
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 3, June 2019, pp. 2025~2032

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i3.pp2025-2032 2025

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Arabic named entity recognition using deep learning approach

Ismail El Bazi, Nabil Laachfoubi
IR2M Laboratory, FST, Univ Hassan 1st, Settat, Morocco

Article Info ABSTRACT

Article history:

Received Apr 27, 2018

Revised Nov 20, 2018

Accepted Dec 10, 2018

 Most of the Arabic Named Entity Recognition (NER) systems depend

massively on external resources and handmade feature engineering to

achieve state-of-the-art results. To overcome such limitations, we proposed,

in this paper, to use deep learning approach to tackle the Arabic NER task.

We introduced a neural network architecture based on bidirectional Long

Short-Term Memory (LSTM) and Conditional Random Fields (CRF) and

experimented with various commonly used hyperparameters to assess their

effect on the overall performance of our system. Our model gets two sources

of information about words as input: pre-trained word embeddings and

character-based representations and eliminated the need for any task-specific

knowledge or feature engineering. We obtained state-of-the-art result on the

standard ANERcorp corpus with an F1 score of 90.6%.

Keywords:

Arabic

Deep learning

Named entity recognition

NLP

Word embeddings Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Ismail El Bazi,

IR2M Laboratory, FST,

Hassan 1st University,

Casablanca Street, Box 577, Settat, 26000, Morocco.

Email: ismailelbazi@gmail.com

1. INTRODUCTION

The Named Entity Recognition (NER) task aims to identify and categorize proper nouns and

important nouns in a text into a set of predefined categories of interest such as persons, organizations,

locations, etc. [1] NER is a mandatory preprocessing module in several natural language processing (NLP)

applications such as syntactic parsing [2], question answering [3] and entity coreference resolution [4].

Achieving the best performance on NER task requires large amounts of external resources such as gazetteers,

plenty of hand-crafted feature engineering and extensive data pre-processing. However, developing such

task-specific resources and features is costly and needs a lot of time. For morphologically rich languages like

Arabic, this task becomes even more challenging due to its unique characteristics. The highly agglutinative

nature of Arabic allows for the same word to have different morphological forms which generate a lot of data

sparseness. Also, the absence of diacritics in most modern standard Arabic texts creates a lot of ambiguity

since many words can share the same surface form without diacritics but have different named entity (NE)

tags. Furthermore, unlike most European languages, there is no capitalization in Arabic. Therefore, it is not

possible to use capitalization as feature indicator to detect named entities. Finally, there are a very limited

number of linguistic resources such as gazetteers and NE annotated corpora, freely available for researchers

to build decent Arabic NER systems.

Mainly, the researchers interested in NER for the Arabic language follow three approaches: rule-

based [5],[6], machine learning(ML)-based [7], [8] and hybrid approaches [9]-[11]. These three approaches

suffer from the same issues since it needs a lot of language-specific knowledge and an extensive feature

engineering to obtain useful results. This is even more accentuated by the lack of linguistic resources and the

complex morphology of the language.

Recently, the Deep Learning (DL) [12] paradigm has emerged and made impressive achievements

in fields such as speech processing [13] and image recognition [14]. For NLP, the application of deep

mailto:ismailelbazi@gmail.com

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 : 2025 - 2032

2026

learning has proven to be very effective yielding state-of-the-art in various common NLP tasks as sequence

labeling [15], sentiment analysis [16],[17] and machine translation [18] for the English language. Unlike

traditional approaches, DL is an end-to-end model that did not rely on data preprocessing, manual feature

engineering or large amounts task-specific resources and can be adapted to various languages and domains.

This makes it a very attractive solution for complex and low resource language like Arabic.

Motivated by the success of deep learning in several NLP applications, we introduce an Arabic NER

system based on deep neural networks. In the DL literature two neural network architectures are widely used:

convolutional neural networks (CNN) [19] and long-short-term memory (LSTM) [20]. Thus the neural

network architecture that we introduce on this paper embraces both models. We employ CNN to induce

character-level representations of words and we feed it in conjunction with word embeddings to a

bidirectional LSTM network (BiLSTM) that perform the training. Finally, we use a conditional random fields

(CRF) [21] layer to do the decoding of the input sequence.

Since the careful selection of optimal parameters can often make a huge difference in the

performance of neural network architecture, we thoroughly investigated the impact of diverse

hyperparameters on the overall performance of the chosen neural architecture and selected the best ones for

our final model.

Our main contributions of this paper are as follows:

a. Proposing a deep learning approach to address the Arabic NER task.

b. Evaluating and selecting the optimal hyperparameters for the proposed neural network architecture.

c. Confirming the advantage of integrating character-based representations for morphologically rich

languages like Arabic.

d. Achieving state-of-the-art results on the standard ANERCorp corpus without the need of any feature

engineering or domain-specific knowledge.

2. PROPOSED APPROACH

In this section, we outline the deep learning approach that we adopted to tackle the NER task for the

Arabic language. We propose neural network architecture composed of a BiLSTM layer and a CRF layer.

First, we compute the character representation for each word using either CNN or BiLSTM (see Section 2.5

for details), then we concatenate it with the word embeddings before feeding into the BiLSTM layer. This

layer is composed of two LSTM networks. The forward LSTM reads the word sequence from the beginning

when the backward LSTM reads it in opposite order. Finally, the output vectors of both LSTM networks are

concatenated and sent as input to the CRF layer to generate the tags prediction for the input sequence. The

architecture of our neural network is illustrated in detail in Figure 1. We briefly describe the layers of our

model in the following sections.

Figure 1. The main architecture of our neural BiLSTM-CRF network

Int J Elec & Comp Eng ISSN: 2088-8708

Arabic named entity recognition using deep learning approach (Ismail El Bazi)

2027

2.1. LSTM
Long-short term memory (LSTM) networks are variants of recurrent neural networks (RNN)

specially designed to address some well-known issues related to exploding and vanishing gradient by

appending an extra memory-cell. LSTMs are very effective to capture long-distance dependencies. They take

as input a sequence of vectors (x1,x2,…,xn) of length n and return an output sequence of vectors (h1,h2,…,hn)

called hidden states. The LSTM implementation used is represented by the following formulas at time t:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1) + 𝑏𝑖 (1)

𝑐𝑡 = (1 − 𝑖𝑡)ʘ 𝑐𝑡−1 + 𝑖𝑡ʘ tanh (𝑊𝑥𝑐𝑥𝑡 + 𝑊𝑐𝑖ℎ𝑡−1 + 𝑏𝑐) (2)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (3)

ℎ𝑡 = 𝑜𝑡 ʘ tanh (𝑐𝑡) (4)

where σ denotes the element-wise sigmoid function and ʘ the element-wise product. it is the input gate

vector, ct the cell state vector and ot the output gate vector. All W and b are trainable parameters.

2.2. BiLSTM

Despite their capability to capture long-distance dependencies, standard LSTMs are not very

effective on sequence tagging tasks like NER. In fact, an LSTM unit can take information only from past

context, but for sequence tagging is very useful to retrieve both past and future information. To overcome

this constraint we use bidirectional LSTM. The basic idea is that we will use two separate LSTM units. The

first one is a forward LSTM that reads the sequence of words and induces a representation of the past

context. The second one is a backward LSTM that takes the same sequence but in reverse and induces a

representation of the future context. The final representation of a word is the combination of its past and

future context representations.

2.3. CRF layer

To predict the final tag sequence for the input sentence, we feed the output of the BiLSTM layer to a

classifier. A very simple example of classifier layer is softmax. It is suitable for simple tasks where the output

tags are independent. For more complex sequence tagging tasks like NER, where we have strong

dependencies between output tags, the independence assumptions are not valid. Actually, in NER with IOB2

format I-LOC cannot follow B-PER. Hence, instead of decoding each tag independently, we jointly decode

the tag predictions utilizing a conditional random field component which maximizes the tags probabilities of

the whole sentence.

2.4. Word embeddings

Word embeddings are dense low-dimensional real-valued vectors learned over unlabeled data using

unsupervised approaches. Each word in an input sentence can be mapped to a pre-trained word embedding.

For unseen words, word embedding has a very good generalization since it potentially captures useful

semantic and syntactic properties between words. These interesting characteristics, allow it to significantly

boost the performance of various NLP tasks [15], [22]. For our neural network architecture, we use

pretrained word embeddings as input to efficiently initialize the lookup table of our model.

2.5. Character representations

The use of word embeddings is usually sufficient to get the best performance for the English

language. For morphologically rich languages like Arabic, the richness of the morphological forms make the

vocabulary sizes larger and the out-of-vocabulary (OOV) rate relatively higher. Hence the needs of another

representation of word based on its characters to effectively capture the orthographic and morphological

information such as pre- and suffixes of words and encode it into neural representations that can be used by

our model. Mainly, there are two ways to learn character representations. We can use convolutional neural

networks [15] to encode a character-based representation of a word. Figure 2 shows the CNN architecture

used. On the other hand, we can also use bidirectional LSTMs [22] to generate a character-based

representation of a word from its characters. Figure 3 describes the BiLSTM architecture.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 : 2025 - 2032

2028

Figure 2. Character-based representation using CNN

Figure 3. Character-based representation using

BiLSTM

3. EXPERIMENTS

This section provides details about the training of our neural network. Since the achievement of

state-of-the-art results using neural networks requires the selection and optimization of many

hyperparameters, we will also study the impact of the hyperparameters and the parameter initialization on the

overall performance of our models. We will precisely evaluate the impact of the following hyperparameters:

pre-trained word embeddings, character representation, dropout, and optimizers.

3.1. Network training

Our neural model is implemented using Keras API with the Theano library as a backend [23].

The training is done using the back-propagation algorithm with the Adam optimizer. We use gradient

normalization of 1 to deal with “gradient exploding”. For all our experiments, we run the training with the

mini-batch size of 8 for 50 epochs and apply early stopping of 5 based on the performance on the validation

set. The remaining default settings of the hyperparameters are summarized in Table 1.

Table 1. The Default Hyperparameters of the Network
Layer Hyperparameter Value

CNN
window size 3

number of filters 30

LSTM
state size 50

number of layers 2

Dropout
Dropout type Naive

dropout rate 0.5

3.2. Pre-trained word embeddings

We employ pretrained word representations to initialize our lookup table. We learned our own word

embeddings using the Arabic Wikipedia dump of December 2016 with a dimension of 50. To assess if the

choice of the learning algorithm is relevant, we experiment with 5 models namely, SkipGram [24], CBOW

[25], GloVe [26], FastText [27] and Hellinger PCA (H-PCA) [28]. We also assess the impact of the vector

size by varying it for the best performing algorithm between 50 and 500.

3.3. Character representations

In this experiment, we check if the use of character representation is helpful and can really have a

tangible impact on the performance of the network. Additionally, we compare the CNN and BiLSTM

approaches of learning character-based representations and analyze which one to be preferred in regard to

performance.

3.4. Dropout

Dropout is a key method to regularize the neural model and mitigate overfitting. In this experiment,

we evaluate three setups: No dropout, naive dropout, and variational dropout [29]. The dropout rate is

selected from the set {0.25, 0.5, 0.75}.

Int J Elec & Comp Eng ISSN: 2088-8708

Arabic named entity recognition using deep learning approach (Ismail El Bazi)

2029

3.5. Optimizer

The optimizer is an algorithm that helps us to minimize the objective function of the neural network.

The choice of an optimizer can influence both the performance and the training time of our model.

We experiment with 6 popular optimizers. Namely, Stochastic Gradient Descent (SGD), Adagrad, Adadelta,

Adam, Nadam, and RMSProp.

3.6. Data sets

To evaluate the impact of hyperparameters we use the Arabic Wikipedia named entity corpus

(AQMAR) [30]. It is a small annotated corpus of 74K token that we choose it for convenience due to the

limited computation power that we have to run our experiments. The corpus statistics are depicted in Table 2.

Table 2. AQMAR Corpus Statistics
Dataset Sentences Words Entities

Train 1976 52650 3781

Dev 336 10640 1099

Test 376 10564 974

For the comparison with previously state-of-the-art Arabic NER systems, we use the ANERCorp

corpus. It is a publicly available dataset and considered the standard benchmark for the Arabic NER task.

The corpus statistics are summarized in Table 3.

The training of neural networks is a very non-deterministic process as it typically depends o

 the random number generator to initialize the weights of the network [30]. To mitigate the impact of this

observed randomness in the evaluation of our neural network, we execute all the experiments 5 times and use

the average of F1 scores as the comparison metric.

Table 3. ANERCorp Corpus Statistics
Dataset Sentences Words Entities

Train 4756 120011 12833

Dev 585 14976 1726

Test 546 15019 1605

4. RESULTS AND DISCUSSION

Table 4 shows the impact of various pretrained word embeddings on the Arabic NER task. Despite

that we run all the five learning algorithms using the default setting on the same unlabeled data, we can see

that FastText has consistently outperformed the other models with an average F1 score of 70.86%.

The second best model is SkipGram with a 61.91% in F1 score. In fact, FastText is an extension of

SkipGram, but instead of using words directly, it learns word embedding using character n-grams.

This simple trick allows it to take the morphology of words into account and helps to deal with rare and out

of vocabulary words which is always the case for morphology rich language like Arabic. Hence, our

empirical results show that the FastText is more suitable for these types of languages in comparison with

other learning algorithms.

Table 4. Results with Different Choices of Word Embeddings
Model F1

 Run 1 Run 2 Run 3 Run 4 Run 5 Average

FastText 70,82 70,79 68,84 70,89 72,94 70,86

SkipGram 66,04 56,33 59,79 61,53 65,9 61,91

CBOW 55,94 59,44 61,78 51,17 52,38 56,14

Glove 55,74 63,98 64,05 58,25 61,63 60,73
HPCA 36,38 41,18 39,38 38,93 40,98 39,37

In Table 5, we vary the size of the FastText word embeddings to see if it influences the performance

of our system. Surprisingly, increasing the vector size did not further enhance the performance even with

bigger values as 500, rather it decreases it. So vector dimension 50 was optimal in our case. Actually, while

intrinsic tasks like word similarity have usually clear tendency to prefer higher vector dimensionality to

effectively capture semantic relationships between words, the extrinsic tasks like NER usually require more

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 : 2025 - 2032

2030

careful tuning to find the optimal dimensionality and tend to favor lower vector size [31]. Therefore,

the choice of vector size between 50 and 100 should usually be enough for similar tasks as NER to get the

best results.

Table 5. The Performance Comparison when Varying the Size of FastText Word Embeddings

Size
F1

Run 1 Run 2 Run 3 Run 4 Run 5 Average

50 70,82 70,79 68,84 70,89 72,94 70,86

100 69,65 69,25 70,39 70,52 69,32 69,82
200 67,45 68,25 67,95 66,89 68,67 67,84

300 69,66 68,87 69,37 66,58 67,89 68,47

400 68,61 68,57 69,61 68,54 67,97 68,66
500 67,57 69,26 69,75 69,95 69,5 69,2

Concerning character representations, Table 6 shows that using it yields to significantly better

performance on the Arabic NER task. Precisely, the CNN approach was superior to the BiLSTM one in all

the 5 runs of our setup. Thus, we adopt it as the default setting for all upcoming experiments due to its

superiority and its higher computational efficiency. Interestingly, recent studies [31] suggest that there is no

statistical difference of using character representations when applied to the English NER task. Indeed,

for languages like English which did not exhibit morphology richness, the use of character representations is

no mandatory to get the best results, but for morphology rich languages like Arabic it is crucial to use it to

deal with the complexity and the higher number of rare and out-of-vocabulary words observed.

Table 6. Comparison of not using Character Representations and using CNN or BiLSTM to Induce

Character-based Representations

F1

Run 1 Run 2 Run 3 Run 4 Run 5 Average

None 65,9 67,15 65,31 65,68 65,79 65,96

CNN 70,82 70,79 68,84 70,89 72,94 70,86

BiLSTM 68,8 67,92 67,65 68,16 67,66 68,04

In Table 7, we study the impact of dropout. We evaluate three options: naive dropout, variational

dropout, and no dropout and select the dropout rates from the set {0.25, 0.5, 0.75}. We observe the best

performance with a dropout rate of 0.25. The naive dropout produces the best results with an average F1 of

71.08%. The variational dropout yields a competitive result of 70.52%.

Table 7. Results with and without Dropout using different Rates

Dropout
Dropout

rate

F1

Run 1 Run 2 Run 3 Run 4 Run 5 Average

None n/a 70,31 69,83 71,49 71,08 69,58 70,46

Naive 0.25 70,53 71,5 71,55 72,61 69,19 71,08

Naive 0.5 70,82 70,79 68,84 70,88 72,94 70,85
Naive 0.75 69,19 71,62 69,86 66,6 62,21 67,9

Variational 0.25 70,12 71,65 70,15 70,19 70,48 70,52

Variational 0.5 69,07 67,66 65,75 60,17 58,46 64,22
Variational 0.75 55,5 58,27 57,84 56,83 55,17 56,72

Table 8 depicts the results for the different optimizers applied to our neural network. We used the

settings recommended by the authors of each optimizer. Adam shows the best performance, yielding the

highest score for 70.86%. Nadam which is a variant of Adam (Adam with Nesterov momentum) achieves a

very competitive performance of 70.57%. Remarkably, SGD produces the worst score of 33.82%. Actually,

SGD is very sensitive to the choice of the learning rate and since we did not fine tune it manually, it failed to

converge to a minimum. Furthermore, applying early stopping did not help as SGD needs usually more

epochs to find the global minimum of the objective function.

In order to compare our neural network with the best performing Arabic NER systems, we apply our

BiLSTM-CRF model to the standard ANERcorp dataset using the best hyperparameters evaluated and

selected during our previous experiments. Since the performance of both naive and variational dropout was

http://www.thesaurus.com/browse/furthermore

Int J Elec & Comp Eng ISSN: 2088-8708

Arabic named entity recognition using deep learning approach (Ismail El Bazi)

2031

quite close and it is also the case for the Adam and Nadam optimizers, we decided to experiment with

different settings of these hyperparameters in combination with the other best hyperparameters to be sure that

we have the optimal setup for our model. Table 9 summarizes the results. The best performance of our

BiLSTM-CRF model is achieved using Nadam as an optimizer and variational dropout with an average F1

score of 90.60%.

Table 8. Performance Comparison for Various Optimizers

Optimizer
F1

Run 1 Run 2 Run 3 Run 4 Run 5 Average

Adam 70,82 70,79 68,84 70,89 72,94 70,86

Nadam 71,1 71,57 71,28 67,93 70,96 70,57
Rmsprop 69,19 68,08 69,53 68,9 69,42 69,02

Adadelta 55,97 58,91 65,2 58,82 53,51 58,48

Adagrad 57,34 57,77 52,54 53,62 60,74 56,4

SGD 36,35 24,24 37,27 37,47 33,78 33,82

Table 9. Results on the ANERcorp Dataset using the best Hyperparameters

Settings
F1

Run 1 Run 2 Run 3 Run 4 Run 5 Average

Nadam + Variational Dropout 90,56 90,38 90,36 90,78 90,91 90,60

Adam + Variational Dropout 89,51 90,22 89,97 90,07 90,12 89,98
Adam + Naive Dropout 88,05 88,75 88,27 88,11 87,71 88,18

Nadam +Naive Dropout 89,62 88,25 89,16 88,99 89,38 89,08

In Table 10, we present the results of our system in comparison with three previous top performing

systems for Arabic NER. Our system achieves significant improvements over [7] and [9] on the standard

ANERcorp dataset with an F1 score of 90.6%. We obtain state-of-the-art result in comparison with [10]. Our

model is slightly lower with 0.06%.

In fact, the system introduced by Shaalan and Oudah [10] is a hybrid model that combines machine

learning-based component and rule-based component. It relies heavily on the task-specific and language

dependent knowledge provided by the rule-based component and uses a lot of handcrafted engineered

features including morphological features, POS tags, capitalization features and gazetteers to achieve state-

of-the-art performance. On the other hand, Our BiLSTM-CRF model has the advantage of being a true end-

to-end system that does not require any feature engineering, data pre-processing or external resources and

therefore can be easily extended to other domains with minimal tweaking.

Table 10. Comparison with Previous Top Performance Arabic NER Systems on ANERcorp Dataset
Model F1

CRF-based system [7] 75.66

Abdallah et al. [9] 88.33
Shaalan and Oudah [10] 90.66

Our system 90.60

5. CONCLUSION

This paper proposes neural network architecture for Arabic NER based on bidirectional LSTMs. We

evaluated different commonly used hyperparameters for our BiLSTM-CRF architecture to assess their impact

on the overall performance. Our best model obtains state-of-the-art results with an F1 of 90.6% using

FastText pre-trained word embeddings, CNN Character Representations, a variational dropout and Nadam

optimizer.

In comparison with previously state-of-the-art Arabic NER systems, our neural model is truly end-

to-end and does not depend on any data preprocessing, external task-specific resources or handcrafted feature

engineering. It is also very flexible by allowing the effortless addition of another type of named entities as

numeral and temporal NEs, facilities and geo-political NEs, etc.

Our ongoing work is to explore multi-task learning approaches and see if it can further improve our

model. Also, we hope that we can extend this work to other domains like noisy user-generated text which is

more challenging.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 : 2025 - 2032

2032

REFERENCES
[1] I. El bazi and N. Laachfoubi, “Exploring the Effects of Stemming on Arabic Named Entity Recognition,”

International Journal of Artificial Intelligence and Applications, vol/issue: 7(1), pp. 33–43, 2016.

[2] A. Shahrour, et al., “Camelparser: A system for Arabic syntactic analysis and morphological disambiguation,”

Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System

Demonstrations, pp. 228–232, 2016.

[3] L. Abouenour, et al., “IDRAAQ: New Arabic question answering system based on query expansion and passage

retrieval,” 2012.

[4] M. Beseiso and A. Al-Alwani, “A Coreference Resolution Approach using Morphological Features in Arabic,”

International Journal of Advanced Computer Science and Applications, vol/issue: 7(10), pp. 107–113, 2016.

[5] S. Mesfar, “Named Entity Recognition for Arabic Using Syntactic Grammars,” Proceedings of the 12th

International Conference on Applications of Natural Language to Information Systems, pp. 305–316, 2007.

[6] W. Zaghouani, “RENAR: A Rule-Based Arabic Named Entity Recognition System,” vol/issue: 11(1), pp. 2:1–2:13,

2012.

[7] Y. Benajiba and P. Rosso, “Arabic named entity recognition using conditional random fields,” Proc. of Workshop

on HLT & NLP within the Arabic World, LREC, vol. 8, pp. 143–153, 2008.

[8] I. El bazi and N. Laachfoubi, “Arabic Named Entity Recognition Using Topic Modeling,” International Journal of

Intelligent Engineering and Systems, vol/issue: 11(1), pp. 229–238, 2018.

[9] S. Abdallah, et al., “Integrating Rule-Based System with Classification for Arabic Named Entity Recognition,”

Computational Linguistics and Intelligent Text Processing, pp. 311–322, 2012.

[10] K. Shaalan and M. Oudah, “A hybrid approach to Arabic named entity recognition,” Journal of Information

Science, vol/issue: 40(1), pp. 67–87, 2014.

[11] M. Oudah and K. Shaalan, “NERA 2.0: Improving coverage and performance of rule-based named entity

recognition for Arabic,” Natural Language Engineering, vol/issue: 23(3), pp. 441–472, 2017.

[12] C. Mishra and D. Gupta, “Deep Machine Learning and Neural Networks: An Overview,” IAES International

Journal of Artificial Intelligence, vol/issue: 6(2), pp. 66–73, 2017.

[13] A. van den Oord, et al., “Wavenet: A generative model for raw audio,” arXiv preprint arXiv: 1609.03499, 2016.

[14] J. Hu, et al., “Squeeze-and-Excitation Networks,” arXiv preprint arXiv: 1709.01507, 2017.

[15] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional lstm-cnns-crf,” arXiv preprint arXiv:

1603.01354, 2016.

[16] C. dos Santos and M. Gatti, “Deep convolutional neural networks for sentiment analysis of short texts,”

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,

pp. 69–78, 2014.

[17] S. Shah, et al., “Sentimental Analysis of Twitter Data Using Classifier Algorithms,” International Journal of

Electrical and Computer Engineering (IJECE), vol/issue: 6(1), pp. 357–366, 2016.

[18] A. Vaswani, et al., “Attention is All You Need,” 2017.

[19] Y. LeCun, et al., “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Comput., vol/issue:

1(4), pp. 541–551, 1989.

[20] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol/issue: 9(8), pp. 1735–1780,

1997.

[21] J. D. Lafferty, et al., “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence

Data,” Proceedings of the Eighteenth International Conference on Machine Learning, pp. 282–289, 2001.

[22] G. Lample, et al., “Neural architectures for named entity recognition,” arXiv preprint arXiv: 1603.01360, 2016.

[23] https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf

[24] T. Mikolov, et al., “Efficient estimation of word representations in vector space,” arXiv preprint arXiv: 1301.3781,

2013.

[25] T. Mikolov, et al., “Distributed Representations of Words and Phrases and their Compositionality,” Advances in

Neural Information Processing Systems 26, Lake Tahoe, Nevada: Curran Associates, Inc., pp. 3111–3119, 2013.

[26] J. Pennington, et al., “GloVe: Global Vectors for Word Representation,” Empirical Methods in Natural Language

Processing (EMNLP), pp. 1532–1543, 2014.

[27] P. Bojanowski, et al., “Enriching Word Vectors with Subword Information,” arXiv preprint arXiv: 1607.04606,

2016.

[28] R. Lebret and R. Collobert, “Word Embeddings through Hellinger PCA,” Proceedings of the 14th Conference of

the European Chapter of the Association for Computational Linguistics, pp. 482–490, 2014.

[29] Y. Gal and Z. Ghahramani, “A Theoretically Grounded Application of Dropout in Recurrent Neural Networks,”

Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 1027–1035,

2016.

[30] B. Mohit, et al., “Recall-oriented Learning of Named Entities in Arabic Wikipedia,” Proceedings of the 13th

Conference of the European Chapter of the Association for Computational Linguistics, pp. 162–173, 2012.

[31] N. Reimers and I. Gurevych, “Reporting Score Distributions Makes a Difference: Performance Study of LSTM-

networks for Sequence Tagging,” Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 338–348, 2017.

https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf

