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Abstract
Distributed data processing platforms such as MapReduce
and Pregel have substantially simplified the design and de-
ployment of certain classes of distributed graph analytics al-
gorithms. However, these platforms do not represent a good
match for distributed graph mining problems, as for exam-
ple finding frequent subgraphs in a graph. Given an input
graph, these problems require exploring a very large number
of subgraphs and finding patterns that match some “interest-
ingness” criteria desired by the user. These algorithms are
very important for areas such as social networks, semantic
web, and bioinformatics.

In this paper, we present Arabesque, the first distributed
data processing platform for implementing graph mining
algorithms. Arabesque automates the process of exploring
a very large number of subgraphs. It defines a high-level
filter-process computational model that simplifies the devel-
opment of scalable graph mining algorithms: Arabesque ex-
plores subgraphs and passes them to the application, which
must simply compute outputs and decide whether the sub-
graph should be further extended. We use Arabesque’s API
to produce distributed solutions to three fundamental graph
mining problems: frequent subgraph mining, counting mo-
tifs, and finding cliques. Our implementations require a
handful of lines of code, scale to trillions of subgraphs, and
represent in some cases the first available distributed solu-
tions.
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1. Introduction
Graph data is ubiquitous in many fields, from the Web to ad-
vertising and biology, and the analysis of graphs is becom-
ing increasingly important. The development of algorithms
for graph analytics has spawned a large amount of research,
especially in recent years. However, graph analytics has tra-
ditionally been a challenging problem tackled by expert re-
searchers, who can either design new specialized algorithms
for the problem at hand, or pick an appropriate and sound
solution from a very vast literature. When the input graph or
the intermediate state or computation complexity becomes
very large, scalability is an additional challenge.

The development of graph processing systems such as
Pregel [25] has changed this scenario and made it simpler to
design scalable graph analytics algorithms. Pregel offers a
simple “think like a vertex” (TLV) programming paradigm,
where each vertex of the input graph is a processing ele-
ment holding local state and communicating with its neigh-
bors in the graph. TLV is a perfect match for problems that
can be represented through linear algebra, where the graph
is modeled as an adjacency matrix (or some other variant
like the Laplacian matrix) and the current state of each ver-
tex is represented as a vector. We call this class of methods
graph computation problems. A good example is comput-
ing PageRank [6], which is based on iterative sparse ma-
trix and vector multiplication operations. TLV covers several
other algorithms that require a similar computational archi-
tecture, for example, shortest path algorithms, and over the
years many optimizations of this paradigm have been pro-
posed [17, 26, 36, 42].

Despite this progress, there remains an important class
of algorithms that cannot be readily formulated using the
TLV paradigm. These are graph mining algorithms used
to discover relevant patterns that comprise both structure-
based and label-based properties of the graph. Graph mining
is widely used for several applications, for example, dis-
covering 3D motifs in protein structures or chemical com-
pounds, extracting network motifs or significant subgraphs
from protein-protein or gene interaction networks, mining
attributed patterns over semantic data (e.g., in Resource
Description Framework or RDF format), finding structure-
content relationships in social media data, dense subgraph
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Figure 1: Exponential growth of the intermediate state in
graph mining problems (motifs counting, clique finding,
FSM: Frequent subgraph mining) on different datasets.

mining for community and link spam detection in web data,
among others. Graph mining algorithms typically take a
labeled and immutable graph as input, and mine patterns
that have some algorithm-specific property (e.g., frequency
above some threshold) by finding all instances of these pat-
terns in the input graph. Some algorithms also compute ag-
gregated metrics based on these subgraphs.

Designing graph mining algorithms is a challenging and
active area of research. In particular, scaling graph mining
algorithms to even moderately large graphs is hard. The set
of possible patterns and their subgraphs in a graph can be
exponential in the size of the original graph, resulting in an
explosion of the computation and intermediate state. Fig-
ure 1 shows the exponential growth of the number of “in-
teresting” subgraphs of different sizes in some of the graph
mining problems and datasets we will evaluate in this paper.
Even graphs with few thousands of edges can quickly gener-
ate hundreds of millions of interesting subgraphs. The need
for enumerating a large number of subgraphs characterizes
graph mining problems and distinguishes them from graph
computation problems. Despite this state explosion problem,
most graph mining algorithms are centralized because of the
complexity of distributed solutions.

In this paper, we propose automatic subgraph explo-
ration as a generic building block for solving graph mining
problems, and introduce Arabesque, the first embedding ex-
ploration system specifically designed for distributed graph
mining. Conceptually, we move from TLV to “think like an
embedding” (TLE), where by embedding we denote a sub-
graph representing a particular instance of a more general
template subgraph called a pattern (see Figure 2).

Arabesque defines a high-level filter-process computa-
tional model. Given an input graph, the system takes care
of automatically and systematically visiting all the embed-
dings that need to be explored by the user-defined algorithm,
performing this exploration in a distributed manner. The sys-
tem passes all the embeddings it explores to the application,
which consists primarily of two functions: filter, which indi-
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Figure 2: Graph mining concepts: an input graph, an exam-
ple pattern, and the embeddings of the pattern. Colors rep-
resent labels. Numbers denote vertex ids. Patterns and em-
beddings are two types of subgraphs. However, a pattern is
a template, whereas an embedding is an instance. In this ex-
ample, the two embeddings are automorphic.

cates whether an embedding should be processed, and pro-
cess, which examines an embedding and may produce some
output. For example, in the case of finding cliques the filter
function prunes embeddings that are not cliques, since none
of their extensions can be cliques, and the process function
outputs all explored embeddings, which are cliques by con-
struction. Arabesque also supports the pruning of the explo-
ration space based on user-defined metrics aggregated across
multiple embeddings.

The Arabesque API simplifies and thus democratizes the
design of graph mining algorithms, and automates their exe-
cution in a distributed setting. We used Arabesque to imple-
ment and evaluate scalable solutions to three fundamental
and diverse graph mining problems: frequent subgraph min-
ing, counting motifs, and finding cliques. These problems
are defined precisely in Section 2. Some of these algorithms
are the first distributed solutions available in the literature,
which shows the simplicity and generality of Arabesque.

Arabesque’s embedding-centered API facilitates a highly
scalable implementation. The system scales by spread-
ing embeddings uniformly across workers, thus avoiding
hotspots. By making it explicit that embeddings are the fun-
damental unit of exploration, Arabesque is able to use fast
coordination-free techniques, based on the notion of embed-
ding canonicality, to avoid redundant work and minimize
communication costs. It also enables us to store embeddings
efficiently using a new data structure called Overapproxi-
mating Directed Acyclic Graph (ODAG), and to devise a
new two-level optimization for pattern-based aggregation,
which is a common operation in graph mining algorithms.

Arabesque is implemented as a layer on top of Apache
Giraph [3], a Pregel-inspired graph computation system,
thus allowing both graph computation and graph mining
algorithms to run on top of the same infrastructure. The
implementation does not use a TLV approach: it considers
Giraph just as a regular data parallel system implementing
the Bulk Synchronous Processing model.

To summarize, we make the following contributions:
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• We propose embedding exploration, or “think like an em-
bedding”, as an effective basic building block for graph
mining. We introduce the filter-process computational
model (Section 3), design an API that enables embed-
ding exploration to be expressed effectively and suc-
cinctly, and present three example graph mining applica-
tions that can be elegantly expressed using the Arabesque
API (Section 4).

• We introduce techniques to make distributed embedding
exploration scalable: coordination-free work sharing, ef-
ficient storage of embeddings, and an important opti-
mization for pattern-based aggregation (Section 5).

• We demonstrate the scalability of Arabesque on various
graphs. We show that Arabesque scales to hundreds of
cores over a cluster, obtaining orders of magnitude reduc-
tion of running time over the centralized baselines (Sec-
tion 6), and can analyze trillions of embeddings on large
graphs.

The Arabesque system, together with all applications
used for this paper, is publicly available at the project’s web-
site: www.arabesque.io.

2. Graph Mining Problems
In this section, we introduce the graph-theoretic terms we
will use throughout the text and characterize the space of
graph mining problems addressed by Arabesque.
Terminology: Graph mining problems take an input graph
G where vertices and edges are labeled. Vertices and edges
have unique ids, and their labels are arbitrary, domain-
specific attributes that can be null. An embedding is a sub-
graph of G, i.e., a graph containing a subset of the ver-
tices and edges of G. A vertex-induced embedding is de-
fined starting from a set of vertices by including all edges
of G whose endpoints are in the set. An edge-induced em-
bedding is defined starting from a set of edges by includ-
ing all the endpoints of the edges in the set. For exam-
ple, the two embeddings of Figure 2 are induced by the
edges {(1, 2), (2, 3)}. In order to be induced by the vertices
{1, 2, 3} the embeddings should also include the edge (1, 3).
We consider only connected embeddings such that there is a
path connecting each pair of vertices.

A pattern is an arbitrary graph. We say that an embedding
e in G is isomorphic to a pattern p if and only if there exists
a one-to-one mapping between the vertices of e and p, and
between the edges of e and p, such that: (i) each vertex (resp.
edge) in e has one matching vertex (resp. edge) in p with the
same labels, and vice versa; (ii) each matching edge connects
matching vertices. In this case, we say informally that e has
pattern p. Equivalently, we say that there exists a subgraph
isomorphism from p to G, and we call e an instance of
pattern p inG. Two embeddings are automorphic if and only
if they contain the same edges and vertices, i.e., they are
equal and thus also isomorphic (see for example Figure 2).

Characterizing Graph Mining Problems: Arabesque tar-
gets graph mining problems, which involve subgraph enu-
meration. Given an immutable input graph G with labeled
vertices and edges, graph mining problems focus on the enu-
meration of all patterns that satisfy some user-specified “in-
terestingness” criteria. A given pattern p is evaluated by list-
ing its matches or embeddings in the input dataset G, and
then filtering out the uninteresting ones. Graph mining prob-
lems often require subgraph isomorphism checks to deter-
mine the patterns related to sets of embeddings, and also
graph automorphism checks to eliminate duplicate embed-
dings.

We consider graph mining problems where one seeks
connected graph patterns whose embeddings are vertex- or
edge-induced. There are several variants of these problems.
The input dataset may comprise a collection of many graphs,
or a single large graph. The embeddings of a pattern com-
prise the set of (exact) isomorphisms from the pattern p to
the input graph G. However, in inexact matching, one can
seek inexact or approximate isomorphisms (based on notions
of edit-distances, label costs, etc.). There are many variants
in terms of the interestingness criteria, such as frequent sub-
graph mining, dense subgraph mining, or extracting the en-
tire frequency distribution of subgraphs up to some given
number of vertices. Also related to graph mining is the prob-
lem of graph matching, where a query pattern q is fixed, and
one has to retrieve all its matches in the input graphG. Solu-
tions to graph matching typically use indexing approaches,
which pre-compute a set of paths or frequent subgraphs, and
use them to facilitate fast matching and retrieval. As such
graph mining encompasses the matching problem, since we
have to both enumerate the patterns and find their matches.
Further, any solution to the single input graph setting is eas-
ily adapted to the multiple graph dataset case. Therefore, in
this paper we focus on graph mining tasks on a single large
input graph. See [1] for a state-of-the-art review of graph
mining and search.
Use Cases: Throughout this paper we consider three classes
of problems: frequent subgraph mining, counting motifs, and
finding cliques. We chose these problems because they rep-
resent different classes of graph mining problems. The first
is an example of explore-and-prune problems, where only
embeddings corresponding to a frequent pattern need to be
further explored. Counting motifs requires exhaustive graph
exploration up to some maximum size. Finding cliques is an
example of dense subgraph mining, and allows one to prune
the embeddings using local information. We discuss these
problems below in more detail.

Consider the task of frequent subgraph mining (FSM),
i.e., finding those subgraphs (or patterns, in our terminology)
that occur a minimum number of times in the input dataset.
The occurrences are counted using some anti-monotonic
function on the set of its embeddings. The anti-monotonic
property states that the frequency of a supergraph should not
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exceed the frequency of a subgraph, which allows one to stop
extending patterns/embeddings as soon as they are deemed
to be infrequent. There are several anti-monotonic metrics to
measure the frequency of a pattern. While their differences
are not very important for this discussion, they all require
aggregating metrics from all embeddings that correspond to
the same pattern. We use the minimum image-based support
metric [7], which defines the frequency of a pattern as the
minimum number of distinct mappings for any vertex in
the pattern, over all embeddings of the pattern. Formally,
let G be the input graph, p be a pattern, and E its set of
embeddings. The pattern p is frequent if sup(p, E) ≥ θ,
where sup() is the minimum image-based support function,
and θ is a user-specified threshold. The FSM task is to mine
all frequent subgraph patterns from a single large graph G.

A motif p is defined as a connected pattern of vertex-
induced embeddings that exists in an input graph G. Fur-
ther, a set of motifs is required to be non-isomorphic, i.e.,
there should obviously be no duplicate patterns. In motif
mining [30], the input graph is assumed to be unlabeled, and
there is no minimum frequency threshold; rather the goal
is to extract all motifs that occur in G along with their fre-
quency distribution. Since this task is inherently exponential,
the motifs are typically restricted to patterns of order (i.e.,
number of vertices) at most k. For example, for k = 3 we
have two possible motifs: a chain where ends are not con-
nected and a (complete) triangle. Whereas the original def-
inition of motifs targets unlabeled and induced patterns, we
can easily generalize the definition to labeled patterns.

In clique mining the task is to enumerate all complete
subgraphs in the input graph G. A complete subgraph, or
clique, p with k vertices is defined as a connected subgraph
where each vertex has degree k − 1, i.e., each vertex is
connected to all other vertices (we assume there are no
self-loops). The clique problem can also be generalized to
maximal cliques, i.e., those not contained in any other clique,
and frequent cliques, if we impose a minimum frequency
threshold in addition to the completeness constraint.

3. The Filter-Process Model
We now discuss the filter-process model, which formalizes
how Arabesque performs embedding exploration based on
application-specific filter and process functions.

3.1 Computational Model
Arabesque computations proceed through a sequence of ex-
ploration steps. At a conceptual level, the system performs
the operations illustrated in Algorithm 1 in each exploration
step. Each step is associated with an initial set I containing
embeddings of the input graph G. Arabesque automates the
process of exploring the graph and expanding embeddings.
Applications are specified via two user-defined functions: a
filter function φ and a process function π. The application

Algorithm 1: Exploration step in Arabesque.
input : Set I of initial embeddings for this step
output: Set F of extended embeddings for the next step (initially

empty)
output: Set O of new outputs (initially empty)

foreach e ∈ I such that α(e) do
add β(e) to O;
C ← set of all extensions of e obtained by adding one incident
edge / neighboring vertex;
foreach e′ ∈ C do

if φ(e′) and there exists no e′′ ∈ F automorphic to e′ then
add π(e′) to O;
add e′ to F ;

run aggregation functions;

can optionally also define two additional functions that will
be described shortly.

Arabesque starts an exploration by generating the set of
candidate embeddings C, which are obtained by expand-
ing the embeddings in I . The system computes candidates
by adding one incident edge or vertex to e, depending on
whether it runs in edge-based or vertex-based exploration
mode. In edge-based exploration, an embedding is an edge-
induced subgraph; in vertex-based exploration, it is vertex-
induced (see Section 2). In the first exploration step, I con-
tains only a special “undefined” embedding, whose expan-
sion C consists of all edges or vertices of G, depending on
the type of exploration. The application can decide between
edge-based or vertex-based exploration during initialization.

After computing the candidates, the filter function φ ex-
amines each candidate e′ and returns a Boolean value indi-
cating whether e′ needs to be processed. If φ returns true,
the process function π takes e′ as input and outputs a set of
user-defined values. By default, e′ is then added to the set F .
After an exploration step is terminated, I is set to be equal
to F before the start of the next step. The computation ter-
minates when the set F is empty at the end of a step.

Arabesque runs the outer loop of Algorithm 1 in parallel
by partitioning the embeddings in I over multiple servers
each running multiple worker threads. This distribution is
transparent to applications. Each execution step is executed
as a superstep in the Bulk Synchronous Parallel model [38].
Optional aggregation functions: The filter-process model
described so far considers single embeddings in isolation. A
common task in graph mining systems is to aggregate val-
ues across multiple embeddings, for example grouping em-
beddings by pattern. To this end, Arabesque offers specific
functions to execute user-defined aggregation for multiple
embeddings. Aggregation can group embeddings by an arbi-
trary integer value or by pattern, and is executed on candi-
date embeddings at the end of the exploration step in which
they are generated.

The optional aggregation filter function α and aggrega-
tion process function β can filter and process an embedding
e in the exploration step following its generation. At that
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time, aggregated information collected from all the embed-
dings generated in the same exploration step as e becomes
available. The α function can take filtering decisions before
embedding expansion based on aggregate values. For exam-
ple, in the frequent subgraph mining problem we can use
aggregators to count the embeddings associated with a given
pattern, and then filter out embeddings of infrequent patterns
with α. Similarly, the β function can be used to output aggre-
gate information about an embedding, for example its fre-
quency. By default, α returns true and β does not add any
output to O.
Guarantees and requirements: Embedding exploration
processes every embedding that is not filtered out. More
formally, it guarantees the following completeness property:
for each embedding e such that φ(e) = α(e) = true, em-
bedding exploration must add π(e) and β(e) to O.

Completeness assumes some properties of the user-
defined functions that emerge naturally in graph mining
algorithms. The first property is that the application con-
siders two embeddings e and e′ to be equivalent if they are
automorphic (see Section 2). Formally, Arabesque requires
what we call automorphism invariance: if e and e′ are au-
tomorphic, then each user-defined function must return the
same result for e and e′. Arabesque leverages this natural
property of graph mining algorithms to prune automorphic
embeddings and substantially reduce the exploration space.

The second property Arabesque requires is called anti-
monotonicity and is formally defined as follows: if φ(e) =
false then it holds that φ(e′) = false for each embedding
e′ that extends e. The same property holds for the optional
filter function α. This is one of the essential properties for
any effective graph mining method and guarantees that once
a filter function tells the framework to prune an embedding,
all its extensions can be ignored.

3.2 Alternative Paradigms: Think Like a Vertex and
Think Like a Pattern

We can now contrast our embedding-centric or “Think Like
an Embedding” (TLE) model with other approaches to build
graph mining algorithms. We empirically compare with
these approaches in Section 6.

The standard paradigm of systems like Pregel is vertex-
centric or “Think Like a Vertex” (TLV), because computa-
tion and state are at the level of a vertex in the graph. TLV
systems are designed to scale for large input graphs: the in-
formation about the input graph is distributed and vertices
only have information about their local neighborhood. In or-
der to perform embedding exploration, each vertex can keep
a set of local embeddings, initially containing only the ver-
tex itself. Then, to expand a local embedding e, vertices push
it to the “border” vertices of e that know how to expand e by
adding its neighbors. Each expansion results in a new em-
bedding, which is sent again to border vertices and so on.
With this approach, highly connected vertices must take on
a disproportionate fraction of embeddings to expand. The

approach also creates a significant number of duplicate mes-
sages because each new embedding must be sent to all its
border vertices. These limitations significantly affect perfor-
mance. In our experiments, we observed that TLV-based em-
bedding exploration algorithms can be two orders of magni-
tude slower compared to TLE.

The current state-of-the-art centralized methods for solv-
ing graph mining tasks typically adopt a different, pattern-
centric or “Think Like a Pattern” (TLP) approach. The key
difference between TLP and the embedding-centric view of
the filter-process model is that it is not necessary to explicitly
materialize all embeddings: state can be kept at the granular-
ity of patterns (which are much fewer than embeddings) and
embeddings may be re-generated on demand. The process
starts with the set of all possible (labeled) single vertices or
edges as candidate patterns. It then processes embeddings
of each pattern, often by recomputing them on the fly. After
aggregation and pattern filtering, the valid set of patterns are
extended by adding one more vertex or edge. Subgraph or
pattern mining proceeds iteratively via recursive extension,
processing and filtering steps, and continues until no new
patterns are found. Parallelizing the computation via parti-
tioning it by pattern can easily result in load imbalance, as
our experiments show. This is because there are often only
few patterns that are highly popular – indeed, finding these
few patterns is the very goal of graph mining. These popular
patterns result in hotspots among workers and thus in poor
load balancing.

4. Arabesque: API, Programming, and
Implementation

We now describe the Arabesque Java API and show how we
use it to implement our example applications.

4.1 Arabesque API
The API of Arabesque is illustrated in Figure 3. The user
must implement two functions: filter, which corresponds
to φ, and process, which corresponds to π. The pro-
cess function in the API is responsible for adding results
to the output by invoking the output function provided
by Arabesque, which prints the results to the underlying
file system (e.g. HDFS). The optional functions α and β
correspond, respectively, to aggregationFilter and
aggregationProcess. These application-specific func-
tions are invoked by the Arabesque framework as illustrated
in Algorithm 1. All these functions have access to a local
read-only copy of the graph.

For performance and scalability reasons, a MapReduce-
like model is used to compute aggregated values. Appli-
cations can send data to reducers using the map function,
which is part of the Arabesque framework and adds a value
to an aggregation group defined by a certain key. Many ap-
plications use the pattern of an embedding as the aggregation
key. Arabesque detects when the key is a pattern and uses
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Mandatory application-defined functions:

boolean filter (Embedding e)
void process (Embedding e)

Optional application-defined functions:

boolean aggregationFilter (Embedding e)
void aggregationProcess (Embedding e)
Pair<K,V> reduce (K key, List<V> values)
Pair<K,V> reduceOutput (K key, List<V> value)
boolean terminationFilter (Embedding e)

Arabesque functions invoked by applications:

void output (Object value)
void map (K key, V value)
V readAggregate (K key)
void mapOutput (K key, V value)

Figure 3: Basic user-defined functions in Arabesque.

specific optimizations to make this aggregation efficient, as
explained in Section 5.4. The application specifies the ag-
gregation logic through the reduce function. This function
receives all values mapped to a specific key in one execu-
tion step and aggregates them. Any method can read the val-
ues aggregated over the previous execution step using the
readAggregate method.

Output aggregation is a special case where aggregated
values are sent directly to the underlying distributed filesys-
tem at the end of each exploration step and are not made
available for later reads. It can be used through the methods
mapOutput and reduceOutput. Their logic is similar
to the aggregation functions described previously, but aggre-
gation is only executed when the whole computation ends.

The terminationFilter function can halt the com-
putation of an embedding when some pre-defined condition
is reached. Arabesque applies this filter on an embedding e
after executing π(e) and before adding e to F . This is just an
optimization to avoid unnecessary exploration steps. For ex-
ample, if we are interested in embeddings of maximum size
n, the termination filter can halt the computation after pro-
cessing embeddings of size n at step n. Without this filter,
the system would have to proceed to step n+1 and generate
all embeddings of size n+ 1 just to filter all of them out.

4.2 Programming with Arabesque
We used the Arabesque API to implement algorithms that
solve the three problems discussed in Section 2. The pseu-
docode of the implementations is in Figure 4. Each of the
applications consists of very few lines of code, a stark con-
trast compared to the complexity of the specialized state of
the art algorithms solving the same problems [8, 30, 43].

In frequent subgraph mining we use aggregation to cal-
culate the support function described in Section 2. The sup-
port metric is based on the notion of domain, which is de-
fined as the set of distinct mappings between a vertex in p
and the matching vertices in any automorphism of e. The
process function invokes map to send the domains of e

boolean filter(Embedding e) { return true; }
void process(Embedding e){

map (pattern(e), domains(e)); }
Pair<Pattern,Domain> reduce

(Pattern p, List<Domain> domains){
Domain merged_domain = merge(domains);
return Pair (p, merged_domain); }

boolean aggregationFilter(Embedding e){
Domain m_domain = readAggregate(pattern(e));
return (support(m_domain)>=THRESHOLD); }

void aggregationProcess(Embedding e) {
output(e); }

(a) Frequent subgraph mining (edge-based exploration)

boolean filter(Embedding e){
return (numVertices(e) <= MAX_SIZE);}

void process(Embedding e){
mapOutput (pattern(e),1); }

Pair<Pattern,Integer> reduceOutput
(Pattern p, List<Integer> counts){

return Pair (p, sum(counts)); }

(b) Counting motifs (vertex-based exploration)

boolean filter (Embedding e){
return isClique(e); }

void process (Embedding e){ output(e); }

(c) Finding cliques (vertex-based exploration)

Figure 4: Examples of Arabesque applications.

to the reducer responsible for the pattern p of e. For ex-
ample, in Figure 2 the domain of the blue vertex on the
top of the pattern is vertex 1 in the first embedding and 3
in the second. The function reduce merges all domains:
the merged domain of a vertex in p is the union of all its
aggregated mappings. Since expansion is done by adding
one edge in each exploration step, we are sure that all
embeddings for p are visited and processed in the same
exploration step. The aggregationFilter function
reads the merged domains of p using readAggregate
and computes the support, which is the minimum size of
the domain of any vertex in p. It then filters out embed-
dings for patterns that do not have enough support. Finally,
the aggregationProcess function outputs all the em-
beddings having a frequent pattern (those that survive the
aggregation-filter). The implementation of this application
consists of 280 lines of Java code. Of these, 212 are related
to handling domains and computing support, which are basic
tasks required in any algorithm for frequent subgraph min-
ing to characterize whether an embedding is relevant. By
comparison, the centralized baseline we use for evaluation,
GRAMI [14], consists of 5,443 lines of Java code.

For motif frequency computation, we perform an exhaus-
tive exploration of all embeddings until we reach a given
maximum size and count all embeddings having the same
pattern. Since the input graph is not labeled in this case, a
pattern corresponds to a motif. The function mapOutput
sends a value to the output reducer responsible for the pat-
tern of e. The reduceOutput function outputs the sum of
the counts for each motif p. Our implementation consists of
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18 lines of code, very few compared to the 3,145 lines of C
code of our centralized baseline (Gtries [31]).

In finding cliques we do a local pruning: if an embedding
is not a clique, none of its extensions can be a clique. Since
we visit only cliques, the evaluation function outputs the
embeddings it receives as input. The isClique function
checks that the newly added vertex is connected with all pre-
vious vertices in the embedding. This application consists of
19 lines of code, while our centralized baseline (Mace [37])
consists of 4,621 lines of C code.

In all these examples it is easy to verify that the evalua-
tion and filter functions satisfy the anti-monotonic and auto-
morphism invariance properties required by the Arabesque
computational model.

4.3 Arabesque implementation
Arabesque can execute on top of any system supporting the
BSP model. We have implemented Arabesque as a layer
on top of Giraph. The implementation does not follow the
TLV paradigm: we use Giraph vertices simply as workers
that bear no relationship to any specific vertex in the input
graph. Each worker has access to a copy of the whole in-
put graph whose vertices and edges consist of incremental
numeric ids. Communication among workers occurs in an
arbitrary point-to-point fashion and communication edges
are not related to edges in the input graph. Giraph compu-
tations proceed through synchronous supersteps according
to the BSP model: at each superstep, workers first receive all
messages sent in the previous superstep, then process them,
and finally send new messages to be delivered at the next
superstep. The operations of the workers are described in
Section 5. Aggregation functions, if specified, are executed
using standard Giraph aggregators. Optional output workers
are used for applications that aggregate output values. The
input values for output aggregation persist over supersteps.
Once the computation is over, output workers aggregate all
their input values and output them.

5. Graph Exploration Techniques
We now describe in more detail how Arabesque performs
graph exploration. We first discuss the coordination-free ex-
ploration strategy used by workers to avoid redundant work.
We then introduce the techniques we use to store and parti-
tion embeddings efficiently.

5.1 Coordination-Free Exploration Strategy
When running exploration in a distributed setting, multiple
workers can reach two “identical”, i.e., automorphic (see
Section 2), embeddings through different exploration paths.
Consider for example the graph of Figure 2. Two different
workers w1 and w2 may reach the two embeddings in Fig-
ure 2, one starting from edge (1, 2) by adding (2, 3) and the
other starting from edge (3, 2) by adding (2, 1). Since all
user-defined functions are automorphism-invariant (see Sec-

tion 3) we can avoid redundant work by discarding all but
one of the identical, automorphic embeddings.

Arabesque solves this problem using a novel coordination-
free scheme based on the notion of embedding canonicality.
Informally, we need to select exactly one of the redundant
automorphic embeddings and elect it as “canonical”. In our
example, before w1 and w2 execute the filter and process
functions on a new embedding e, Arabesque executes an
embedding canonicality check to verify whether e can be
pruned (see Algorithm 1). This check runs on a single em-
bedding without requiring coordination, as we now discuss.

A sound canonicality check must have the property of
uniqueness: given the set Se of all embeddings automorphic
to an embedding e, there is exactly one canonical embed-
ding ec in Se. We call ec the canonical automorphism of e.
In Arabesque we also need an additional property for canon-
icality checks called extendibility, which we define as fol-
lows. Let e be a candidate embedding obtained by extending
a parent embedding e′ by one vertex or edge. The parent
embedding e′ is canonical because it has not been pruned.
Let ec be the canonical automorphism of e. Extendibility
requires that ec is one of the extensions of e′. This allows
Arabesque to prune the automorphisms of a parent e′ while
still exploring the canonical automorphism of each child e.

Algorithm 2: Arabesque’s incremental embedding
canonicality check (vertex-based exploration)

input : Input graph G
input : Canonical parent embedding 〈v1, . . . , vn〉
input : Extension vertex v
output: true iff 〈v1, . . . , vn, v〉 is canonical

if v1 > v then
return false;

foundNeighbour← false;
for i = 1 . . . n do

if foundNeighbour = false and vi neighbor of v in G then
foundNeighbour← true;

else if foundNeighbour = true and vi > v then
return false;

return true;

Arabesque checks embedding canonicality for each can-
didate before applying the filter function. There can be a
huge number of candidates, so it is essential that the check
is efficient. We developed a linear-time algorithm, which is
based on the following definition of canonical embedding.

Consider the case of vertex-based exploration (the edge-
based case is analogous). An embedding e is canonical if and
only if its vertices were visited in the following order: start
by visiting the vertex with the smallest id, and then recur-
sively add the neighbor in ewith smallest id that has not been
visited yet. For better performance, Arabesque performs this
canonicality check in an incremental fashion, as illustrated in
Algorithm 2. When a worker processes an embedding e ∈ I ,
it can already assume that e is canonical because Arabesque
prunes non-canonical embeddings before passing them on
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to the next exploration step. Arabesque, characterizes an em-
bedding as the list of its vertices sorted by the order in which
they have been visited – the embedding is vertex-induced
so the list uniquely identifies it. When Arabesque checks
the canonicality of a new candidate embedding obtained by
adding a vertex v to a parent canonical embedding e, the al-
gorithm scans e in search for the first neighbor v′ of v, and
then vertifies that there is no vertex in e after v′ with higher
id than v.

The extended version of this paper [35] includes proofs
showing that Algorithm 2 satisfies the uniqueness and ex-
tendibility properties of canonicality checking. We also
show that these two properties, together with anti-monotoni-
city and automorphism invariance, are sufficient to ensure
that Arabesque satisfies the completeness property of em-
bedding exploration (see Section 3).

5.2 Storing Embeddings Compactly
Graph mining algorithms can easily generate trillions of
embeddings as intermediate state. Centralized algorithms
typically do not explicitly store the embeddings they have
explored. Instead, they use application-specific knowledge
to rebuild embeddings on the fly from a much smaller state.

The only application-level logic available to Arabesque
consists of the filter and process functions, which are opaque
to the system. After each exploration step, Arabesque re-
ceives a set of embeddings filtered by the application and it
needs to keep them in order to expand them in the next step.
Storing each embedding separately can be very expensive.
As we have seen also in Algorithm 2, Arabesque represents
embeddings as sequences of numbers, representing vertex or
edge ids depending on whether exploration is vertex-based
or edge-based. Therefore, we need to find techniques to store
sets of sequences of integers efficiently.

Existing compact data structures such as prefix-trees are
too expensive because we would still have to store a new
leaf for each embedding in the best case, since all canonical
embeddings we want to represent are different. In contrast,
Arabesque uses a novel technique called Overapproximat-
ing Directed Acyclic Graphs, or ODAGs. At a high level,
ODAGs are similar to prefix trees where all nodes at the
same depth corresponding to the same vertex in the graph
are collapsed into a single node. This more compact repre-
sentation is an overapproximation (superset) of the set of se-
quences we want to store. When extracting embeddings from
ODAGs we must do extra work to discard spurious paths.
ODAGs thus trade space complexity for computational com-
plexity. This makes ODAGs similar to the representative sets
introduced in [2], which have a higher compression capa-
bility but require more work to filter out spurious embed-
dings. In addition, it is harder to achieve effective load bal-
ancing with representative sets. We now discuss the details
of ODAGs and show how they are used in Arabesque.
The ODAG Data Structure: For simplicity, we focus the
discussion on ODAGs for vertex-based exploration; the

edge-based case is analogous. The ODAG for a set of canon-
ical embeddings consists of as many arrays as the number of
vertices of all the embeddings. The ith array contains the ids
of all vertices in the ith position in any embedding. Vertex
v in the ith array is connected to vertex u in the (i + 1)th

array if there is at least one canonical embedding with v and
u in position i and i + 1 respectively in the original set. An
example of ODAG is shown in Figures 5 and 6.
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Figure 5: Example graph and its set of S of canonical vertex-
induced embeddings of size 3.

1"

2"

3"

3"

4"

2"

3"

4"

5"

Array"1"
Array"2"

Array"3"

Figure 6: ODAG for the example of Figure 5. It also encodes
spurious embeddings such as 〈3, 4, 2〉.

Storing an ODAG is more compact than storing the full
set of embeddings. In general, in a graph with N distinct
vertices we can have up to O(Nk) different embeddings of
size k. With ODAGs we only have to keep edges between k
arrays, where k is the size of the embeddings, so the upper
bound on the size is O(k · N2) = O(N2) if k is a constant
much smaller than N .

It is possible to obtain all embeddings of the original set
by simply following the edges in the ODAG. However, this
will also generate spurious embeddings that are not in the
original set. Consider for example the graph of Figure 5 and
its set of canonical embeddings S. Expanding the ODAG
of Figure 6 generates also 〈3, 4, 2〉 6∈ S. Filtering out such
spurious embeddings requires application-specific logic.
ODAGs in Arabesque: In Arabesque, workers produce new
embeddings in each exploration step and add them to the
set F (see Algorithm 1). Workers use ODAGs to store F at
the end of an exploration step, and extract embeddings from
ODAGs at the beginning of the next step.

Filtering out spurious embeddings, as discussed, requires
application-specific logic. Applications written using the
filter-process model give Arabesque enough information to
perform filtering. In fact, workers can just apply the same
filtering criteria as Algorithm 1: the canonicality check and
the user-defined filter and aggregate filter functions. If any of
these checks is negative for an embedding, we know that the
embedding itself or, thanks to the anti-monotonicity prop-
erty, one of its parents, was filtered out. In addition, since
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our canonicality check is incremental, we do not need to
consider embeddings that extend a non-canonical sequence,
so we can prune multiple embeddings at once.

After every exploration step, Arabesque merges and
broadcasts the new embeddings, and thus the ODAGs, to
every worker. In order to reduce the number of spurious em-
beddings, workers group their embeddings in one ODAG
per pattern. For each pattern, workers merge their local per-
pattern ODAGs into a single per-pattern global ODAG. Each
per-pattern global ODAG is replicated at each worker before
the beginning of the next exploration step.

Merging ODAGs requires merging edges obtained by dif-
ferent workers. For example, consider the first two arrays in
Figure 6. One worker might have explored the edge 〈2, 3〉
and another worker 〈2, 4〉. Edges of ODAG arrays are in-
dexed by their initial vertex, so the two arrays from the two
workers will have two different entries for the element 2
of the first array that need to be merged. Edge merging is
very expensive because of the high number of edges in an
ODAG. Therefore, Arabesque uses a map-reduce step to ex-
ecute edge merging. Each entry of each array produced by a
worker is mapped to the worker associated to its index value.
This worker is responsible for merging all edges for that en-
try produced by all workers into a single entry. The entry
is then broadcast to all other workers, which computes the
union of all entries in parallel.

5.3 Partitioning Embeddings for Load Balancing
After broadcast and before the beginning of the next explo-
ration step, every worker obtains the same set of ODAGs,
one for each pattern mined in the previous execution step.
The next step is to partition the set I of new embeddings
(see Algorithm 1) among workers. This is achieved by parti-
tioning the embeddings in each pattern ODAG separately.

Workers could achieve perfect load balancing by using
a round-robin strategy to share work: worker 1 takes the
first embedding, worker 2 the second and so on. However,
having workers iterate through all embeddings produced in
the previous step, including those that they are not going to
process, is computationally intensive. Therefore, workers do
round robin on large blocks of b embeddings. The question
now is how to identify such blocks efficiently.

Arabesque associates each element v in every array with
an estimate of how many embeddings, canonical or not, can
be generated starting from v. To this end, Arabesque assigns
a cost 1 to every element of the last array, and it assigns to an
element of the ith array the sum of the costs of all elements
in the (i + 1)th array it is connected to. Load can then
be balanced by having each worker take a partition of the
elements in the first array that has approximately the same
estimated cost. While partitioning, it could happen that the
cost of an element v of the first array needs to be split among
multiple workers. In this case, the costs associated to the
elements of the second array connected to v are partitioned.

The process continues recursively on subsequent arrays until
a balanced load is reached.

5.4 Two-Level Pattern Aggregation for Fast Pattern
Canonicality Checking

Arabesque uses a special optimization to speed up per-
pattern aggregation, as discussed in Section 4. The optimiza-
tion was motivated by the high potential cost of this type of
aggregation, as we now discuss.

Consider again the example of Figure 2 and assume
that we want to count the instances of all single-edge pat-
terns. The three single-edge embeddings (1, 2), (2, 3), and
(3, 4) should be aggregated together since they all have a
blue and a yellow endpoint. Therefore, their two patterns
(blue, yellow) and (yellow, blue) should be considered
equivalent because they are isomorphic (see Section 2). The
aggregation reducer for these two patterns is associated to
a single canonical pattern that is isomorphic to both. Map-
ping a pattern to its canonical pattern thus entails solving
the graph isomorphism problem, for which no polynomial-
time solution is known [16]. This makes pattern canonicality
much harder than embedding canonicality, which is related
to the simpler graph automorphism problem.

Identifying a canonical pattern for each single candidate
embedding would be a significant bottleneck for Arabesque,
as we show in our evaluation, because of the sheer number
of candidate embeddings that are generated at each explo-
ration step. Arabesque solves this problem by using a novel
technique called two-level pattern aggregation.

The first level of aggregation occurs based on what we
call quick patterns. A quick pattern of an embedding e is
the one obtained, in linear time, by simply scanning all ver-
tices (or edges, depending on the exploration mode) of e
and extracting the corresponding labels. The quick pattern
is calculated for each candidate embedding. In the previous
example, we would obtain the quick pattern (blue, yellow)
for the embeddings (1, 2) and (3, 4) and the quick pattern
(yellow, blue) for the embedding (2, 3). Each worker lo-
cally executes the reduce function based on quick patterns.
Once this local aggregation completes, a worker computes
the canonical pattern pc for each quick pattern p and sends
the locally aggregated value to the reducer for pc. Arabesque
uses the bliss library to determine canonical patterns [20].

In summary, instead of executing graph isomorphism for
a very large number of candidate embeddings, two-level pat-
tern aggregation computes a quick pattern for every embed-
ding, obtains a number of quick patterns which is orders of
magnitude smaller than the candidate embeddings, and then
calculates graph isomorphism only for quick patterns.

6. Evaluation
6.1 Experimental Setup
Platform: We evaluate Arabesque using a cluster of 20
servers. Each server has 2 Intel Xeon E5-2670 CPUs with a
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total of 32 execution threads at 2.67GHz per core and 256GB
RAM. The servers are connected with a 10 GbE network.
Hadoop 2.6.0 was configured so that each physical server
contains a single worker which can use all 32 execution
threads (unless otherwise stated). Arabesque runs on Giraph
development trunk from January 2015 with added function-
ality for obtaining cluster deployment details and improving
aggregation performance. These modifications amount to 10
extra lines of code.

Vertices Edges Labels Av. Degree
CiteSeer 3,312 4,732 6 2.8
MiCo 100,000 1,080,298 29 21.6
Patents 2,745,761 13,965,409 37 10
Youtube 4,589,876 43,968,798 80 19
SN 5,022,893 198,613,776 0 79
Instagram 179,527,876 887,390,802 0 9.8

Table 1: Graphs used for the evaluation.

Datasets: We use six datasets (see Table 1). CiteSeer [14]
has publications as vertices, with their Computer Science
area as label, and citations as edges. MiCo [14] has authors
as vertices, which are labeled with their field of interest, and
co-authorship of a paper as edges. Patents [18] contains ci-
tation edges between US Patents between January 1963 and
December 1999; the year the patent was granted is consid-
ered to be the label. Youtube [10] lists crawled video ids and
related videos for each video posted from February 2007 to
July 2008. The label is a combination of the video’s rating
and length. SN, is a snapshot of a real world Social Network,
which is not publicly available. Instagram is a snapshot of
the popular photo and video sharing social network collected
by [28]. We consider all the graphs to be undirected. Note
that even if some of these graphs are not very large, the ex-
plosion of the intermediate computation and state required
for graph exploration (see Figure 1) makes them very chal-
lenging for centralized algorithms.
Applications and Parameters: We consider the three appli-
cations discussed in Sections 2, which we label FSM, Motifs
and Cliques. By default, all Motifs executions are run with a
maximum embedding size of 4, denoted as MS=4, whereas
Cliques are run with a maximum embedding size of MS=5.
For FSM, we explicitly state the support, denoted S, used
in each experiment as this parameter is very sensitive to the
properties of the input graph.

6.2 Alternative Paradigms: TLV and TLP
We start by motivating the necessity for a new framework
for distributed graph mining. We evaluate the two alternative
computational paradigms that we discussed in Section 3.2.
Arabesque (i.e., TLE) will be evaluated in the next subsec-
tion. We consider the problem of frequent subgraph mining
(FSM) as a use case. Note that there are currently no dis-

tributed solutions to solve FSM on a single large input graph
in the literature.
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Figure 7: Scalability Analysis of Alternative Paradigms:
FSM (S=300) on CiteSeer.

The Case of TLV: Our TLV implementation globally
maintains the set of embeddings that have been visited,
much like Arabesque. The implementation adopts the TLV
approach as described in Section 3.2 and uses the same
coordination-free technique as Arabesque to avoid redun-
dant work. The TLV implementation also uses application-
specific approaches to control the expansion process. Our
TLV implementation of FSM uses this feature to follow the
standard depth-first strategy of gSpan [43].

In Figure 7, we show the scalability of FSM with support
300 using the CiteSeer graph. As seen from the figure, TLV
does not scale beyond 5 servers. A major scalability bottle-
neck is that each embedding needs to be replicated to each
vertex that has the necessary local information to expand the
embedding further. In addition, high-degree vertices need to
expand a disproportionate fraction of embeddings. CiteSeer
is a scale-free graph thus affecting the scalability of TLV.

Overall TLV performance is two orders of magnitude
slower compared to Arabesque. TLV requires more than 300
seconds to run FSM on the CiteSeer graph, while Arabesque
requires only 7 seconds for the same setup. The total mes-
sages exchanged for this tiny graph is 120 million, versus
137 thousand messages required by Arabesque. Due to the
hot-spots inherent to the graph structure, or the label distri-
bution, and the extended duplication of state that the TLV
paradigm requires, we conclude that TLV is not suited for
solving these problems.

The Case of TLP: The TLP implementation is based on
GRAMI [14], which represents the state of the art for cen-
tralized FSM. GRAMI keeps state on a per-pattern basis, so
few relatively straightforward changes to the code-base were
sufficient to derive a TLP implementation where patterns are
partitioned across a set of distributed workers.

GRAMI uses a number of optimizations that are specific
to FSM. In particular, it avoids materializing all embeddings
related to a pattern, a common approach for TLP algorithms.
Whenever a new pattern is generated, its instances are re-
calculated on the fly, stopping as soon as a sufficient number
of embeddings to pass the frequency threshold is found.
GRAMI thus solves a simpler problem than the TLV and
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Arabesque implementations of FSM: it does not output all
frequent embeddings but only their patterns.

The TLP version of GRAMI is significantly faster than
TLV: GRAMI runs in 3 seconds for the same input graph and
support compared to the hundreds of seconds for TLV. How-
ever, TLP suffers from extremely limited scalability, thus
the performance can’t be improved compared to the central-
ized algorithm as seen in Figure 7. This is again because of
hot-spots: it is quite common that only a few frequent pat-
terns exist. Thus, irrespective of the size of the cluster, only a
few workers (equal to the number of these frequent patterns)
will be used. In addition, due to the skewed nature of many
graphs, load is unlikely to be well balanced among these
patterns. Some patterns will typically be much more pop-
ular than others and the corresponding workers will be over-
loaded. Spreading the load by using techniques like work
stealing is not viable since there exists no straightforward
way to split the work associated with a pattern in GRAMI.
The same problem holds for the other example applications
we consider. For instance, in the case of Motifs, for depth
equal to 3, there are only 2 patterns to process. While TLP
can provide the best performance for a single thread (cen-
tralized) scenario, its lack of scalability limits the usefulness
in distributed frameworks.

6.3 Arabesque: The TLE Paradigm
We now focus on evaluating the performance of Arabesque
and its optimizations. While Arabesque is generic enough to
describe easily most graph mining algorithms, the internals
hide a powerful optimized engine with a number of innova-
tions that allows the system to efficiently process the trillions
of embeddings that graph exploration generates.
Single Thread Execution Performance: Arabesque is built
from scratch as a generic distributed graph mining system.
Since it has been observed that a centralized implementa-
tion can outperform distributed frameworks that utilize thou-
sands of threads [27], we next show that the performance
of Arabesque running on a single thread is comparable to
the best available centralized implementations. For Motifs
we use G-Tries [31] as the centralized implementation. For
Cliques we use Mace [37]. For FSM we use GRAMI [14]
to discover the frequent patterns and then VFLib [11] to dis-
cover the embeddings. The centralized implementations are
highly optimized C/C++ implementations with the exception
of GRAMI which uses Java.

For these experiments, we run Arabesque on a single
worker with a single thread. We report the total time exclud-
ing the start-up and shutdown overhead to run a Giraph job
in Hadoop (on average 10 seconds).

Table 2 shows a comparison between baseline single-
threaded implementations and Arabesque. Even when run-
ning on a single thread, Arabesque has comparable perfor-
mance or is even faster than most centralized implementa-
tions. The only exception is GRAMI, which, as discussed,
uses extra application-specific TLP optimizations and solves

Centralized Arabesque
Application Baseline (1 thread)
Motifs (MS=3) G-Tries: 50s 37s
Cliques (MS=4) Mace: 281s 385s
FSM (S=300) Grami+VFLib: 3s + 1.8s 5s
FSM (S=220,MS=7) Grami+VFLib: 13s + 1,800s 8,548s

Table 2: Execution times of centralized implementations and
Arabesque running on a single thread. Motifs and Cliques
were run with the MiCo graph, FSM with CiteSeer.

a simpler problem by not outputting all frequent embed-
dings. The performance advantage of GRAMI disappears
when we require discovery of the actual embeddings as we
see from the running time of VFLib.

These results are a clear indicator of the efficiency of
Arabesque. Despite being built with a generic framework
running over Hadoop (and Java), Arabesque can achieve
performance comparable, and sometimes even superior, to
application-specific implementations. The main contributing
factor, as we show later in this section, is that the user-
defined functions in Arabesque consume an insignificant
amount of CPU time. The user-defined functions steer the
exploration process through a high-level API. The API ab-
stracts away the details of the actual exploration process,
which are under the control of Arabesque and can thus be
efficiently implemented. This is in stark contrast to the graph
processing systems analyzed in [27], where the user-defined
functions perform the bulk of the computation, leaving little
room for system-level optimizations.

5 10 15 20
1

2

3

4

Number of nodes (32 threads)

Sp
ee

du
p

Ideal Motifs (MiCo) FSM (CiteSeer)
Cliques (MiCo) Motifs (Youtube) FSM (Patents)

Figure 8: Scalability of Arabesque:Speedup relative to the
configuration with 5 servers.

Scalability: The TLE approach of Arabesque makes it easy
to scale the system to a large number of servers. We ran
all three algorithms on datasets that allow computation to
terminate in a feasible time on a single server while leaving
sufficient work to be executed on a large cluster. Table 3
reports execution times, thus excluding setup and shutdown
times, with a growing number of servers and, for reference,
the execution time of the centralized baselines. Figure 8

435



Application - Graph Centralized
Baseline

Arabesque - Num. Servers (32 threads)

1 5 10 15 20
Motifs - MiCo G-Tries: 8,664s 328s 74s 41s 31s 25s
FSM - CiteSeer Grami+VFLib: 13s + 1,800s 431s 105s 65s 52s 41s
Cliques - MiCo Mace: 14,901s 1,185s 272s 140s 91s 70s
Motifs - Youtube G-Tries: Fail 8,995s 2,218s 1,167s 900s 709s
FSM - Patents Grami+VFLib: 1,147s + >19h 548s 186s 132s 102s 88s

Table 3: Scalability of Arabesque - For FSM - CiteSeer, the chosen support was 220 and the search was terminated at embedding
size 7, while for FSM - Patents the chosen support was 24k with no maximum embedding size.

illustrates the same results in terms of speedup, comparing
distributed settings among each other.

The results show that Arabesque scales to a large number
of servers. Different applications show different scalability
factors. In general, applications generating more intermedi-
ate state and more patterns scale less. For example, FSM
scales less because it generates many patterns and transmits
a large number of embeddings that are discarded by the ag-
gregation filter at the beginning of the next step, when aggre-
gated metrics become available. By contrast, in Cliques we
have a single pattern at each step (a clique) and fewer em-
beddings. The behavior of Motifs is in between. This trend is
due to the characteristics of ODAGs. Arabesque constructs
one ODAG per pattern, and thus as the number of patterns
grows, so does the number of ODAGs. Considering the same
number of embeddings, the more ODAGs they are split into,
the smaller the potential for compression. Furthermore, since
ODAGs are broadcast, the communication cost of transmit-
ting embeddings increases as more servers are added, and the
per-server computational cost of de-serializing and filtering
out embeddings remains constant.

Despite these scalability limitations, ODAGs typically
remain advantageous. We have tested the scalability of the
system without ODAGs and the slope of the speedup is
closer to the ideal speedup than in Figure 8. Nevertheless,
this better scalability is greatly outweighed by a significant
increase in the overall execution time, as we will see shortly.
ODAGs: Arabesque introduced ODAGs to compress em-
beddings and make it possible to mine large graphs that
generate trillions of embeddings (see Section 5.2). Figure 9
shows the efficacy of ODAGs by comparing the space re-
quired to store intermediate embeddings with and without
ODAGs at different exploration steps. We report the sizes
of the structures listing all the embeddings at the end of
each superstep. This represents the minimum space required
for the embedding: after de-serialization one can expect this
value to grow much larger. The results clearly show that
ODAGs can reduce memory cost by several orders of mag-
nitude even in relatively small graphs such as CiteSeer.

As with any compression technique, ODAGs trade space
for computational costs, so one might wonder whether us-
ing ODAGs results in longer execution times. Indeed, the
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Figure 9: Compression effect of ODAGs processed at each
depth. Data captured from executions of FSM on CiteSeer
(S=220, MS=7) and Youtube (S=250k).

opposite holds: ODAGs significantly speed up computa-
tion, especially when running many exploration steps. Fig-
ure 10 reports the normalized execution time slowdown
when ODAGs are disabled, compared to the results of Ta-
ble 3. Removing ODAGs can increase execution time up to 4
times in these experiments. A more compact representation
of the embeddings, in fact, results in less network overhead
to transmit embeddings across servers, lower serialization
costs, and less overhead due to garbage collection. We have
observed, however, that in the first exploration steps with
very large and sparse graphs, the overhead of constructing
ODAGs outweights the cost of sending individual embed-
dings, because ODAGs achieve very little compression. In
such cases, we can revert to using embedding lists.
Two-Level Pattern Aggregation: In Section 5.4, we intro-
duced our novel two-level pattern-key aggregation technique
to reduce the number of pattern canonicality checks, i.e.,
graph isomorphism, run by the system. Table 4 compares the
number of checks without the optimization, which is equal to
the number of embeddings, and with the optimization, which
is equal to the number of quick patterns. The results show a
reduction of several orders of magnitude using the optimiza-
tion. For instance, for Motifs with the Youtube graph the op-
timization allows Arabesque to run graph isomorphism only
21 times instead of 218 billion times. The number of quick
patterns is also very close to the number of actual canoni-
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Motifs-MiCo FSM-CiteSeer FSM-CiteSeer Motifs-MiCo FSM-Patents Motifs-Youtube
MS=3 S=300 S=220,MS=7 MS=4 S=24k MS=4

Embeddings 66,081,419 2,890,024 1,680,983,703 10,957,439,024 1,910,611,704 218,909,854,429
Quick patterns 3 116 1,433 21 1,800 21
Canonical patterns 2 28 97 6 1,348 6
Reduction factor 22,027,140x 24,914x 1,173,052x 521,782,810x 1,061,451x 10,424,278,782x

Table 4: Effect of two-level pattern aggregation. The results refer to the deepest exploration level.
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Figure 10: Slowdown factor when storing full embedding
lists compared to the results of Table 3 with 20 servers.
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Figure 11: Slowdown factor when removing two-level pat-
tern aggregation (not applicable to Cliques).

cal patterns, thus minimizing the required number of graph
isomorphism checks.

The actual savings in terms of execution time depend not
only on how often we compute graph isomorphism but also
on the cost of the computation itself, which in turn depends
on the complexity of the pattern. In order to take this into
account, Figure 11 reports the relative execution time slow-
down when two-level aggregation is disabled. We consider
smaller instances than in Table 3 to keep execution times
manageable; the slowdown grows with larger instances. The
results show that without the optimization the system can be
more than one order of magnitude slower, since it spends
most of its CPU cycles on computing graph isomorphism.
Execution time breakdown: The CPU utilization break-
down of Figure 12 shows that storing, sharing, and extract-
ing embeddings occupies a predominant fraction of CPU
utilization. Embedding canonicality and pattern canonicality

Application Time Memory Embeddings
Motifs-SN (MS=4) 6h 18m 110 GB 8.4 ∗ 1012
Cliques-SN (MS=5) 29m 50 GB 3 ∗ 1010
Motifs-Inst (MS=3) 10h 45m 140 GB 5 ∗ 1012

Table 5: Execution details with large graphs and 20 servers.

checking still take a significant fraction of CPU cycles even
after our optimizations, showing that executing these checks
efficiently is critical. Note that Cliques does not use pattern
aggregation. Interestingly, the user-defined functions con-
sume an insignificant amount of CPU, although their logic
is fundamental in determining the exploration process and
thus the overall system load.

6.4 Large Graphs with Arabesque
We complete our evaluation by running Arabesque on large
graphs and checking the limits in terms of required re-
sources. We use the SN and the Instagram graph for this
evaluation. SN is both a large and dense graph with an av-
erage degree of 79, while Instagram has close to one bil-
lion edges but is significantly less dense compared to SN.
For these two graphs we don’t have real world labels, so
we focus on graph mining problems that look for structural
patterns, such as Motifs and Cliques, rather than more inher-
ently label-dependent problems such as FSM.

In Table 5, we report the running time, the maximum
memory used and the number of interesting embeddings that
Arabesque processed. For Motifs-SN, the application ana-
lyzed 8.4 trillion embeddings and ran for 6 hours 18 minutes.
Cliques, as expected, posed a smaller load on the system, and
it ran in half an hour, analyzing 30 billion embeddings. In-
stagram is a large and sparse graph, so ODAGs do not have
high compression efficiency in the first exploration steps. In
fact, we could not run Motifs with ODAGs and MS = 4 be-
cause it exceeds the memory resources of our servers (256
GB). Table 5 thus reports the results for MS = 3 using regular
embedding lists.

Overall, the results show that even with the commodity
servers that we utilize, Arabesque can process graphs that
are dense and have hundreds of millions of edges and tens of
million of vertices.
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Figure 12: CPU utilization breakdown during the superstep preceding the last one. W = Writing embeddings (ODAG creation,
serialization, transfer); R = Reading embeddings (ODAG extraction); G = Generating new candidates; C = Embedding
canonicality checking; P = Pattern aggregation.

7. Related Work
Over the last decades graph mining has emerged as an im-
portant research topic. Here we discuss the state-of-the-art
for the graph mining problems tackled in this paper.
Centralized Algorithms: Among the most efficient meth-
ods for frequent subgraph mining is gSpan [43]. However,
gSpan is designed for mining multiple input graphs and not
a single large graph. When there are multiple graphs, the fre-
quency of a pattern is simply the number of input graphs that
contain it, so finding only one instance of a pattern in a graph
is sufficient to make this determination. If we instead have a
single input graph, we have to find multiple instances in the
same graph, and this makes the problem more complex. One
of the first algorithms to mine patterns from a single graph
was proposed in [22]. It uses a level-wise edge growth exten-
sion strategy, but uses an expensive anti-monotonic defini-
tion of support based on the maximal independent set to find
edge-disjoint embeddings. For the single large input graph
setting GRAMI [14] is a recent approach that is very effec-
tive. The motif problem was introduced in [30]. The work
in [31] proposes an effective approach for storing and find-
ing motif frequencies. Listing all the maximal cliques is a
well studied problem, with the Bron-Kerbosch algorithm [8]
among the most efficient ones in practice. See [15] for a re-
cent method that can handle large sparse real-world graphs.
Distributed and Parallel Approaches: Recently there have
been several papers on both parallel and distributed FSM us-
ing MPI or the MapReduce framework [5, 13, 19, 23, 24, 39]
as well as GPUs [21]. However, all these methods focus on
the case of multiple input graphs, which is simpler as we
have previously discussed. Some existing work targets graph
matching, a subset of graph mining problems: given a query
q, it finds all its embeddings in a distributed manner. The
work in [33] uses a Pregel-based approach for graph match-
ing in a single graph, while [44] proposes a Hadoop-based
solution. For motifs, [29] proposes a multicore parallel ap-
proach, while [34] develops methods for approximate motif

counting on a tightly coupled HPC system using MPI. An
early work on parallel maximal clique enumeration is [12],
which proposed a parallel CREW-PRAM implementation.
A more recent parallel algorithm on the Cray XT4 machine
was proposed in [32]. The work in [9] uses an MPI-based
approach, whereas MapReduce based implementations are
given in [40, 41]. The work in [4] focuses on the related
problem of finding dense subgraphs using MapReduce.

8. Conclusions
In this paper, we showed that distributing graph mining tasks
is far from trivial. Focusing on optimizing centralized al-
gorithms and then considering how to convert them to dis-
tributed solutions using a TLV or TLP approach can result to
scalability issues. Distributing these tasks requires a mental
shift on how to approach these problems.

Arabesque represents a novel approach to graph mining
problems. It is a system designed from scratch as a dis-
tributed graph mining framework. Arabesque focuses simul-
taneously on scalability and on providing a user-friendly
simple programming API that allows non-experts to build
graph mining workloads. This follows the spirit of the
MapReduce and Pregel frameworks that democratized the
processing and analysis of big data. We demonstrated that
Arabesque’s simple programming API can be used to build
highly efficient distributed graph mining solutions that scale
and perform very well.
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