducing a VLIW capable ISA to

increase the issue rate. Shorter vectors bring vector processors

to an array processor, where the vector instructions execute

for a single cycle. This puts pressure on the issue logic,

demanding more than a simple single-issue in-order core. For

example, all ARM Cortex-A cores with Neon capability are

also superscalar [40]. Another alternative would be the use of a

MIMD approach where the lanes would be decoupled, running

instructions issued by different scalar cores, as discussed by

Lu et al. [29]. While fine-grain temporal sharing of the vector

units achieves an exciting increase of the FPU utilization [29],

duplication of the instruction issue logic could also degrade

the energy efficiency achieved by the design.

B. AXPY

As discussed in Section IV, DAXPY is a heavily memory-

bound kernel, with an arithmetic intensity of 0.083 DP−FLOP/B.

It is no surprise that the measured performance for such a

kernel are much less than the system’s peak performance

in the compute-bound region. For an Ara instance with

two lanes, we measure 0.65 DP−FLOP/cycle, which is 98%

of the theoretical performance limit. For sixteen lanes, the

achieved 4.27 DP−FLOP/cycle is still 80% of the theoretical

limit βIDAXPY from the roofline plot. The limiting factor is the

configuration of the vector unit, whose overhead increases the

runtime from the ideal 96 cycles to 120 cycles.

C. Convolution

Convolutions are heavily compute-bound kernels, with an

arithmetic intensity up to of 34.9 DP−FLOP/B. With two lanes,

it achieves a performance up to 3.73 DP−FLOP/cycle. We no-

tice some performance degradation for sixteen lanes, where the

kernel achieves 26.7 DP−FLOP/cycle, i.e., an FPU utilization

of 83.2%, close to the performance achieved by the 128 × 128

matrix multiplication. The reason for the performance drop at

both kernels lies in the problem size. In this case, each lane

holds only seven elements of the 112-element long vectors,

i.e., the vectors do not even occupy the eight banks. With such

short instructions, the system does not have enough time to

achieve the steady state banking access pattern discussed in

Section III-E2. Such short instructions also incur into banking

conflicts that would otherwise be amortized across longer

vectors.

Figure 6 shows the performance results for the three

considered benchmarks. In both memory- and compute-bound

regions, the achieved performance tends to achieve the roofline

boundary, for all the considered architecture instances.

8

0.5

1

2

4

8

16

32

D
A

X
P

Y

M
A

T
M

U
L

D
C

O
N

V

0
.5

0
.1

2
5 2 8

[4.0%]

[6.2%]

[12%]

[20%]
[1.8%]

[1.9%]

[2.5%]

[2.8%]

[6.7%]

[7.8%]

[9.4%]

[17%]

Arithmetic intensity [DP−FLOP/B]

P
er

fo
rm

an
ce

[D
P

−
F

L
O

P
/c

y
cl

e]

ℓ = 2 ℓ = 4 ℓ = 8 ℓ = 16

Fig. 6. Performance results for the three considered benchmarks, with different
number of lanes ℓ. AXPY uses vectors of length 256, the MATMUL is between
matrices of size 256 × 256, and CONV uses GoogLeNet’s sizes. The numbers
between brackets indicate the performance loss, with respect to the theoretically
achievable peak performance.

D. Performance comparison with Hwacha

For comparison with Ara, we measured Hwacha’s perfor-

mance for the matrix multiplication benchmark, using the

publicly available Hardware Description Language (HDL)

sources and tooling scripts from their GitHub repository2. We

were not able to reproduce the 32 × 32 double precision matrix

multiplication performance claimed by Dabbelt et al. [5]. This

is because Hwacha relies on a closed-source L2 cache, whereas

its public version has a limited memory system with no banked

cache and a broadcast hub to ensure coherence. This effectively

limits Hwacha’s memory bandwidth to 128 bit/cycle, starving

the FMA units and capping the achievable performance.

Table I brings the performance achieved by Ara and the

published results for Hwacha [5] side by side. For a fair

comparison, the roofline boundaries are identical between

the compared architectures. For small problems, for which

a direct comparison is possible, Ara utilizes its FPUs much

better than the equivalent Hwacha instances. For the instances

with two lanes, Ara utilizes its FPUs 66% more than the

equivalent Hwacha instance, for a relatively small 32 × 32

matrix multiplication. Moreover, we note that both Ara and

Hwacha operate at a similar architectural design point in the

sense that they are coupled to a single-issue in-order core.

Therefore, Hwacha exhibits a similar performance degradation

on small matrices and vector lengths as previously described for

Ara in Section V-A. For what concerns large problems, another

more recent reference on Hwacha [33] claims a 95% FPU

utilization for a 128 × 128 MATMUL, close to the performance

level that Ara achieves. However, these results cannot be

reproduced on the current open-source version of Hwacha,

possibly due to the memory system limitation outlined above.

2See https://github.com/ucb-bar/hwacha-template/tree/a5ed14a.

TABLE I
NORMALIZED ACHIEVED PERFORMANCE BETWEEN EQUIVALENT ARA

AND HWACHA INSTANCES FOR A MATRIX MULTIPLICATION , WITH

DIFFERENT n × n PROBLEM SIZES .

Π 8 DP−FLOP/cycle 16 DP−FLOP/cycle 32 DP−FLOP/cycle

n Ara Hwachaa Ara Hwacha Ara Hwacha

16 49.5% — 25.4% — 12.8% —
32 82.6% 49.9% 53.4% 35.6% 27.6% 22.4%
64 89.6% — 77.5% — 45.6% —

128 94.3% — 93.1% — 78.8% —

aPerformance results extracted from [5].

VI. IMPLEMENTATION RESULTS

In this section, we analyze the implementation of several

Ara instances, in terms of area, power and energy efficiency.

A. Methodology

Ara was synthesized for GLOBALFOUNDRIES 22FDX FD-

SOI technology using Synopsys Design Compiler 2017.09. The

back-end design flow was carried out with Cadence Innovus

18.11.000. For this technology, one gate equivalent (GE) is equal

to 0.199 µm2. Ara’s performance and power figures of merit

are measured running the kernels on a cycle-accurate Register

Transfer Level (RTL) simulation. We used Synopsys PrimeTime

2016.12 to extract the power figures with activities obtained

with timing information from the implemented design at

TT/0.80 V/25 ◦C. Table II summarizes Ara’s design parameters.

TABLE II
DESIGN PARAMETERS .

Lanes ℓ ∈ [2, 4, 8, 16]
Memory width 32ℓ bit

Operating corner TT/0.80 V/25 ◦C
Target frequency 1 GHz

V
R

F

Size 16 KiB/lane
Banks 8 bank/lane

Bank width 64 bit

Because the maximum frequencies achieved after synthesis

are usually higher than the ones achieved after the back-end

flow, the system was synthesized for a clock period constraint

250 ps shorter than the target clock period of 1 ns. The system

can be tuned for even higher frequencies by deploying Forward

Body-Biasing (FBB) techniques, at the expense of an increase

in leakage power. In average, the final designs have a mix of

72.9% Low Voltage Threshold (LVT) cells and 27.1% Super

Low Voltage Threshold (SLVT) cells.

B. Physical implementation

We implemented four Ara instances, with two, four, eight

and sixteen lanes. The instance with four lanes was placed

and routed as a 1.125 mm × 1.000 mm macro in GLOB-

ALFOUNDRIES 22FDX FD-SOI technology, using Cadence

Innovus 18.11.000. Figure 7 shows the final implemented result,

highlighting its internal blocks. Without its caches, Ariane uses

about the same area (524 kGE) as lane, including its VRF.

9

A

B

C

D

E F

G

H I J

(a) Place-and-route results of an Ara instance with four lanes, highlighting
its internal blocks: A) lane 0; B) lane 1; C) lane 2; D) lane 3; E) SLDU; F)
sequencer; G) VLSU; H) Ara front end; I) Ariane; J) memory interconnect.

A

B

CD

E F

(b) Detail of one of Ara’s lanes, highlighting its internal blocks: A) lane
sequencer; B) VRF; C) operand queues; D) MUL; E) FPU; F) ALU.

Fig. 7. Place-and-route results of an Ara instance with four lanes in
GLOBALFOUNDRIES 22 nm technology on a 1.125 mm × 1.000 mm macro.

Our vector processor is scalable, in the sense that Ariane can

be reused without changes to drive a wide range of different lane

parameters. Furthermore, each vector lane touches only its own

section of the VRF, hence it does not introduce any scalability

bottlenecks. Scalability is only limited by the units that need

to interface with all lanes at once, namely the main sequencer,

the VLSU, and the SLDU. Beldianu and Ziavras [30] and

Hwacha [33], on the other hand, have a dedicated memory port

per lane. This solves the scalability issue locally, by controlling

the growth of the memory interface, but pushes the memory

interconnect issue further upstream, as its wide memory system

must be able to aggregate multiple parallel requests from all

these ports to achieve their maximum memory throughput.

We decided not to deploy lane-level Power Gating (PG) or

Body-Biasing (BB) techniques, due to their significant area and

timing impact. In terms of area, both techniques would require

an isolation ring 10 µm-wide around each PG/BB domain, or

at least an 8% increase in the area of each lane. In terms of

timing, isolation cells between power domains and separated

clock trees would impact Ara’s operating frequency. Assuming

these cells would be in the critical path between the lanes and

the VLSU, this would incur into a 10% clock frequency penalty.

Reverse Body-Biasing lowers the leakage, but also impacts

frequency, since it cannot be applied to high-performance LVT

and SLVT cells. Furthermore, PG (and, to a lesser degree, BB)

would introduce significant (in the order of 10−15 cycles) turn-

on transition times, which could be tolerable only if coupled

with a scheduling policy for power managing the lanes. These

techniques are out of the scope of the current work.

C. Performance, power, and area results

Table III summarizes the post-place-and-route results of

several Ara instances. Overall, the instances achieve nominal op-

erating frequencies around 1.2 GHz, where we chose the typical

corner, TT/0.80 V/25 ◦C, for comparison with equivalent results

from Hwacha [41]. For completeness, Table III also presents

timing results for the worst-case corner, i.e., SS/0.72 V/125 ◦C.

The two-lane instance has its critical path inside the double

precision FMA. This block relies on the automatic retiming

feature from Synopsys Design Compiler, and the register

placement could be further improved by hand-tuning, or by

increasing the number of pipeline stages. Another critical path

is on the combinational handshake between the VLSU and

its operand queues in the lanes. Both paths are about 40 gate

delays long. Timing of the instances with eight and sixteen

lanes becomes increasingly critical, due to the widening of

Ara’s memory interface. This happens when the VLSU collects

64 bit words from all the lanes, realigns and packs them into a

wide word to be sent to memory. The instance with 16 lanes

incurs into a 17% clock frequency penalty when compared

with the frequency achieved by the instance with two lanes.

The silicon area and leakage power of the accompanying

scalar core are amortized among the lanes, which can be seen

with the decreasingly area per lane figure of merit. Figure 8

shows the area breakdown of an Ara instance with four lanes.

Ara’s total area (excluding the scalar core) is 2.46 MGE, out of

which each lane amounts to 575 kGE. The area of the vector

unit is dominated by the lanes, while the other blocks amount

to only 7% of the total area. The area of the lanes is dominated

by the VRF (35%), the FPU (27%), and the multiplier (18%).

b

a

ALULane sequencer

VLSU

SLDU

Sequencer

Front end

Lane 3Lane 2Lane 1

FPU

Lane 0

MULQueueVRF

Fig. 8. Area breakdowns of a) an Ara instance with four lanes with detail on b)
one of its lanes. Ara’s total area, excluding the scalar processor, is 2.46 MGE.
Each lane has about 575 kGE.

In terms of post-synthesis logic area, a Hwacha instance with

10

TABLE III
POST-PLACE-AND-ROUTE ARCHITECTURAL COMPARISON BETWEEN SEVERAL ARA INSTANCES IN GLOBALFOUNDRIES 22FDX FD-SOI

TECHNOLOGY IN TERMS OF PERFORMANCE , POWER CONSUMPTION , AND ENERGY EFFICIENCY.

Instance

Figure of merit ℓ = 2 ℓ = 4 ℓ = 8 ℓ = 16

Clock (nominal) [GHz] 1.25 1.25 1.17 1.04

Clock (worst-case) [GHz] 0.92 0.93 0.87 0.78

Area [kGE] 2228 3434 5902 10 735

Area per lane [kGE] 1114 858 738 671

Kernel matmula dconvb daxpyc matmul dconv daxpy matmul dconv daxpy matmul dconv daxpy

Performance [DP−GFLOPS] 4.91 4.66 0.82 9.80 9.22 1.56 18.2 16.9 2.80 32.4 27.7 4.44

Core power [mW] 138 130 68.2 259 239 113 456 420 183 794 676 280

Leakage [mW] 7.2 11.2 21.1 31.4

Ariane/Ara [mW] 22/116 22/108 20/48 27/232 29/210 25/88 28/428 29/391 24/159 31/763 31/646 25/255

Core power per lane [mW] 69 65 34 65 60 28 57 54 23 50 42 15

Efficiency [DP−GFLOPS/W] 35.6 35.8 12.0 37.8 38.6 13.8 39.9 40.2 15.3 40.8 41.0 15.9

aDouble precision floating point 256 × 256 matrix multiplication. bDouble precision floating point tensor convolution with sizes from the first layer of
GoogLeNet. Input size is 3 × 112 × 112 and kernel size is 64 × 3 × 7 × 7. cDouble precision AXPY of vectors with length 256.

four lanes uses 0.354 mm2 [5], or 1098 kGE3. When comparing

post-synthesis results, Hwacha is 9% smaller than the equivalent

Ara instance. The trend is also valid for equivalent instances

with eight and sixteen lanes. The main reason for this area

difference is that Hwacha has only half as many multipliers as

Ara, i.e., Hwacha has one MUL per two FMA units [42]. These

multipliers make up for a 9% area difference. Moreover, these

Hwacha instances do not support mixed-precision arithmetic [5],

and its support would incur into a 4% area overhead [41]. Ara,

however, has a simpler execution mechanism than Hwacha’s

Vector Runahead Unit [42], contributing to the area difference.

We used the placed-and-routed designs to analyze the

performance and energy efficiency of Ara when running the con-

sidered benchmarks. Due to the asymmetry between the code

that runs in Ariane and in Ara, we extracted switching activities

by running the benchmarks with netlists back annotated with

timing information. As expected, the energy efficiency of Ara

coupled to an Ariane core is considerably higher than that of

an Ariane core alone. For instance, a 256 × 256 integer matrix

multiplication achieves up to 43.6 GOPS/W energy efficiency

on an Ara with four lanes, whereas a comparable benchmark

runs at 17 GOPS/W on Ariane [34]. In that case, the instruction

and data caches alone are responsible for 46% of Ariane’s power

dissipation. In Ara’s case, most of the memory accesses go

directly into the VRF and energy spent for cache accesses can

be amortized over many vector lanes and cycles, increasing the

system’s energy efficiency with an increasing number of lanes.

A Hwacha implementation in ST 28 nm FD-SOI technology

(at an undisclosed condition) achieves a peak energy efficiency

of 40 DP−GFLOPS/W [33]. Adjusting for scaling gains [1], an

3As Dabbelt et al. [5] do not specify the technology they used, we considered
an ideal scaling from 28 nm to 22 nm. Therefore, we considered one GE in
28 nm to be (28/22)2 bigger than one GE in 22 nm, or 0.322 µm2.

energy efficiency of 41 DP−GFLOPS/W is comparable to the

energy efficiency of the large Ara instances running MATMUL.

VII. CONCLUSIONS

In this work, we presented Ara, a parametric in-order high-

performance energy-efficient 64-bit vector unit based on the

version 0.5 draft of RISC-V’s vector extension. Ara acts

as a coprocessor tightly coupled to Ariane, an open-source

application-class RV64GC core. Ara’s microarchitecture was

designed with scalability in mind. To this end, it is composed

of a set of identical lanes, each hosting part of the system’s

vector register file and functional units. The lanes communicate

with each other via the VLSU and the SLDU, responsible for

executing instructions that touch all the VRF banks at once.

These units arguably represent the weak points when it comes to

scalability, because they get wider with an increasing number of

lanes. Other architectures take an alternative approach, having

several narrow memory ports instead of a single wide one. This

approach does not solve the scalability problem, but just deflects

it further to the memory interconnect and cache subsystem.

We measured the performance of Ara using matrix multiplica-

tion, convolution (both compute-bound), and AXPY (memory-

bound) double-precision kernels. For problems “large enough,”

the compute-bound kernels almost saturate the FPUs, with the

measured performance of a 256 × 256 matrix multiplication

only 3% below the theoretically achievable peak performance.

In terms of performance and power, we presented post-place-

and-route results for Ara configurations with two up to sixteen

lanes in GLOBALFOUNDRIES 22FDX FD-SOI technology,

and showed that Ara achieves a clock frequency higher than

1 GHz in the typical corner. Our results indicate that our

design is 2.5× more energy efficient than Ariane alone when

running an equivalent benchmark. An instance of our design

11

with sixteen lanes achieves up to about 41 DP−GFLOPS/W

running computationally intensive benchmarks, comparable to

the energy efficiency of the equivalent Hwacha implementation.

We decided not to restrain the performance analysis to very

large problems, and observed a performance degradation for

problems whose size is comparable to the number of vector

lanes. This is not a limitation of Ara per se, but rather of

vector processors in general, when coupled to a single-issue

in-order core. The main reason for the low FPU utilization for

small problems is the rate at which the scalar core issues vector

instructions. With our MATMUL implementation, Ariane issues

a vector FMA instruction every five cycles, and the shorter the

vector length is, the more vector instructions are required to fill

the pipeline. By decoupling operand fetch and result write-back,

Ara tries to eliminate bubbles that would have a significant

impact on short-lived vector instructions. While the achieved

performance in this case is far from the peak, it is nonetheless

close to the instruction issue rate performance boundary.

To this end, we believe that it would be interesting to

investigate whether and to what extent this performance limit

could be mitigated by leveraging a superscalar or VLIW-capable

core to drive the vector coprocessor. While using multiple

small cores to drive the vector lanes increases their individual

utilization, maintaining an optimal energy efficiency might

mean the usage of fewer lanes than physically available, i.e., a

lower overall utilization of the functional units. In any case,

care must be taken to find an equilibrium between the high-

performance and energy-efficiency requirements of the design.

ACKNOWLEDGMENTS

We would like to thank Frank Gürkaynak and Francesco

Conti for the helpful discussions and insights.

REFERENCES

[1] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: Reclaiming Moore’s law through energy
efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2, pp.
253–266, Feb. 2010.

[2] I. Hwang and M. Pedram, “A comparative study of the effectiveness of
CPU consolidation versus dynamic voltage and frequency scaling in a
virtualized multicore server,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 24, no. 6, pp. 2103–2116, Jun. 2016.

[3] S. Kiamehr, M. Ebrahimi, M. S. Golanbari, and M. B. Tahoori,
“Temperature-aware dynamic voltage scaling to improve energy efficiency
of near-threshold computing,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 25, no. 7, pp. 2017–2026, Jul. 2017.

[4] J. Backus, “Can programming be liberated from the von Neumann style?:
A functional style and its algebra of programs,” Commun. ACM, vol. 21,
no. 8, pp. 613–641, Aug. 1978.

[5] D. Dabbelt, C. Schmidt, E. Love, H. Mao, S. Karandikar, and K. Asanović,
“Vector processors for energy-efficient embedded systems,” in Proceedings

of the Third ACM International Workshop on Many-core Embedded

Systems, ser. MES ’16. New York, NY, USA: ACM, 2016, pp. 10–16.

[6] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, Dec. 2017.

[7] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, May 2008.

[8] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, Mar. 2008.

[9] Green500, “Green500 list - November 2018,” Nov. 2018. [Online].
Available: https://www.top500.org/green500/lists/2018/11/

[10] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba, “End to end learning for self-driving cars,” CoRR, 2016.
[Online]. Available: http://arxiv.org/abs/1604.07316

[11] R. M. Russell, “The CRAY-1 computer system,” Commun. ACM, vol. 21,
no. 1, pp. 63–72, Jan. 1978.

[12] S. F. Beldianu and S. G. Ziavras, “Performance-energy optimizations
for shared vector accelerators in multicores,” IEEE Transactions on

Computers, vol. 64, no. 3, pp. 805–817, Mar. 2015.

[13] NVIDIA Tesla V100 GPU Architecture, NVIDIA, Aug. 2017,
v1.1. [Online]. Available: https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf

[14] M. M. Mano, C. R. Kime, and T. Martin, Logic and Computer Design

Fundamentals, 5th ed. Hoboken, NJ, USA: Pearson High Education,
2015.

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-

tive Approach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011.

[16] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker, “The ARM Scalable Vector Extension,” IEEE Micro,
vol. 37, no. 2, pp. 26–39, Mar. 2017.

[17] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual:

User-Level ISA, CS Division, EECS Department, University of California,
Berkeley, CA, USA, Jun. 2019, version 20190608-Base-Ratified.

[18] “Working draft of the proposed RISC-V V vector extension,”
2019, accessed on March 1, 2019. [Online]. Available:
https://github.com/riscv/riscv-v-spec

[19] A. Peleg and U. Weiser, “MMX technology extension to the Intel
architecture,” IEEE Micro, vol. 16, no. 4, pp. 42–50, Aug. 1996.

[20] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE

Transactions on Computers, vol. C-21, no. 9, pp. 948–960, Sep. 1972.

[21] J. Reinders, “Intel AVX-512 instructions,” Intel Software Developer

Zone, Jun. 2017. [Online]. Available: https://software.intel.com/en-
us/blogs/2013/avx-512-instructions

[22] ARM, “Neon,” Accessed on May 1, 2019. [Online]. Available:
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon

[23] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-V
core with DSP extensions for scalable IoT endpoint devices,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, Oct. 2017.

[24] K. Asanović, “Vector microprocessors,” Ph.D. dissertation, University of
California, Berkeley, 1998.

[25] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux,
“Vector processing as a soft processor accelerator,” ACM Trans.

Reconfigurable Technol. Syst., vol. 2, no. 2, pp. 12:1–12:34, Jun. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1534916.1534922

[26] C. E. Kozyrakis and D. A. Patterson, “Scalable vector processors for
embedded systems,” IEEE Micro, vol. 23, no. 6, pp. 36–45, 2003.

[27] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. Lemieux,
“VEGAS: Soft vector processor with scratchpad memory,” Proceedings

of ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA), pp. 15–24, 2011.

[28] T. Yoshida, “Fujitsu high performance CPU for the Post-K computer,”
in Hot Chips: A Symposium on High Performance Chips, ser. HC30,
Cupertino, CA, USA, Aug. 2018.

[29] Y. Lu, S. Rooholamin, and S. G. Ziavras, “Vector coprocessor
virtualization for simultaneous multithreading,” ACM Trans. Embed.

Comput. Syst., vol. 15, no. 3, pp. 57:1–57:25, May 2016. [Online].
Available: http://doi.acm.org/10.1145/2898364

[30] S. F. Beldianu and S. G. Ziavras, “ASIC design of shared vector
accelerators for multicore processors,” in 2014 IEEE 26th International

Symposium on Computer Architecture and High Performance Computing,
Oct. 2014, pp. 182–189.

[31] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanović, “Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators,” SIGARCH Comput. Archit. News,
vol. 39, no. 3, pp. 129–140, 2011.

[32] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper,
and K. Asanovic, “The vector-thread architecture,” SIGARCH Comput.

Archit. News, vol. 32, no. 2, pp. 52–, Mar. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1028176.1006736

[33] C. Schmidt, A. Ou, and K. Asanović, “Hwacha: A data-parallel RISC-V
extension and implementation,” in Inaugural RISC-V Summit Proceedings.
Santa Clara, CA, USA: RISC-V Foundation, Dec. 2018. [Online]. Avail-

12

able: https://content.riscv.org/wp-content/uploads/2018/12/Hwacha-A-
Data-Parallel-RISC-V-Extension-and-Implementation-Schmidt-Ou-.pdf

[34] F. Zaruba and L. Benini, “The cost of application-class processing: Energy
and performance analysis of a Linux-ready 1.7GHz 64bit RISC-V core
in 22nm FDSOI technology,” arXiv e-prints, Apr. 2019.

[35] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini, “A
transprecision floating-point architecture for energy-efficient embedded
computing,” in 2018 IEEE International Symposium on Circuits and

Systems (ISCAS), May 2018, pp. 1–5.

[36] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The
Rocket Chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr. 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html

[37] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009.

[38] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and
M. Pueschel, “Applying the roofline model,” in IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS),
Mar. 2014, pp. 76–85.

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Computer Vision and Pattern Recognition (CVPR), 2015. [Online].
Available: http://arxiv.org/abs/1409.4842

[40] ARM, “Arm Cortex-A series processors,” Accessed on
October 20, 2019. [Online]. Available: https://developer.arm.com/ip-
products/processors/cortex-a

[41] Y. Lee, C. Schmidt, S. Karandikar, D. Dabbelt, A. Ou, and K. Asanović,
“Hwacha preliminary evaluation results,” University of California at
Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-264, Dec.
2015.

[42] Y. Lee, A. Ou, C. Schmidt, S. Karandikar, H. Mao, and K. Asanović, “The
Hwacha microarchitecture manual,” University of California at Berkeley,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-263, Dec. 2015.

APPENDIX

A. Implementation and execution of a matrix multiplication

Here we analyze in depth the implementation and execution

of the n × n matrix multiplication. We assume the matrices

are stored in row-major order. Our implementation uses a tiled

approach working on t rows of matrix C at a time. Figure 9

presents the matrix multiplication algorithm, working on tiles

of size t × n. The algorithm showcases how the ISA handles

scalability via strip-mined loops [24]. Line 3 is uses the setvl

instruction, which sets the vector length for the following vector

instructions, and enables the same code to be used for vector

processors with different maximum vector length VLMAX.

Once inside the strip-mined loop, there are three distinct

computation phases: I) read a block of matrix C; II) the actual

computation of the matrix multiplication, and; III) write the

result to memory. Phases I and III take O(n) cycles, whereas

the phase II takes O(n2) cycles. The core part of Figure 9

is the for loop of line 11, where most of the time is spent

and where the FPUs are used. Listing 1 shows the resulting

RISC-V vector assembly code for the phase II of the matrix

multiplication, considering a block size of four rows. We ignore

some control flow instructions at the start and end of Listing 1,

which handle the outer for loop.

1: c← 0;

2: while c < n do {Strip-mining loop}
3: vl← min(n − c,VLMAX);

4: r ← 0;

5: while r < n do

6: for j ← 0 to min(r, t) − 1 do {Phase I}
7: Load row C[r + j, c] into vector register vC j

;

8: end for

9: for i ← 0 to n − 1 do {Phase II}
10: Load row B[i, c] into vector register vB;

11: for j ← 0 to min(r, b) − 1 do

12: Load element A[j, i];

13: Broadcast A[j, i] into vector register vA;

14: vC j
← vAvB + vC j

;

15: end for

16: end for

17: for j ← 0 to min(r, t) − 1 do {Phase III}
18: Store vector register vC j

into C[r + j, c];

19: end for

20: r ← r + t;

21: end while

22: c← c + vl;

23: end while

Fig. 9. Algorithm for the matrix multiplication C ← AB +C.

Listing 1
EXCERPT OF THE MATRIX MULTIPLICATION IN RISC-V VECTOR

EXTENSION ASSEMBLY, WITH A BLOCK SIZE OF FOUR ROWS .

1 ; a0: pointer to A

2 ; a1: pointer to B

3 ; a2: A row size

4 ; a3: B row size

5

6 vld vB0 , 0(a1) ; load row of B

7 add a1, a1, a3 ; bump B pointer

8

9 vld vB1 , 0(a1) ; load row of B

10 add a1, a1, a3 ; bump B pointer

11 ld t0, 0(a0) ; / load element of A

12 add a0, a0, a2 ; | bump A pointer

13 vins vA, t0, zero ; | move from Ariane to Ara

14 vmadd vC0 , vA, vB0 , vC0 ; \ vector multiply -add

15 ld t0, 0(a0)

16 add a0, a0, a2

17 vins vA, t0, zero

18 vmadd vC1 , vA, vB1 , vC1

19 ld t0, 0(a0)

20 add a0, a0, a2

21 vins vA, t0, zero

22 vmadd vC2 , vA, vB2 , vC2

23 ld t0, 0(a0)

24 add a0, a0, a2

25 vins vA, t0, zero

26 vmadd vC3 , vA, vB0 , vC3

27

28 vld vB0 , 0(a1) ; load row of B

29 add a1, a1, a3 ; bump B pointer

30 ld t0, 0(a0) ; / load element of A

31 add a0, a0, a2 ; | bump A pointer

32 vins vA, t0, zero ; | move from Ariane to Ara

33 vmadd vC0 , vA, vB1 , vC0 ; \ vector multiply -add

34 ...

35 ld t0, 0(a0)

36 add a0, a0, a2

37 vins vA, t0, zero

38 vmadd vC3 , vA, vB1 , vC3

After loading one row of matrix B, the kernel consists of

four repeating instructions, responsible for, respectively: i) load

13

the element A[j, i] into a general-purpose register t0; ii) bump

address A[j, i] preparing for next iteration; iii) broadcast scalar

register t0 into vector register vA; iv) multiply-add instruction

vCi
← vAvB + vCi

. As Ariane is a single-issue core, this kernel

runs in at least four cycles. In steady state, however, we measure

that each loop iteration runs in five cycles. The reason for this,

as shown in the pipeline diagram of Figure 10, is one bubble

due to the data dependence between the scalar load (which

takes two cycles) and the broadcast instruction.

Instruction Cycle

1 2 3 4 5 6 7 8

LD IS EX EX CO

ADD IS EX CO

VINS — IS EX EX CO

VMADD IS EX EX CO

LD IS EX EX

Fig. 10. Pipeline diagram of the matrix multiplication kernel. Only three
pipeline stages are highlighted: IS is Instruction Issue, EX is Execution Stage,
CO is Commit Stage. Ariane has two commit ports into the scoreboard.

We used loop unrolling and software pipelining to code the

algorithm of Figure 9 as our C implementation. The use of

these techniques to improve performance is visible in Listing 1.

We unrolled of the for loop of line 11 in Figure 9, which

correspond to lines 11-14, repeated t times on the following

lines in Listing 1. This avoids any branching at the end of

the loop. Moreover, two vectors hold rows of matrix B. This

double buffering allows for the simultaneous loading of one

row in vector vB1, in line 9, while vB0 is used for the FMAs,

as in line 14 in Listing 1. After line 28, vB1 is used for the

computation, while another row of B is loaded into vB0.

The three phases of the computation can be distinguished

clearly in Figure 11, which shows the utilization of the VLSU

and FPU for a 32 × 32 matrix multiplication on a four-lane Ara

instance. Note how the FPUs are almost fully utilized during

phase II, while being almost idle otherwise.

0

50

100
LD

0

50

100

U
ti

li
za

ti
o

n
[%

]

FPU

0 2 4 6 8 10
0

50

100

Time [×103 cycles]

ST

Fig. 11. Utilization of Ara’s functional units for a 32 × 32 matrix multiplication
on an Ara instance with four lanes.

Matheus Cavalcante received the M.Sc. degree in
Integrated Electronic Systems from the Grenoble
Institute of Technology (Phelma), France, in 2018. He
is currently pursuing a Ph.D. degree at the Integrated
Systems Laboratory of ETH Zürich, Switzerland. His
research interests include high performance compute
architectures and interconnection networks.

Fabian Schuiki received the B.Sc. and M.Sc. degree
in electrical engineering from the ETH Zürich in 2014
and 2016, respectively. He is currently pursuing a
Ph.D. degree with the Digital Circuits and Systems
group of Luca Benini. His research interests include
transprecision computing as well as near- and in-
memory processing.

Florian Zaruba received his B.Sc. degree from TU
Wien in 2014 and his M.Sc. from the ETH Zürich in
2017. He is currently pursuing a Ph.D. degree at the
Integrated Systems Laboratory. His research interests
include design of very large scale integration circuits
and high performance computer architectures.

Michael Schaffner received his M.Sc. and Ph.D.
degrees from ETH Zürich, Switzerland, in 2012
and 2017. He has been a research assistant at the
Integrated Systems Laboratory, ETH Zürich, and
Disney Research, Zürich, from 2012 to 2017, where
he was working on digital signal and video processing.
From 2017 to 2018 he has been a postdoctoral
researcher at the Integrated Systems Laboratory, ETH
Zürich, focusing on the design of RISC-V processors
and efficient co-processors. Since 2019, he has been
with the ASIC development team at Google Cloud

Platforms, Sunnyvale, USA, where he is involved in processor design. Michael
Schaffner received the ETH Medal for his Diploma thesis in 2013.

Luca Benini holds the chair of digital Circuits and
systems at ETH Zürich and is Full Professor at the
Università di Bologna. In 2009-2012 he served as
chief architect in STMicroelectronics France. Dr.
Benini’s research interests are in energy-efficient
computing systems design, from embedded to high-
performance. He is also active in the design ultra-
low power VLSI Circuits and smart sensing micro-
systems. He has published more than 1000 peer-
reviewed papers and five books. He is a Fellow of
the ACM and a member of the Academia Europaea.

He is the recipient of the 2016 IEEE CAS Mac Van Valkenburg award and of
the 2019 IEEE TCAD Donald O. Pederson Best Paper Award.

