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ARA: accurate, reliable and 
active histopathological image 
classification framework with 
Bayesian deep learning
Łukasz Rączkowski1, Marcin Możejko1, Joanna Zambonelli2 & Ewa Szczurek  1

Machine learning algorithms hold the promise to effectively automate the analysis of histopathological 
images that are routinely generated in clinical practice. Any machine learning method used in the 

clinical diagnostic process has to be extremely accurate and, ideally, provide a measure of uncertainty 
for its predictions. Such accurate and reliable classifiers need enough labelled data for training, which 
requires time-consuming and costly manual annotation by pathologists. Thus, it is critical to minimise 

the amount of data needed to reach the desired accuracy by maximising the efficiency of training. 
We propose an accurate, reliable and active (ARA) image classification framework and introduce a 
new Bayesian Convolutional Neural Network (ARA-CNN) for classifying histopathological images of 
colorectal cancer. The model achieves exceptional classification accuracy, outperforming other models 
trained on the same dataset. The network outputs an uncertainty measurement for each tested image. 
We show that uncertainty measures can be used to detect mislabelled training samples and can be 
employed in an efficient active learning workflow. Using a variational dropout-based entropy measure 
of uncertainty in the workflow speeds up the learning process by roughly 45%. Finally, we utilise our 
model to segment whole-slide images of colorectal tissue and compute segmentation-based spatial 
statistics.

Histopathological images of cancer tissue samples are routinely inspected by pathologists for cancer type iden-
tification and prognosis. Hematoxylin-Eosin (H&E) stained slides have been used by pathologists for over a 
hundred years. With such long history and proven applicability, histopathological imaging is expected to stay in 
common clinical practice in the coming years1. With the advent of digital pathology, histopathological images 
became available for automated analysis at scale2. To this end, a rich catalogue of machine learning approaches 
to image classification and whole-slide segmentation has been developed3,4, promising to aid the effort of pathol-
ogists in interpreting the images5. Such machine learning models need to be perfectly accurate, as classification 
errors may result in faulty disease diagnosis and patient treatment. On top of that, we stipulate that in application 
to digital pathology, the models should also be reliable in their predictions. When performing the difficult task 
of automated classification or diagnosis based on histopathological images, they should state uncertainty in their 
predictions, indicating difficult cases for which human expert inspection is necessary. While accuracy is opti-
mised by every machine learning method, reliability is another desired feature that is not delivered by many state 
of the art solutions.

Recent years brought particularly intensive development of deep-learning based approaches to image classi-
fication. In particular, Convolutional Neural Networks (CNNs) have served as a backbone for numerous break-
throughs in computer vision as a whole, specifically in image classification. Since 2012, when the groundbreaking 
AlexNet was created by Alex Krizevsky6, the state of the art has rapidly shifted from machine learning algorithms 
using manual feature engineering (henceforth referred to as ‘traditional’ machine learning approaches) to new 
deep learning ones7. Medical imaging in general8–12, and histopathological image classification in particular13–20, 
became important applications of these methods. Multiple machine learning methods go beyond the tasks of 
tissue type classification and whole-slide segmentation, confirming there is more information about the patients 
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encrypted in histopathological images than immediately visible by eye5. For example, Wang et al.21 trained a CNN 
to predict survival of patients from their pathological images. Another deep learning model22 allowed prediction 
of mutations in several genes from non–small cell lung cancer histopathology. Finally, Bayesian measures of 
measuring uncertainty for deep-learning methods have been proposed23,24 and successfully applied to medical 
image analysis25. Those developments open the avenue to reliable image classification, where prediction uncer-
tainty can be reported together with the predicted class.

All of these exciting methodological inventions would not be possible without training data that is numerous 
enough to train accurate models. Publicly available training data with annotated images such as the Breast Cancer 
Histopathological Database26 allow algorithm benchmarking and evaluation, sparkling new method develop-
ments27,28. Similarly, Kather et al.29 released a colorectal cancer dataset with H&E tissue slides, which were cut into 
5000 small tiles (or patches), each of them annotated with one of eight tissue classes. They also devised an efficient 
classification method, with image-derived features serving as basis for a support vector machine model. Since its 
publication, this dataset was utilised several times to verify the performance of an array of methods. Ribeiro et al.30 
developed a traditional method that uses multidimensional fractal techniques, curvelet transforms and Haralick 
descriptors. They tested its accuracy using the Kather et al. dataset in a binary classification scenario. Wang et 
al.31 developed a Bilinear CNN architecture that takes as input H&E stained images decomposed into H and E 
channels and used all eight classes from the Kather et al. dataset to verify its performance. Pham32 utilised this 
dataset to assess their autoencoder architecture. Sarkar et al.33 created a new saliency-based dictionary learning 
method and used the Kather et al. dataset for both training and testing. Finally, Ciompi et al.34 used it as an inde-
pendent test set for an evaluation of two stain normalisation strategies. All traditional methods reported accuracy 
lower than the original classification method by Kather et al. The AUC value in the eight-class classification task 
obtained by Wang et al.31 was higher than the one achieved by Kather et al., confirming that a CNN is the method 
of choice for this dataset as well. Notably, none of these methods aimed for reliability, as they did not assess the 
uncertainty of their predictions.

Generation of datasets like the ones described above requires laborious workload of pathologists who process 
whole-slide images and assign labels to selected image regions. The requirement of meticulous pathological anno-
tation limits the amount of data available for model training. Formally, this relates to the bias-variance trade-off 
in machine learning35. The effort to minimise bias on a small training set may result in high variance and low 
accuracy on unseen data, an effect known as overfitting. In order to minimise the expected test error, model regu-
larisation techniques penalising model complexity can be applied. For CNNs, a technique called dropout has been 
proposed as a means of regularisation36. Another technique, called active learning, can be used to deal with the 
difficulty of laborious data annotation. Active learning is an iterative procedure, where in each step the model is 
re-trained on data expanded with new samples, which are added based on results from the previous steps in order 
to maximise the learning rate. Variants of active learning depend on the way the new samples are selected. One 
method of choice is selection which maximises the diversity of the training set37. Gal et al.38 proposed an active 
learning procedure for Bayesian deep learning models, where new samples are added in each iteration based on 
their uncertainty estimated using variational dropout. This technique can be conceptualised by an analogy to a 
diligent student, who while taking a course actively asks the teacher for more examples on topics which are hard 
for them to understand. There are several attempts at active learning for histopathological image classification 
in the literature, using both traditional machine learning37,39–42 and deep learning43–46. However, none of these 
approaches utilised uncertainty for selection of new samples in active training.

In this work, we introduce an accurate, reliable and active (shortly, ARA) learning framework for classification 
of histopathological images of colorectal cancer. To this end, we develop a new CNN model (called ARA-CNN) 
for classification of colorectal cancer tissues, trained on the Kather et al. dataset (Fig. 1). The model achieves 
stellar accuracy, higher than reported in the original publication of Kather et al.29 and in later studies. The key 
contribution of this work is an extensive analysis of the utility of two variational-dropout based uncertainty 
measures, Entropy H and BALD (Bayesian Active Learning by Disagreement; introduced by Houlsby et al.47), in 
their application to histopathological image classification. We demonstrate that the distribution of uncertainty is 
increased for tissue classes that are the most difficult to learn for the model. Moreover, images that are misclassi-
fied tend to have the highest uncertainties. We propose an active learning framework, where the model suggests 
the most uncertain classes for annotation by a pathologist and identifies the most certain misclassified images as 
potentially incorrectly annotated (Fig. 1A). We show that H outperforms random selection of images and BALD 
when applied to select samples in an active learning procedure, speeding up the learning process by roughly 45%. 
In-depth inspection indicates that correctly classified images with very low Entropy H are highly characteristic of 
each tissue class. We show that low Entropy H for misclassified images correctly identifies mislabelled data in the 
training dataset and that ARA-CNN is highly robust to such noise in the data. On the other hand, images with 
very high uncertainty H are atypical or show pathological features that could be shared by other classes, which 
makes them pathologically difficult to categorise. In addition to image classification and uncertainty estimation, 
the framework is successfully applied to image segmentation and provides segmentation-based statistics of tissue 
class abundance in whole tissue slides (Fig. 1B).

Methods
Analysed data. The analysed dataset holds 5000 image patches belonging to eight balanced classes of 
histopathologically recognisable tissues29. The patches were pulled from ten anonymised and digitised tissue 
slides, stained with the H&E technique. After initial coarse-grained annotation, 625 non-overlapping tiles were 
extracted from contiguous tissue areas for each class. Each tile has the same size of 150 × 150 pixels (equivalent 
to 74 µm × 74 µm). The eight tissue classes are: tumour epithelium, simple stroma (homogeneous composition, 
includes tumour stroma, extra-tumoural stroma and smooth muscle), complex stroma (containing single tumour 
cells and/or few immune cells), immune cells (including immune-cell conglomerates and sub-mucosal lymphoid 
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follicles), debris (including necrosis, haemorrhage and mucus), normal mucosal glands, adipose tissue, back-
ground (no tissue). Here, for the sake of brevity, these classes are labelled as: Tumour, Stroma, Complex, Lympho, 
Debris, Mucosa, Adipose and Empty. In addition, one tissue slide denoted by Kather et al.29 as a test image was 
used for the purpose of segmentation (see below).

ARA-CNN model. To automatically classify the images from the analysed dataset into their corresponding 
classes, we developed and trained a Convolutional Neural Network (CNN) model. The architecture of the model, 
called ARA-CNN, was inspired by many state of the art solutions, including Microsoft ResNet48 and DarkNet 
1949. For normalisation and to reduce overfitting, we used a popular technique called Batch Normalisation50. 
In ARA-CNN, overfitting is also reduced by using dropout36. This in turn allowed us to apply variational drop-
out51 during testing. For every tested image, the model provides not only its predicted class, but also a meas-
ure of uncertainty estimated using variational dropout. The architecture of ARA-CNN is discussed in depth in 
Supplementary Information and presented in Fig. S1.

Dropout. Due to their size, deep learning models are especially prone to overfitting - they can inadvertently 
learn from sampling noise instead of actual non-linearities in the training data. One of the more popular and 
successful methods of combating this problem is dropout36. It works on the basis of randomly removing units 
in a neural network during training in order to simulate a committee of multiple different architectures. In our 
model, dropout is applied to two fully connected layers with 32 units preceding auxiliary and final output. Its rate 
is equal to 0.5, which means that during both inference and training approximately half of all units are turned off 
and set to 0.

Model training. The whole dataset of 5000 images was split into a training dataset and a test dataset used for 
evaluation. Their sizes varied depending on the experiment. In the 8-class case, we randomly divided the dataset 
into the training set with 4496 images (562 images per class) and the test set with 504 images (63 images per class). 
In the case of binary classification, the training set contained 1124 images, while the test set was comprised of 126 
images (divided in half between Tumour and Stroma). These divisions were repeated ten times in the process of 

Figure 1. Overview of the proposed ARA framework. (A) Active histopathology workflow. Annotated whole-
slide images (WSIs) are split into small image patches, which constitute a dataset. ARA-CNN is trained on that 
dataset. After the first round of training, the pathologist should be informed about i) which classes are the most 
uncertain and ii) which image patches are misclassified and highly certain, and thus identified as potentially 
mislabelled. The former should inform the pathologist about which classes to prioritise in the next round of 
annotation. The latter should inform about which image patches should be re-annotated with correct labels. 
We then take new annotated whole-slide images and continue the workflow until we reach a satisfying level 
of classification accuracy. (B) Segmentation workflow. Whole slide images are split into small image patches. 
Each of these is classified by trained ARA-CNN and is assigned a colour based on its classification result. These 
coloured tiles are merged together to form a segmented whole slide image and can be analysed in terms of their 
spatial relationships. Each resulting tile has a measured uncertainty value as well, so pathologists can make an 
informed decision whether to take the automated segmentation as-is or to inspect it manually.
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10-fold cross-validation. Moreover, we also performed 5-fold cross-validation and 2-fold cross-validation, with 
the dataset split according to the number of folds.

Additionally, in each training epoch the training data was split into two datasets: the actual training data and a 
validation dataset. The latter was used for informing the learning rate reducer - we monitored the accuracy on the 
validation set and if it stopped improving, the learning rate was reduced by a factor of 0.1. In the task of evaluating 
model performance, this split was in proportion 90% to 10% between actual training data and the validation set, 
respectively, while in active learning the split was in proportion 70% to 30%. This is due to the fact that in active 
learning we start from a very small dataset and 10% was too small of a proportion to provide enough validation 
samples.

For parameter optimisation, we used the Adam52 optimiser. The training time differed depending on the 
experiment. In the cross-validation and mislabelled sample identification experiments we used 200 epochs, but 
in the active learning experiments it was 100 epochs instead (due to limited computational resources). In all 
cases, the training data was passed to the network in batches of 32, while the validation and test data was split into 
batches of 128 images.

Loss function. During training, the categorical cross-entropy loss function was applied to both (auxiliary and 
final) outputs. The final loss is a weighted sum of these two losses with weight 0.9 for the final output and 0.1 for 
the auxiliary output. For observation o, a set of M classes and class y M{1 }∈ …⁎ , we denote the probability of 
assigning the observation to that class as ˆ

⁎ ω|P y o( , ), where ω̂ represents the estimated parameters of the model. 
Categorical cross-entropy can then be defined as:

ˆ
⁎ ⁎

⁎
∑ δ ω− = |
=

y y P y o( ) log( ( , )),
(1)y

M

o
1

where δ is the Dirac function and yo is the correct class for observation o.

Variational dropout for inference and uncertainty estimation. In order to provide more accurate clas-
sification as well as uncertainty prediction, we adopted a popular method called variational dropout51. The central 
idea of this technique is to keep dropout enabled by performing multiple model calls during prediction. Thanks to 
the fact that different units are dropped across different model calls, it might be considered as Bayesian sampling 
from a variational distribution of models24. In a Bayesian setting, the parameters (i.e. weights) ω of a CNN model are 
treated as random variables. In variational inference, we approximate the posterior distribution P(ω|D) by a simpler 
(variational) distribution ωq( ), where D is the training dataset. Thus, we assume that ω̂ ω∼ q( )t , where ω̂t is an esti-
mation of ω resulting from a variatonal dropout call t. With these assumptions, the following approximations can be 
derived24:
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where T is the number of variational samples. In our model we used =T 50.
Variational dropout has enabled us to measure the uncertainty of predictions. We implemented two uncer-

tainty measures: Entropy H and BALD23. If the output of the model is a conditional probability distribution 
|⁎P y o D( , ), then the measure H can be defined as entropy of the predictive distribution:

⁎ ⁎ ⁎

⁎

H P y o D P y o D P y o D[ ( , )] ( , ) log ( , )
(3)y M{1 }

∑| = − | |
∈ …

The second uncertainty measure, BALD, is based on mutual information and measures the information gain 
about the model parameters ω obtained from classifying observation o with label y*. In the case of variational 
dropout, this can be expressed as the difference between entropy of the predictive distribution and the mean 
entropy of predictions across multiple model calls:
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The difference between these two measures pertains to how they react to two different types of uncertainty 
in the data: epistemic and aleatoric53. The former type is caused by a lack of knowledge - in terms of machine 
learning, this is analogous to a lack of data, so the posterior probability over model parameters is broad. The lat-
ter uncertainty is a result of noise in the data - no matter how much data the model has seen, if there is inherent 
noise then the best possible prediction may be highly uncertain23. In general, the Entropy H measure cannot 
distinguish these two types of uncertainty. If uncertainty of a new observation is measured by H, then the value 
would not depend on the underlying uncertainty type. On the other hand, it is believed that BALD measures epis-
temic uncertainty of the model23, so it would not return a high value if there is only aleoratic uncertainty present. 
Depending on the dataset, one of these measures might work better than the other at catching and describing the 
uncertainty.
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Image segmentation. To perform segmentation of test tissue slides from the Kather et al.29 dataset, each 
of these 5000 × 5000 px images was split into 10000 non-overlapping test samples with resolution of 50 × 50 
pixels. These test images were then supplied as input to our model (by being upscaled to 128 × 128 pixels), which 
returned a classification into one of eight classes of colorectal tissue. Since the output of the model is a probability 
distribution, we selected the class with the highest value as the prediction for a given test image patch. We did not 
consider the measured uncertainty in this process. To get the final segmentation, we assigned a colour to each 
predicted class and generated a 50 × 50 pixels single-coloured patch for each test image. These patches were then 
stitched together to form the final images. Lastly, we applied a blurring Gaussian filter to smooth out the edges of 
tissue regions.

Finally, we performed a simple spatial analysis for each slide by counting the percentage of surface area taken 
by each class.

Active learning. Active learning is an iterative procedure, where the initial model is trained on a small data-
set and in consecutive iterations it is re-trained on a dataset extended by new samples. At each step, the new 
samples are added according to some acquisition function evaluated using the current model. Intuitively, the 
uncertainty measures described above are a good basis for an acquisition function in deep learning. In a given 
iteration, the model should first choose the samples it is most uncertain of38.

In this work we implemented and compared effectively three different acquisition functions. Two were based 
on uncertainty measures H and BALD, whereas the third was a random selection and served as a baseline. We 
performed a series of experiments in order to determine if uncertainty-based active learning can speed-up train-
ing with the colorectal cancer dataset. To this end, we emulated the proposed active learning workflow (Fig. 1A) 
utilising the available data. We started from generating three random splits of the full dataset - this gave us three 
test sets of 504 images and three training sets of 4496 images. Then for each of these test-train pairs, we performed 
the active learning procedure for both uncertainty measures plus a baseline training process based on random 
selection of images. In each case, we started from selecting 40 images per class (so 320 in total) from the training 
dataset. We trained the model on that small dataset and then, based on a given acquisition function, we chose 160 
images to add to the previous 320. This slightly larger set became a new training dataset. We repeated this process, 
adding 160 images in each step, until there were no more images to draw from the initial full training dataset, giv-
ing us 28 training steps in total. Additionally, in order to eliminate the effects of random weight initialisation, we 
pre-initialised the model 8 times for each step and used these initialisations for each of the 3 dataset splits. Thus, 
for each of the 28 steps we had to train the model 24 times.

For the random selection, the 160 new images in each step were sampled uniformly at random from the full 
training dataset. For the uncertainty-based functions, we performed inference on remaining images from the full 
training set in each step. We evaluated the uncertainty for each image using the H and BALD measures, according 
to Eqs (3) and (4). We sorted the results by uncertainty in descending order and selected the top 160. The results 
for each active learning step were averaged between initialisations and dataset splits.

Identification of mislabelled training samples. Identification of mislabelled training samples is an 
important problem in supervised learning54. Mislabelled training data is particularly likely to occur in our classi-
fication problem, where the training image patches are cut out from relatively large regions of WSIs annotated by 
the pathologist. In such a setup, the entire region labelled with a particular class may coincidentally include 
patches which in fact belong to a different class. Here, we show that such mislabelled training patches can be 
identified as those that were misclassified by ARA-CNN with low entropy H (i.e. with high certainty). Specifically, 
the identification of candidate mislabelled images using ARA-CNN proceeds as follows. Given the expected per-
centage of such mislabelled training images pm, separately for each class c we identify images misclassified by the 
model with uncertainty below a threshold =H q p( )t

c c
m

, where q p( )c
m

 is the pm-th percentile of the empirical dis-
tribution of H in class c. The final set of candidate mislabelled images is the union of the identified images across 
all classes.

Results
Model performance. To evaluate the performance of ARA-CNN, similarly to previous models trained on 
the same dataset, we measured its receiver operating characteristic (ROC) curves, area under the ROC curves 
(AUC) and error rates in 10-fold cross-validation for both 8-class and 2-class (Tumour vs Stroma) classifica-
tion tasks. In addition, we also evaluated precision-recall curves. We used images with all colour information 
preserved. The results were compared to those of the original model by Kather et al. (Fig. 2), as well as to other 
methods that used the same dataset. Where necessary, we performed 5-fold or 2-fold cross-validation and used 
the results as a comparison point. In their work, Kather et al.29 tested the performance of several low-level image 
features in combination with four classification algorithms, applied to grayscale images from their dataset. Their 
approach is an example of a ‘traditional’ procedure, where image features have to be hand-crafted and chosen 
appropriately depending on the dataset. The best results were reported for a combination of features containing: 
pixel value histograms, local binary patterns, gray-level co-occurence matrix and perception-like features. The 
best performing classifier was a support vector machine (SVM) algorithm with the radial basis function (RBF) 
kernel.

The ROC curves (generated with a one-vs-all method) for the 8-class experiment show excellent performance 
of ARA-CNN (Fig. 2A). The AUC values for the Tumour, Mucosa, Lympho, Adipose and Empty classes range 
from 0.997 to 0.999. Values for the Stroma, Complex and Debris classes are a little lower (from 0.988 to 0.992), 
which indicates that the model cannot always distinguish them from other classes. Still, the mean AUC value is 
0.995, which is higher than the value of 0.976 obtained by Kather et al.29. The ROC curve for the 2-class problem 
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(Fig. 2B) and its corresponding AUC value of 0.998 also illustrate near-perfect performance of ARA-CNN. It 
is important to note that performance evaluation using ROC curves for the multiclass classification task in a 
one-vs-all setting may be biased due to the fact that the classes are unbalanced. In such a setting, it is better to use 
precision-recall curves (Fig. 2C). The AUC values for these curves, as obtained by ARA-CNN, are a bit lower than 
for the ROC curves, but with the mean AUC of 0.972 are still indicative of excellent performance. The lowest AUC 
value (0.924) is obtained for the Complex versus all classification task. This indicates that the Complex class is the 
most difficult one to classify correctly for the model. We do not compare these results to other methods, as we are 
not aware of any other approaches that used precision-recall curves for performance evaluation on this dataset.

In terms of error rates, for the 8-class problem the ARA-CNN model reached an average rate of 7.56%, which 
is substantially lower, by 5.04%, than the best result reported by Kather et al.29 (Fig. 2D). Similarly, in the binary 
classification task, we obtained an error rate of 0.89%, lower than 1.4% obtained by Kather et al. Thus, our model 
is better than the best of standard approaches presented by Kather et al.29, especially in the multiclass classification 
scenario. One of the differences between deep learning and the standard approaches is that the former construct 
the features on the fly based on the data itself. Here, the features identified by ARA-CNN as part of the learning 
process outperform the set of features that were engineered by Kather et al.29 in the difficult task of decisively 
describing all classes in a multiclass image classification problem.

The classification performance of ARA-CNN is also superior or comparable to other published models that 
used the Kather et al. dataset, including both traditional and deep learning approaches that utilise CNNs (Table 1). 
ARA-CNN outperforms the traditional methods by a significant margin both in terms of AUC and accuracy. 
When it comes to CNN methods, Wang et al.31 performed 5-fold cross-validation and reported a mean AUC 
value of 0.985 (lower by 0.01 than ARA-CNN) and 92.6% accuracy (higher by 0.36% than ARA-CNN) for their 
BCNN in the multiclass task. Although BCNN and ARA-CNN achieve similarly high performance results, their 
architectures are very different. BCNN depends on an external method to perform stain decomposition of H&E 
images and is composed of two simple feed-forward CNNs, which take as input separate signals from the Eosin 
and Hematoxylin components and whose outputs are combined by bilinear pooling. We took a more typical 
deep-learning approach, with a deeper network with residual connections, where no independent feature extrac-
tion nor decomposition is needed, and the network itself is responsible for extracting important signals from raw 

Figure 2. Model performance in 10-fold cross-validation. (A) ROC and area under the ROC curve (AUC) 
for classification into eight tissue types. The model presented in this work achieved an average AUC of 0.995 
(a mean was taken across all eight classes), (B) ROC and AUC for binary classification between Tumour 
and Stroma. ARA-CNN achieves AUC of 0.998. (C) Precision-recall curves for ARA-CNN in a multiclass 
classification setting. The mean AUC for these curves is 0.972. (D) Error comparison to previous work. With 
error rate 7.56% for eight class classification, our model substantially reduces the error (by 5.04%) compared to 
error rate 12.6% of the best model assessed by Kather et al.29. For binary (Tumour versus Stroma) classification, 
our model has error rate 0.89%, which is also lower than the 1.4% error rate of the Kather et al. model.

Method Method type
Problem 
type

Max. reported 10-
fold ACC

Max. reported 
5-fold ACC

Max. reported 
2-fold ACC

10-fold 
AUC

5-fold 
AUC

Kather et al. Traditional
Binary 98.6% — — — —

Multiclass 87.4% — — 0.976 —

Ribeiro et al.* Traditional Binary 97.68% — — — —

Sarkar et al. Traditional Multiclass 73.66% — — — —

Wang et al. CNN Multiclass — 92.6 ± 1.2% — — 0.985

Pham CNN Binary — — 84.00% — —

ARA-CNN CNN
Binary 99.11 ± 0.97% 98.88 ± 0.52% 98.88% 0.998 0.999

Multiclass 92.44 ± 0.81% 92.24 ± 0.82% 88.92 ± 1.95% 0.995 0.995

Table 1. Comparison of different methods that used the Kather et al. dataset for training. ACC– accuracy. We 
summarise performance measures of compared methods as reported by the authors. Results in bold are the best 
in their category. *The authors do not explicitly state the number of folds. Since in other reported results the 
number of folds they used is 10, we assume 10-fold cross-validation here as well.
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image data. Pham32 used an autoencoder architecture to re-sample the images from the Kather et al. dataset and 
trained a small supervised network for different re-sampling factors. They reported at best an accuracy of 84.00% 
for binary classification, which is lower by 14.88% in comparison to our result. Ciompi et al.34 used the Kather 
et al. dataset for testing their model trained on an independent colorectal cancer dataset and reported relatively 
small accuracies of 50.96% and 75.55%, where the former was achieved without stain normalisation and the latter 
was an improvement resulting from having stain normalisation applied. However, since this model was trained 
on a different dataset, we do not directly compare our result to theirs. Overall, ARA-CNN’s achieves excellent per-
formance on the Kather et al. dataset, and scores better than most other published methods that utilised the same 
data for training. Exceptional performance of our approach indicates that it successfully combines the flexibility 
typical for deep neural networks with strong regularisation resulting from dropout and Batch Normalisation.

Finally, we present the excellent results of segmentation of whole slide images in Supplementary Information 
and in Fig. S2.

Uncertainty, active learning and identification of mislabelled images. Deep learning models are 
often criticised for being so-called black-boxes. Due to their complexity, it can be very hard to tell why a given test 

Figure 3. The uncertainty of image classification. (A,B) Distribution of uncertainty for the colorectal cancer 
images used to train our model. The horizontal axis shows the actual class of these images, whereas the 
classification of each image is represented with coloured jitter. The y-axis value represents the amount of 
uncertainty. Our model is on average most uncertain when it comes to the Stroma and Complex classes. It also 
makes mistakes in classification mostly when it is uncertain. (A) Distribution of uncertainty for the Entropy 
H measure. (B) Distribution of uncertainty for the BALD measure. (C) Results of active learning experiments. 
Starting from a small training dataset with 320 images in total (step number 0, 40 images per class), the model 
was re-trained on the dataset increased in every iteration by 160 additional images. Three distinct acquisition 
functions were tested: Random, Entropy H and BALD. At each step, the average classification accuracy was 
measured (y-axis). (D,E) Microscopic images of tissues composing colorectal cancer. Samples were categorised 
by uncertainty measured with Entropy H. Columns correspond to different tissue classes. (D) Images with low 
uncertainty H. (E) Images with high uncertainty H.
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sample is classified to a certain class. The model presented in this work, thanks to its implementation of dropout 
and variational inference, has a few ways to measure the uncertainty of each prediction. These uncertainty meas-
ures allow the model predictions to be reliable. Consider an example image, which is classified by the model as 
Tumour with high probability 0.95, but the measured uncertainty is also high. This can mean that the prediction 
cannot be taken for granted and needs to be double-checked by a human. This additional indication of prediction 
uncertainty brings us one step closer to alleviating the problem of the black-box nature of deep learning and 
increases model-based understanding of the data. Here, we evaluated two uncertainty measures, Entropy H and 
BALD (see Uncertainty estimation), checking their distribution in each class and their performance as acquisition 
functions in active learning on the Kather et al.29 dataset.

First, we applied the trained model to 504 test images. For each image, we recorded the classification and the 
measured uncertainty. The results for Entropy H are presented in Fig. 3A. On average, the highest uncertainty 
values were reported for images from the Stroma and Complex classes. The biggest variance in uncertainty was 
measured for the Debris class. These three classes were also misclassified as each other, which indicates that 
they are similar in appearance and the model has a hard time differentiating them. This is in agreement with the 
precision-recall curves in Fig. 2D and with the analysis described below in Understanding uncertainty. In addi-
tion, it can be observed that misclassification occurred almost exclusively when the uncertainty was high. Thus, a 
high uncertainty is indeed a good indicator that the prediction may be faulty. The results for BALD are shown in 
Fig. 3B. On average, the most uncertain classes according to that measure are Stroma and Complex, in agreement 
with Entropy H. Interestingly, BALD measured much less variance in the Debris class, which makes Lympho the 
most variable class in this case. Moreover, the Empty class is relatively more certain according to BALD than in 
the Entropy H experiment. These differences may be a result of epistemic and aleatoric uncertainties present in 
the data, which are measured differently by BALD and Entropy H (see Active learning). Nevertheless, the BALD 
measure still captures the fact that misclassifications take place mainly for highly uncertain predictions.

Active learning. Active learning is a set of methods that try to minimise the amount of labelled data needed 
to fully train a classifier. They start from a small dataset and, as the training goes on, add new training samples 
according to some kind of acquisition function. We tested the effectiveness of using uncertainty measures as this 
function, effectively choosing most uncertain images as the ones the model should learn first. The idea here is that 
if the model learns first what it has the most trouble with, then it should achieve high accuracy at an earlier stage 
in the active learning process.

Here, we designed an active learning process with either the Entropy H or BALD measures acting as acqui-
sition functions (see Active learning). We evaluated its efficiency on the Kather et al.29 dataset by analysing the 
resulting model accuracy as a function of the number of training samples (Fig. 3C). The Random acquisition 
function serves as a baseline. In initial active learning iterations the Entropy H measure performs very similarly 
to random selection, but from step 7 (which contained 1440 images) Entropy H achieves consistently higher accu-
racy (with on average 2% improvement in classification accuracy) until the very end of the process. The accuracy 
of the model trained on samples selected using the BALD measure is worse than the random one from the start of 
active learning until step 12. From step 13 (which contained 2400 images) it gets slightly better, but never eclipses 
the accuracy received using the Entropy H measure. This proves that the Entropy H uncertainty measure can be 
successfully used as an acquisition function in active learning scenarios utilising our ARA-CNN model. It can 
speed up the learning process by roughly 45%. The model reaches the classification accuracy equivalent to the full 
dataset already at step 15, in which the training set contained 2720 images. Thus, the fraction of images required 
for obtaining the full accuracy is only 2720 out of 5000 (54.4%), and the fraction of steps required is only 15 out of 
27 (55.56%), both amounting to around 45% reduction. It means that this subset of images, chosen based on the 
Entropy H uncertainty measure, is large enough to accurately train the model.

Identification of mislabelled images. We propose that images that are misclassified by ARA-CNN with high cer-
tainty (i.e., low H) are good candidates for identifying mislabelled training samples (see Identification of misla-
belled training samples). To demonstrate the performance of our identification approach, we artificially introduced 
increasing percentage of mislabelled images into the training set and measured sensitivity and specificity, while 
recording the overall model performance.

To this end, we randomly divided the dataset into a training set and a test set, with the the same proportions 
as during the model training (see Model training). Next, we took the training set, randomly sampled a given per-
centage pm of images and changed their assigned class at random. Finally, we trained the model on a training 
dataset with these mislabelled images reintroduced. We defined the set of positives P as candidate mislabelled 
images identified by our approach. The set of true positives TP is defined as all of the artificially mislabelled 
images. Sensitivity was evaluated as | | | |TP P/  and specificity as TN N/| | | |, with TN and N being the complement sets 
for TP and P, respectively.

Sensitivity of mislabelled image identification is overall very high, and is only slightly affected by the growing 
percentage of mislabelled samples (Fig. 4A). For ∈ . .p {0 1, 0 5, 1}

m
, sensitivity is at 100%, meaning that all mis-

classified images with uncertainty below Ht are in fact mislabelled. For higher pm values, sensitivity is slightly 
lower, but it never dips below 88.82% (for p 40

m
= ). Specificity decreases with the increase of the percentage of 

mislabelled training samples, but remains at very high level even for substantial percentage pm, dropping below 
80% only at pm around 20%. This demonstrates that uncertainty H can be used to find mislabelled training sam-
ples even when the noise in the training data is extremely high.

We also measured what effect an increasing pm has on the classification accuracy of ARA-CNN on the test set 
(Fig. 4B). Remarkably, up to and including 5% of artificially mislabelled training samples, the performance is not 
affected. From 10% up to and including 70%, it decreases, but only slightly. From 80%, the amount of mislabelled 
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images is too large and the model cannot be trained properly, which results in a substantial drop in accuracy. Such 
a good classification performance even in the case when the majority of the training samples are mislabelled at 
random indicates that ARA-CNN is highly robust to noise in the training data.

Understanding the uncertainty of image classification. To investigate what pathological features of images are 
determinant for assigning specific uncertainty values measured by Entropy H, we selected test images with very 
low (H 0 2≤ . ) and very high (H 0 8≥ . ) uncertainty and inspected them by eye. We focused on Entopy H due to 
its superior performance in active learning. There were no examples of the Empty class with high uncertainty, 
indicating this class is easy for the algorithm to recognise and classify properly. For each of the remaining seven 
tissue classes, images of lowest uncertainty display characteristic pathological features (Fig. 3D). Images of the 
Tumour class with low H display cells that have distinct changes in their nuclei: enlargement, hiperchromasia 
(dark violet colour), improper chromatin distribution (i.e. spots with higher and lower density) accompanied by 
multiplication of nucleoli, increased nuclear to cytoplasmic ratio, nuclear fusions and cell overlapping. The images 
of the Stroma class with lowest uncertainty display typical uniformly stained pink, eosinophilic fibres with elon-
gated nuclei, and low nuclear to cytoplasmic ratio. For the images of the Complex class with low assigned H, the 
stroma is infiltrated by lymphatic or neoplastic cells with addition of erythrocytes. The highly certain images of 
the Lympho class show features typical for areas of lymphocytic dense infiltration - lymphocytes are intensively 
stained, monomorphic cells with round nucleus and very scarce thin, basophilic cytoplasm rim. Nucleoli are not 
visible. Images of the Debris class with low uncertainty H values are composed of various tissue samples. First, 
they contain a mucous, amorphic substance creating multiple, fine vesicles, white in the centre with violet con-
tours. On top of that, features characteristic of the Debris class are mostly extravasated erythrocytes – red, round 
cell conglomerates presenting very dense collocation with blurred cell contours. Images of the Mucosa class with 
very low assigned uncertainty show typical features of mucosal glands in large intestine. They are composed of 
visible characteristic goblet cells that are cylindrical in shape and contain big, round areas filled with mucous - 
white with violet margin. Small, regular, dark nuclei are visible at the cell periphery. Goblet cells lay in linear or 
rosette–like formations. Finally, images of the Adipose class with low uncertainty show pathological features 
typical of the adipose tissue. They are composed of big, white polygonal areas with violet, wide contour, adhering 
to each other tightly. No nuclei are visible.

In contrast to low uncertainty images, the images with the highest uncertainty show features that are patholog-
ically difficult to categorise (Fig. 3E). For very uncertain images of the Tumour class, the sparse cells visible within 
the stroma show fewer features of malignancy – most of them are small, regular in shape, with no visible nucleoli. 
No nuclear fusions or cell overlapping are observed. The pictures could be mistaken with complex stroma. For the 
images of the Stroma class that were assigned very high uncertainty H, the tissue has irregular structure without 
typical linear fibres and elongated nuclei. Empty spaces in both example images and very low colour intensity in 
the top one may be artefacts, although whole samples could be categorised as complex stroma or perchance debris 
because of listed alternations. Out of the two complex stroma example images with very high uncertainty, in the 
top image (Fig. 3E third column) there are no visible fibres. At the same time, the image contains many pale vesic-
ular areas slightly similar to mucous. The bottom image could be interpreted as a normal stroma sample, because 
of its colour, fibrotic structure and shape of the nuclei. In the top image representative of very high uncertainty 
images of the Lympho class, cell arrangement is not very dense and there is a lot of stroma visible between nuclei – 
this could be categorised as complex stroma instead. The bottom picture shows many features of malignancy that 
should suggest diagnosis of tumour cells. From the two uncertain example images from the Debris class, the top 
consists of tissue residues with no particular structures visible. The bottom image shows structures very similar to 
mucosal glands – areas of mucous are bigger and well margined in comparison to amorphic mucous specific for 
this category. From the two high uncertainty images of the Mucosa class, the top image has heterogeneous com-
position. In the right part of the image, goblet cells with their nuclei can be seen. The left part is full of amorphic 
substance and could be categorised as debris. In the bottom example, only the lower left corner looks like mucosal 
glands forming rosette. The rest of the image contains stroma with lymphatic infiltration, thus pathologically 

Figure 4. Identification of mislabelled images as a function of their percentage in the training set. (A) 
Sensitivity and specificity for the proposed mislabelled sample identification strategy. (B) Classification 
accuracy of ARA-CNN decreases only for very high fraction of mislabelled training images.
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could be categorised as complex stroma. In the top uncertain example of the Adipose class, although white, 
empty spaces are clearly visible and cell walls have more irregular margin than normally. In the bottom example, 
the characteristic polygonal shapes are not visible. The images do not suit any other category more than adipose 
tissue, however they do not share its typical features.

Discussion
In this article, we stipulated the necessity of an accurate, reliable and active (ARA) machine learning framework 
for histopathological image classifiction. We implemented this framework with a new Bayesian deep learning 
CNN model, called ARA-CNN. ARA-CNN was applied to the task of colorectal tissue classification and incorpo-
rated it into an uncertainty-based active pathology workflow. The classification accuracy achieved by our model 
exceeds the results reported by authors of the training dataset Kather et al.29 used in this work. The proposed 
CNN architecture shows outstanding performance in both binary and multiclass classification scenarios, reaching 
almost perfect accuracy (error rate of 0.89%) in the former case and best in class (error rate of 7.56%) in the latter. 
It also surpasses the classification performance of other methods that were trained with the same dataset by up 
to 18.78%.

To achieve reliability, the model measures the uncertainty of each prediction. As demonstrated by our active 
learning results (Fig. 3), it can be used to largely reduce the labour that trained pathologists need to put into image 
labelling and increase the efficiency of model training. In an active learning workflow involving interaction with 
a pathologist responsible for annotating whole slide images, the pathologist should be informed which classes 
are the most uncertain and prioritise them in subsequent annotation iterations (Fig. 1A). Our analysis involved 
a comparison of two different uncertainty measures, Entropy H, and BALD. The two measures agreed on which 
classes are most uncertain on average, pointing to classes which were most often misclassified by the model. The 
Entropy H, however, outperformed BALD as an acquisition function in the active learning workflow. Compared 
to random selection, H was able to speed-up the training process by a significant margin, while BALD performed 
only slightly better. Using H, the classification accuracy equal to that of the model trained with the full dataset was 
reached 45% faster. On top of that, we proposed a highly sensitive and specific approach for identification of mis-
labelled images in the training data as those which were misclassified by ARA-CNN with low uncertainty H. We 
showed that ARA-CNN is highly robust to such mislabelled training samples. To investigate how the pathological 
characteristics of images relate to their uncertainty measure H, we analysed pathological features of examples of 
highly certain and highly uncertain images. We observed that highly certain images are very good representatives 
of their class, while the highly uncertain ones are inconclusive and could have been annotated incorrectly when 
the dataset was constructed. This shows that measuring uncertainty is a good indicator of how well the model is 
trained and whether its predictions should be trusted without verification.

The excellent performance of ARA-CNN indicates that it is a step forward in establishing accurate and reli-
able machine learning models for histopathology. Based on such a model, further exciting avenues of research 
can be followed. As future work, we plan to apply our model to other histopathological tissue datasets. Due to its 
deep learning nature, our architecture should easily handle tissue types other than colorectal (potentially with 
the help of transfer learning). Furthermore, we plan more involved spatial analysis of segmented whole-slide 
images, especially in conjunction with clinical data. Our segmentation could facilitate application of methods that 
quantify spatial heterogeneity55 in histological samples of colorectal cancer, and improve our understanding of 
how tumour microenvironment influences the development of this disease. To this end, we plan to work on more 
precise segmentation algorithms, which will allow better understanding of spatial relations in analysed tissues.

Data Availability
The model definition is available as open-source Python code on GitHub: https://github.com/animgoeth/ARA-CNN.

References
 1. Fox, H. Is H&E morphology coming to an end? J. Clin. Pathol. 53, 38–40 (2000).
 2. Gurcan, M. N. et al. Histopathological image analysis: a review. IEEE Rev Biomed Eng 2, 147–171 (2009).
 3. Komura, D. & Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Comput Struct Biotechnol J 16, 34–42 

(2018).
 4. Madabhushi, A. & Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med Image Anal 

33, 170–175 (2016).
 5. Djuric, U., Zadeh, G., Aldape, K. & Diamandis, P. Precision histology: how deep learning is poised to revitalize histomorphology for 

personalized cancer care. NPJ Precis Oncol 1, 22 (2017).
 6. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural network. NIPS’12 Proceedings of 

the 25th International Conference on Neural Information Processing Systems 1, 1097–1105 (2012).
 7. Russakovsky, O. et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision (2015).
 8. Ciresan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Deep neural networks segment neuronal membranes in electron 

microscopy images. NIPS 2012 (2012).
 9. Ciresan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Mitosis detection in breast cancer histology images with deep 

neural networks. MICCAI LNCS 16(Pt 2), 411–8 (2013).
 10. Liao, S., Gao, Y., Oto, A. & Shen, D. Representation learning: A unified deep learning framework for automatic prostate mr 

segmentation. MICCAI LNCS 16(Pt 2), 254–61 (2013).
 11. Cruz-Roa, A., Arevalo, J., Madabhushi, A. & Gonzalez, F. A deep learning architecture for image representation, visual 

interpretability and automated basal-cell carcinoma cancer detection. MICCAI LNCS 16(Pt 2), 403–10 (2013).
 12. Li, R. et al. Deep learning based imaging data completion for improved brain disease diagnosis. MICCAI LNCS 17(Pt 3), 305–12 

(2014).
 13. Xie, Y., Xing, F., Kong, X., Su, H. & Yang, L. Beyond classification: Structured regression for robust cell detection using convolutional 

neural network. MICCAI LNCS (2015).
 14. Xu, J., Luo, X., Wang, G., Gilmore, H. & Madabhushi, A. A deep convolutional neural network for segmenting and classifying 

epithelial and stromal regions in histopathological images. Neurocomputing 191, 214–223 (2016).

https://doi.org/10.1038/s41598-019-50587-1
https://github.com/animgoeth/ARA-CNN


1 1SCIENTIFIC REPORTS |         (2019) 9:14347  | https://doi.org/10.1038/s41598-019-50587-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

 15. Xu, J., Zhou, C., Lang, B. & Liu, Q. Deep learning for histopathological image analysis: Towards computerized diagnosis on cancers. 
Advances in Computer Vision and Pattern Recognition (2017).

 16. Sharma, H., Zerbe, N., Klempert, I., Hellwich, O. & Hufnagl, P. Deep convolutional neural networks for automatic classification of 
gastric carcinoma using whole slide images in digital histopathology. Computerized Medical Imaging and Graphics 61, 2–13 (2017).

 17. Qu, J. et al. Gastric pathology image classification using stepwise fine-tuning for deep neural networks. Journal of Healthcare 
Engineering (2018).

 18. Xu, Y. et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation 
features. BMC Bioinformatics 18, 281 (2017).

 19. Xing, F., Xie, Y. & Yang, L. An automatic learning-based framework for robust nucleus segmentation. IEEE Transactions on Medical 
Imaging 35, 550–566 (2016).

 20. Sirinukunwattana, K. et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology 
images. IEEE Transactions on Medical Imaging 35, 1196–1206 (2016).

 21. Wang, S. et al. Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict 
survival outcome. Sci Rep 8, 10393 (2018).

 22. Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep 
learning. Nat. Med. 24, 1559–1567 (2018).

 23. Smith, L. & Gal, Y. Understanding measures of uncertainty for adversarial example detection. CoRR abs/1803.08533 (2018).
 24. Gal, Y. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. Proceedings of the 33rd International 

Conference on Machine Learning (2016).
 25. Leibig, C., Allken, V., Ayhan, M. S., Berens, P. & Wahl, S. Leveraging uncertainty information from deep neural networks for disease 

detection. Sci Rep 7, 17816 (2017).
 26. Spanhol, F. A., Oliveira, L. S., Petitjean, C. & Heutte, L. A dataset for breast cancer histopathological image classification. IEEE 

Transactions on Biomedical Engineering 63, 1455–1462, https://doi.org/10.1109/TBME.2015.2496264 (2016).
 27. Han, Z. et al. Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model. Sci Rep 7, 

4172 (2017).
 28. Bayramoglu, N., Kannala, J. & Heikkilä, J. Deep learning for magnification independent breast cancer histopathology image 

classification. In 2016 23rd International Conference on Pattern Recognition (ICPR), 2440–2445, https://doi.org/10.1109/
ICPR.2016.7900002 (2016).

 29. Kather, J. N. et al. Multi-class texture analysis in colorectal cancer histology. Scientific Reports (2016).
 30. Ribeiro, M. G. et al. Classification of colorectal cancer based on the association of multidimensional and multiresolution features. 

Expert Systems With Applications (2019).
 31. Wang, C., Shi, J., Zhang, Q. & Ying, S. Histopathological image classification with bilinear convolutional neural networks. 2017 39th 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 4050–4053 (2017).
 32. Pham, T. D. Scaling of texture in training autoencoders for classification of histological images of colorectal cancer. International 

Symposium on Neural Networks (2017).
 33. Sarkar, R. & Acton, S. T. Sdl: Saliency-based dictionary learning framework for image similarity. IEEE Transactions on Image 

Processing 27, 749–763 (2018).
 34. Ciompi, F. et al. The importance of stain normalization in colorectal tissue classification with convolutional networks. CoRR 

abs/1702.05931 (2017).
 35. Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics). (Springer-Verlag New York, Inc., 

Secaucus, NJ, USA, 2006).
 36. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks from 

overfitting. Journal of Machine Learning Research 15, 1929–1958 (2014).
 37. Nalisnik, M. et al. Interactive phenotyping of large-scale histology imaging data with HistomicsML. Scientific Reports (2017).
 38. Gal, Y., Islam, R. & Ghahramani, Z. Deep bayesian active learning with image data. In ICML (2017).
 39. Doyle, S., Monaco, J., Feldman, M., Tomaszewski, J. & Madabhushi, A. An active learning based classification strategy for the 

minority class problem: application to histopathology annotation. BMC Bioinformatics (2011).
 40. Padmanabhan, R. K. et al. An active learning approach for rapid characterization of endothelial cells in human tumors. In PLoS One 

(2014).
 41. Zhu, Y., Zhang, S., Liu, W. & Metaxas, D. N. Scalable histopathological image analysis via active learning. MICCAI LNCS 17(Pt 3), 

369–76 (2014).
 42. Xu, Y., Zhu, J.-Y., Chang, E. I.-C., Lai, M. & Tu, Z. Weakly supervised histopathology cancer image segmentation and classification. 

Medical image analysis 18(3), 591–604 (2014).
 43. Shao, W., Sun, L. & Zhang, D. Deep active learning for nucleus classification in pathology images. 2018 IEEE 15th International 

Symposium on Biomedical Imaging (ISBI 2018) 199–202 (2018).
 44. Du, B., Qi, Q., Zheng, H., Huang, Y. & Ding, X. Breast cancer histopathological image classification via deep active learning and 

confidence boosting. Artificial Neural Networks and Machine Learning - ICANN 2018 (2018).
 45. Smailagic, A. et al. Medal: Deep active learning sampling method for medical image analysis. CoRR abs/1809.09287 (2018).
 46. Hou, L. et al. Patch-based convolutional neural network for whole slide tissue image classification. 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR) 2424–2433 (2016).
 47. Houlsby, N., Huszár, F., Ghahramani, Z. & Lengyel, M. Bayesian active learning for classification and preference learning. 

arXiv:1112.5745 (2011).
 48. He, K., Xiangyu Zhang, S. R. & Sun, J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR) 770–778 (2016).
 49. Redmon, J. & Farhadi, A. Yolo9000: Better, faster, stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR) 6517–6525 (2017).
 50. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML’15 

Proceedings of the 32nd International Conference on International Conference on Machine Learning Volume 37 (2015).
 51. Gal, Y. & Ghahramani, Z. Bayesian convolutional neural networks with Bernoulli approximate variational inference. CoRR 

abs/1506.02158 (2016).
 52. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv:1412.6980v9 (2014).
 53. Kiureghian, A. D. & Ditlevsen, O. Aleatory or epistemic? Does it matter? Structural Safety (2009).
 54. Brodley, C. E. & Friedl, M. A. Identifying mislabeled training data. Journal Of Artificial Intelligence Research 11, 131–167 (1999).
 55. Yuan, Y. Spatial Heterogeneity in the Tumor Microenvironment. Cold Spring Harb Perspect Med 6 (2016).

Acknowledgements
We thank Łukasz Koperski for guidelines in interpreting the histopatological images.

https://doi.org/10.1038/s41598-019-50587-1
https://doi.org/10.1109/TBME.2015.2496264
https://doi.org/10.1109/ICPR.2016.7900002
https://doi.org/10.1109/ICPR.2016.7900002


1 2SCIENTIFIC REPORTS |         (2019) 9:14347  | https://doi.org/10.1038/s41598-019-50587-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author Contributions
Ł.R. performed all experiments and data analysis and contributed to the model. M.M. developed the model 
architecture. M.M. and Ł.R. developed the implementation of the approach and prepared the visualisations. J.Z. 
performed the inspection of images with low and high uncertainty. E.S. supervised the research. M.M. and E.S. 
conceptualised the project. Ł.R. and E.S. wrote the manuscript. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-50587-1.

Competing Interests: The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-50587-1
https://doi.org/10.1038/s41598-019-50587-1
http://creativecommons.org/licenses/by/4.0/

	ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning

	Methods

	Analysed data. 
	ARA-CNN model. 
	Dropout. 
	Model training. 
	Loss function. 

	Variational dropout for inference and uncertainty estimation. 
	Image segmentation. 
	Active learning. 
	Identification of mislabelled training samples. 

	Results

	Model performance. 
	Uncertainty, active learning and identification of mislabelled images. 
	Active learning. 
	Identification of mislabelled images. 
	Understanding the uncertainty of image classification. 


	Discussion

	Acknowledgements

	Figure 1 Overview of the proposed ARA framework.
	Figure 2 Model performance in 10-fold cross-validation.
	Figure 3 The uncertainty of image classification.
	Figure 4 Identification of mislabelled images as a function of their percentage in the training set.
	Table 1 Comparison of different methods that used the Kather et al.


