
Research Article

Arabic Sentiment Classification Using Convolutional Neural
Network and Differential Evolution Algorithm

Abdelghani Dahou,1 Mohamed Abd Elaziz ,1,2 Junwei Zhou,1 and Shengwu Xiong 1

1School of Computer Science and Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan,
Hubei 430070, China
2Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

Correspondence should be addressed to Shengwu Xiong; xiongsw@whut.edu.cn

Received 20 October 2018; Revised 18 January 2019; Accepted 30 January 2019; Published 26 February 2019

Academic Editor: Rodolfo Zunino

Copyright © 2019 Abdelghani Dahou et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, convolutional neural network (CNN) has attracted considerable attention since its impressive performance in various
applications, such as Arabic sentence classification. However, building a powerful CNN for Arabic sentiment classification can be
highly complicated and time consuming. In this paper, we address this problem by combining differential evolution (DE) algorithm
and CNN, where DE algorithm is used to automatically search the optimal configuration including CNN architecture and network
parameters. In order to achieve the goal, five CNN parameters are searched by the DE algorithm which include convolution filter sizes
that control the CNN architecture, number of filters per convolution filter size (NFCS), number of neurons in fully connected (FC)
layer, initialization mode, and dropout rate. In addition, the effect of the mutation and crossover operators in DE algorithm were
investigated. ,e performance of the proposed framework DE-CNN is evaluated on five Arabic sentiment datasets. Experiments’
results show that DE-CNN has higher accuracy and is less time consuming than the state-of-the-art algorithms.

1. Introduction

People and organizations are posting their information and
opinions on various social media platforms such as Twitter
and Facebook. Understanding public sentiments, emotions,
and concerns expressed on these platforms is a crucial issue,
which is the interest of sentiment analysis (SA). SA is a
natural language processing (NLP) application that focuses
on automatically determining and classifying the sentiment
of large amounts of text or speech [1, 2]. Arabic is a Semitic
language known by its morphology richness and different
written and spoken forms such as modern standard Arabic
(MSA) and its various dialects. Arabic morphology and
structure complexity create many challenges such as the
shortage of large datasets and limited tools to perform
sentiment analysis [3, 4]. Even deep neural networks
(DNNs) [5] and convolutional neural networks (CNNs) [6]
have shown promising and encouraging performance, little
research on sentiment analysis using deep learning (DL)
techniques has been done for Arabic language [7–9] while

many researches have been done on other languages [10–12].
Research on Arabic language using deep-learning tech-
niques is still relatively scarce which is worth to be
investigated.

To choose the best architecture and hyperparameters for
a DL model and apply it to Arabic sentiment classification,
the model is usually evaluated on different architectures and
hyperparameter combinations manually or using previous
successful models directly [13]. Moreover, the building task
of a DL model for SA remains a very crucial process that
requires the involvement of specialists in the domain and
language or the integration of feature engineering tech-
niques. In addition, designing a DL model is still a complex
and time-consuming task. ,e assessment of DL models
parameters requires a fitting and evaluation process on the
test data, which can be very expensive and infeasible on small
computing units. ,erefore, an effective methodology to
select the best architecture for a DL model with optimal
hyperparameters is needed to build a successful Arabic
sentiment classification system. A lot of work has been done

Hindawi
Computational Intelligence and Neuroscience
Volume 2019, Article ID 2537689, 16 pages
https://doi.org/10.1155/2019/2537689

mailto:xiongsw@whut.edu.cn
http://orcid.org/0000-0002-7682-6269
http://orcid.org/0000-0002-4006-7029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2537689

in order to evolve DL models using NeuroEvolution (NE)
methods [14] on different tasks such as image classification
[15] using particle swarm optimization (PSO), and hand-
written digit recognition based on genetic algorithms and
grammatical evolution [16]. In the same context, this paper
presents an alternative NE approach for Arabic sentiment
classification using the differential evolution (DE) [17]. ,e
DE algorithm is adopted since it is known by its remarkable
performance using different mutation strategies in several
literatures, as well as, it has less parameters to fine-tune. To
the best of our knowledge, this is the first work that
attempted to address the problem of automatically building
a deep neural network model for Arabic sentiment classi-
fication using DE algorithm. ,e proposed DE-CNN model
focuses on utilizing DE algorithm to automatically find and
tune appropriate parameters to build the optimal CNN
model. Since CNN have been applied extensively to senti-
ment classification on other languages, Arabic sentiment
classification is chosen as a well-known and widely used task,
which constitutes a good environment to validate and
evaluate the performance of DE-CNN.

DE-CNN starts by generating a population, where each
individual represents a configuration selected randomly
from each parameter possible values. ,en, DE-CNN
evaluates each individual through computing fitness func-
tion value using the current configuration. After that, all
individuals in the population are updated using DE algo-
rithm operators. ,ese steps are repeated until the terminal
criteria are satisfied. To evaluate the performance of the
proposed framework, various Arabic sentiment classifica-
tion datasets covering Twitter data are used. ,e evaluations
on these datasets show that the proposed framework out-
performed existing methods.

,e main contributions of this paper can be summarized
as follows:

(i) Modeling the problem of evolving CNNs as a
metaheuristic optimization task to build an Arabic
sentiment classification system

(ii) Using two different fitness evaluation techniques to
assess the generalization of the CNN

(iii) Integrating two different mutation strategies to
improve the exploration and exploitation ability of
DE algorithm

(iv) Building and training different CNN architectures
with variable number of parallel convolution layers

,e rest of this paper is organized as follows: Section 2
provides related works with respect to Arabic sentiment
classification and NE. Section 3 describes the fundamentals
of DE algorithm and CNN. ,e proposed framework is
introduced in Section 4. Section 5 presents the evaluation of
the proposed framework, while Section 6 gives the con-
clusion and presents our future work.

2. Related Work

In this section, we will review the most recent works related
to Arabic sentiment classification and NE. Recently, many

works have been conducted on SA targeting English, and
other European languages. However, a small number of
researches focus on the Arabic language [18, 19] using DL
models. Sallab et al. [20] trained several DL models as de-
scribed in their original papers for Arabic sentiment clas-
sification including deep neural networks (DNNs), deep
belief networks (DBNs), deep autoencoder (DAE), and re-
cursive autoencoder (RAE). Al-Azani et al. [21] investigated
the problem of imbalanced datasets for Arabic sentiment
polarity determination. ,ey conducted a comparison be-
tween different traditional machine learning classifiers and
ensembles such as k-nearest neighbor (k-NN), support
vector machines (SVMs), voting, bagging, boosting, stack-
ing, and random forests. Moreover, Al-Azani et al. [22]
conducted an empirical evaluation of two state-of-the-art
DL models, which are unidirectional and bidirectional Long
Short-Term Memory (LSTM) and its simplified variant
Gated Recurrent Unit (GRU), to detect sentiment polarity of
Arabic microblogs. Alayba et al. [23] used DNN and CNN
alongside several Machine Learning algorithms to perform
Arabic SA on health services. In their experiments, they
reported that the best classifiers were SVM and stochastic
gradient descent (SGD) in which they did not investigate the
effect of DL models architecture and parameters.

NE is considered as a subfield within artificial in-
telligence (AI). It aims to automatically evolve neural net-
works architectures and hyperparameters based on the use
of evolutionary algorithms. For example, Young et al. [24]
presented a framework named multinode evolutionary
neural networks for deep learning (MENNDL) to learn
optimized CNN hyperparameters via a genetic algorithm
(GA). Restricting convolutional layer to three layers,
hyperparameters such as filter size and the number of filters
for each convolutional layer were optimized. Verbancsics
and Harguess [25] proposed a modification of hypercube-
based NeuroEvolution of augmenting topologies (Hyper-
NEAT) [26] to evolve a CNN for image classification task.
,e methodologies were evaluated on MNIST dataset. Tir-
umala et al. [27] studied the feasibility of using evolutionary
approaches to propose the prospects of evolving deep ar-
chitectures with the aim of reducing training time of DNNs.
By evaluating their approach on MNISTdataset, the training
time of DNN was accelerated over the regular approach with
a time difference of over 6 hours. Based on reinforcement
learning, Baker et al. [28] proposed a metamodeling algo-
rithm named MetaQNN. For a learning task such as image
classification, MetaQNN is used to automate the generation
of CNN architectures and tested over MNIST dataset.
Loshchilov and Hutter [29] proposed an alternative deep
neural network hyperparameters optimization instead of the
grid search, random search, or Bayesian optimization.
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) was used to evolve several hyperparameters in the op-
timizer, convolution, and fully connected layers. Based on
Cartesian genetic programming, Suganuma et al. [30] pre-
sented a work to perform image classification on the CIFAR-
10 dataset by automatically building and optimizing CNN
architectures. ,eir core of research was focusing on con-
volution blocks and tensor concatenation, and they do not

2 Computational Intelligence and Neuroscience

consider dense layers or hyperparameters optimization.
,ey automatically generated competitive CNN architec-
tures that can compete with the state-of-the-art networks.
Xie and Yuille [31] have adopted genetic algorithms (GAs) to
evolve CNN architectures by proposing a binary encoding
method to represent GA individuals in a fixed-length string.
,ey used two common datasets such as MNIST and
CIFAR-10 to perform visual recognition and evolve the
CNN architectures based on recognition accuracy. Fol-
lowing the same working principles as NEAT [32], Miik-
kulainen et al. [33] introduced an automated approach for
evolving deep neural networks named Cooperative Deep-
NEAT (CoDeepNEAT), which learn complex convolutional,
feedforward, and recurrent layers to evolve the network
architecture. Real et al. [34] introduced a technique based on
GAs to generate a fully trained neural network that does not
require any postprocessing.

3. Preliminaries

3.1. Differential Evolution. ,e differential evolution (DE) is
one of the most popular evolutionary algorithms introduced
by Storn and Price in [17, 35]. DE has been used in different
optimization tasks such as computer vision [36, 37] and text
classification [38]. ,e DE starts by initializing training
parameters such as population size N, individual dimension
Npar, mutation scaling parameter F, and crossover proba-
bility CR. At the beginning, a population X of size N and
dimension Npar is generated using

xi � Li + rand N,Npar()∗ Ui − Li(), xi ∈ X, i � 1, 2, . . . , N,

(1)
where L and U represent lower and upper boundaries of the
search space, respectively. rand(., .) is the function used to
generate a random matrix in the interval [0,1].

Mutation operator is used to create a new individual vi
from the current parent individual xi. DE scheme (or DE/
rand/bin) defined in Equation (2) performs the mutation
operation.

vti � x
t
r1 + F∗ x

t
r2 −x

t
r3(), (2)

where xr1, xr2, and xr3 are different individuals randomly
chosen from the population at iteration t.

Crossover operator is used to generate an offspring in-
dividual from vi and xi as the following:

ztij �
vtij, if cj ≤CR or δi,

xtij, otherwise,

 (3)

where cj is a random value chosen for the jth decision
variable and δi represents a random decision variable index
taken from [1, Npar].

,en, the fitness function fitxi of the parent individual xi
and the fitness function fitzi of the offspring zi are computed.

Selection operator is used to select the best individual
from the parent individual xi and the offspring zi based on
the calculated fitness function values as defined in the fol-
lowing equation:

xt+1
i �

zti , if fitzi ≤ fitxi,
xti , otherwise.

{ (4)

,e previous steps are repeated until the stop condition
is met. If it is satisfied, the DE stops and returns the best
individual. Otherwise, it will continue by starting again from
mutation phase. DE algorithm can use different strategies to
perform mutation, where some of them are used to improve
the exploration and exploitation ability of the search space
[39, 40]. ,ese strategies can be distinguished through using
the representation “DE/a/b” where “DE” refers to the dif-
ferential evolution, “a” indicates the solution to be mutated,
and “b” represents the number of different solutions used. In
this paper, only two strategies are used where the first one is
the “DE/best/1” given as

vti � x
t
b + F∗ x

t
r2 − x

t
r3(), (5)

whereas the second one is “DE/best/2” given as

vti � x
t
b + F∗ x

t
r2 −x

t
r3() + F∗ xtr3 − xtr4(), (6)

where xtb represents the best solution at the iteration t.

3.2. Convolutional Neural Network. Deep learning ap-
proaches known by their ability to automatically learn
features have shown remarkable performance in various
fields. For example, computer vision (CV) [41], speech
recognition [42, 43], NLP [44, 45], and a large variety of
applications [46]. In this section, a common deep learning
model named parallel convolutional neural network (CNN)
for sentence classification is described. Figure 1 shows the
parallel CNN architecture where the CNN model consisting
of one-dimension parallel convolution layers (1D-CNN) is
used to capture local semantic features by using a unique
filter size at each parallel convolutional layer [44]. To select
global semantic features, a one-dimension pooling layer is
implemented at the end of each convolution layer. ,e
outputs from pooling layer are concatenated and fed to a
fully connected (FC) layer. Finally, an FC layer with sigmoid
or Softmax acts as an output layer, which is used to produce
the classification results based on the inputted features from
previous layers. CNN is known by its convolution operation
that uses filters, where each filter can learn to produce a
feature map. At the same layer in CNN, same filter weights
are shared. CNN takes input as a matrix that represents a
sentence, where each row is Sd dimensional vector assigned
to a specific word from the sentence. ,ese word vectors are
build using a neural language model (NLM) such as
word2vec [47, 48] which represents the semantic relations
between words as vectors. As an example, if we assume that
the input sentence has 20 words and each word is repre-
sented as a Sd � 100 dimensional vector, then the size of the
input layer of the CNN will be 1 × 20 × 100. To address the
problem of overfitting, layers such as pooling and dropout
are commonly used. For the convolution and fully con-
nected layers, Sigmoid, Hyperbolic Tangent (tanh), and
Rectifier (ReLU) [49] are activation functions which can be
applied in neural networks.

Computational Intelligence and Neuroscience 3

4. Proposed Framework

In this section, the proposed DE-CNN framework based on
DE algorithm for evolving CNN will be presented in detail.
,e aim of the proposed DE-CNN is to determine the
optimal architecture and parameters for a CNN, and en-
hance the performance of Arabic sentiment classification. To
achieve this goal, the DE algorithm is used to search for the
best configuration from a set of parameters used to build and
train a CNN. Unlike the most existing CNN architectures for
text classification that employ one dimension (1D) convo-
lution and pooling operations, we apply 2D convolution
operations in DE-CNN. To gain better performance, words
from the dataset are inputted to the CNN as a word-
embedding matrix with two dimensions, where each word
is represented by a vector extracted from a pretrained word
embedding. ,erefore, the 2D convolution operations may
help to extract more meaningful sentiment features and
prevent destroying the structure of the word embeddings
[50].

,e proposed DE-CNN framework consists of three
stages: initialization, evaluation, and update. Firstly, the
initialization stage, DE-CNN starts by generating a random
population X with size N and dimension Npar. Where Npar

represents the number of hyperparameters used to control
the configuration of CNN such as the number of convo-
lution filters, convolution filter size, number of filters per
convolution filter size (NFCS), number of neurons in fully
connected (FC) layer, and dropout rate. Each parameter
contains a list of different values, where a random selected
value is used to initialize each solution xi, (i � 1, 2, . . . , N) in
X. Moreover, two fitness evaluation techniques were adopted
to divide the dataset into training and testing such as
random train/test split with 80% for training and 20% for
testing (80/20) or k-fold cross validation. Secondly, the
evaluation stage starts by building the CNN based on the
current xi, where the number of convolution filters de-
termines the number of parallel convolution layers. Each
convolution filter size will be assigned to a parallel convo-
lution layer followed by a max-over time pooling layer,
which is used to reduce the dimensionality and computation
cost. Pooling size is represented as (max(S)−fz + 1, 1),
where S is the sequence length and fz is the filter size
assigned to the previous convolution layer. A concatenation
operation is performed to merge the outputs from each
pooling layer and fed to the FC layer. Moreover, DE-CNN
builds a hidden layer followed by a dropout operation based
on the corresponding values from xi. After building the
CNN using xi, the testing set is used to evaluate the per-
formance of the CNN model through the fitness function

value fiti of the current solution xi. After that, DE algorithm
selects the best solution xb having the highest fitness value
fitb. Finally, in the updating stage, the solutions of the
population X are updated using the operators of DE algo-
rithm crossover, mutation, and selection. Evaluation and
update stages are repeated until the stop condition is met.
,e three stages of the proposed DE-CNN framework are
described with more details in the following sections.

4.1. Initialization Stage. In this stage, the list of values
corresponding to each parameter is generated and DE al-
gorithm parameters such as crossover and mutation are set.
Moreover, the size of solutions N and the maximum number
of iterations tmax are chosen. ,en a random integer pop-
ulation X with size N and dimensionNpar is generated using
the following equation:

xij � lj + rand∗ uj − lj(), j � 1, 2, . . . , Npar, i � 1, 2, . . . , N,

(7)
where Lj and Uj represents the lower and upper boundaries
of the jth parameter of xi ∈ X, receptively. Table 1 lists an
example solution xi � [2, 4, 3, 1, 5] that represents a con-
figuration to build a random CNN model. Each index value
in xi vary in a range of minimum and maximum values as
described in Table 1 where each index corresponds to a
random parameter value x1j.

As shown in Table 1, filter sizes list defines the parallel
architecture of the CNN model. ,e number of values in the
list will define the number of parallel convolution layers,
where each value refers to the convolution filter size applied
when performing convolution operation. Each convolution
filter size will have 150 distinct filters with the same size and
different initialization values. Pooling layer with the max-
pooling operation is placed after each convolution layer
which will take the same filter size value to calculate the
pooling size. A concatenation operation is applied to merge
the output feature vectors from each pooling layer to be fed
into the FC layer. FC layer consists of 300 neurons initialized
using the uniform mode as shown in Figure 2. An output
layer used to produce the classification accuracy is imple-
mented at the end of the generated CNN model.

4.2. Evaluation Stage. ,is stage starts by constructing the
CNN model based on the parameters of the current solution
xi. ,e 80/20 split method or 5-fold CV method are used to
evaluate the fitness function fiti for each xi. Where 80/20
split method randomly selects 80% of the data as training set
and 20% as testing set with once evaluation.

Input
sentence

Convolution layer Max-pooling layer

Convolution layer Max-pooling layer

Convolution layer Max-pooling layer

Concatenation FC layer Output layer

Figure 1: ,e parallel CNN architecture.

4 Computational Intelligence and Neuroscience

Meanwhile, in 5-fold CV, the dataset is divided into
different five groups, where four of them are used to rep-
resent the training sets and one of them represents the
testing set. ,e evaluation is repeated five times, and the
average of the classification accuracy over the five runs is
used as the fitness function value fiti:

fiti �
∑5
k�1acck

5
, (8)

where acck represents the accuracy of classification of the kth
run.

4.3. Update Stage. In this stage, the best solution xb with the
highest fitness function value fitb is determined. ,en each
solution xi in the current population X is updated using the
three operators of the DE algorithm as mentioned in Section
3.1. ,e evaluation and update stages are repeated until the
stop condition is met. Here, the maximum number of it-
erations (tmax) is used as the stop condition.

,e general framework of the proposed model DE-CNN
is shown in Figure 3.

5. Experimental Results

Several experiments are conducted using different datasets
for Arabic sentiment classification with their balanced and
imbalanced shapes, where each dataset is described in
Section 5.1. CNN parameter settings are described in Section
5.2. Performance measures are discussed in Section 5.3,
while, Sections 5.4 to 5.9 present various experimental series
to evaluate the performance of the proposed framework.

5.1. Sentiment Classification Datasets. In this section, var-
ious Arabic sentiment datasets used to evaluate the pro-
posed framework are introduced. Nabil et al. [18] presented
the labeled Arabic sentiment tweets dataset (ASTD) for
subjectivity and sentiment polarity classification. ASTD
contains over than 10,000 Arabic tweets classified as ob-
jective, subjective positive, subjective negative, and sub-
jective mixed. In our experiments, we used the balanced
shape of the dataset (ASTD-B) where the maximum
number of training tweets is equal to the number of tweets
in the minority class. Mohammad et al. [51] proposed the
Syrian tweets Arabic sentiment analysis (STD) dataset
consisting of 2000 tweets from Syria. Alomari et al. [52]
collected the Arabic Jordanian general tweets (AJGT)

corpus written in Jordanian dialect and modern standard
Arabic in May 2016. AJGT consists of manually annotated
900 positive tweets and 900 negative tweets. Abdulla et al.
[53] collected the Twitter dataset for Arabic sentiment
analysis (ArTwitter), where the annotation of the dataset is
performed by two human experts. We used same ArTwitter
dataset evaluated in [7] consisting of almost 2000 labeled
tweets. Aziz et al. [7] used multiple Twitter datasets,
namely, ASTD, ArTwitter, and QRCI, to build a balanced
dataset and evaluate their system for sentiment classifica-
tion. We will refer to this dataset that consists of more than
4000 tweets as AAQ in our study. All used datasets in our
experiments are in a balanced shape except STD dataset, since
STD is a highly imbalanced dataset.

Each dataset in our experiments has been preprocessed
after applying several actions to clean and normalize the
Arabic text. Stopwrods has been removed after mapping
each word from the dataset vocabulary to a stopwords list
that contains 750 most frequent Arabic words (https://
github.com/mohataher/arabic-stop-words). Punctuations,
numbers, symbols, and non-Arabic words have been
replaced by keywords such as PUNK, NUM, and UNK. We
conduct our experiments on nondiacritized Arabic text,
and for that all diacritics were deleted. Arabic characters
such as Alef, Teh Marbuta, and ALEF Maksura are
normalized.

5.2. CNN Architecture and Parameters. In this section, we
will learn the proper CNN architecture and parameters
automatically using differential evolution (DE) algorithm.
Parameterizing the CNN model using DE requires an
individual structure (configuration). In our experiments,
the individual structure consists of parameters from two
layers which are the convolution layer and FC layer. In
addition, only three convolution layers are set to be
trained in parallel at the same time at max. In total, five
different parameters are coded into each individual. We
fix the optimizer and merge operation for each individual,
and we change the parameters values to maximize the
accuracy of the classified sentences over a test set.
Moreover, CBOW58 Arabic word embeddings from [54]
used to transform datasets into vector representations as
an input to the CNN. Table 2 lists the possible values for
each parameter.

,e number of filters used to perform convolution
operation varies from 50 to 500 filters per filter size. ,e
number of convolution layers trained in parallel is related to
the dimension of filter sizes list. A random function is
implemented to generated random filter sizes list, where
each filter size can have a value that ranges from 2 to 9. ,e
maximum number of generated filter sizes in a list is limited
to three filter sizes. For example, if the generated filter sizes
list is [2, 5, 7], that means three convolution layers are
running in parallel, where each one of the layers uses a single
filter size from the generated list. ,e number of neurons
used to construct the fully connected layer is 50, 100, 200,
300, 350, 400, or 500. ReLU function is used as an activation
function for both convolution and FC layer. Different

Table 1: Example of a random configuration x1.

Parameters
Index range Example value

Minimum Maximum Index x1j value

Filters sizes list (x11) 1 20 2 [3, 4]
Number of neurons
(x12)

1 7 4 300

NFCS (x13) 1 8 3 150
Initialization mode
(x14)

1 4 1 Uniform

Dropout rate (x15) 1 7 5 0.7

Computational Intelligence and Neuroscience 5

https://github.com/mohataher/arabic-stop-words
https://github.com/mohataher/arabic-stop-words

initialization modes for the FC layer were investigated such
as uniform, LeCun uniform, normal, and He uniform. To
prevent the overfitting of the CNN, a regularization tech-
nique named Dropout is adopted with different rates that
range from 0.2 to 0.9 and used in three positions: after
embedding layer, pooling layer, and FC layer. Adam is used
as an optimizer to train the CNN. Moreover, to handle
sentences with variable lengths, all sentences are padded
(zero-padding is adopted) so they all become of a length
equal to the maximum sentence length in each dataset.

Table 2: Individual structure (configuration).

Parameter Values

Convolution layer
Filter sizes 2 to 9
NFCS 50, 100, 150, 200, 250, 300, 400, 500
Fully connected layer
Number of neurons 50, 100, 200, 300, 350, 400, 500

Initialization mode
Uniform, LeCun uniform, normal,

He uniform
Dropout rate 0.2 to 0.9

Input
sentence

Convolution layer
Filter size = 3

Max-pooling layer

Concatenation
FC layer:

300 neurons
uniform

Output layer

Convolution layer
Filter size = 5

Max-pooling layer

Figure 2: CNN architecture and parameters for the example listed in Table 1.

Dataset

Start

Initial
population X

of size
N × Npar

Training set Testing set

Parallel CNN architecture

Built CNN model using xi

Compute
�tness

function �ti

Select best
individual xb

Update X using

(i)

(ii)

(iii)

Crossover

Mutation

Selection

Stop
condition

met?

Yes

No

End

Select best
individual

Initialization stage

Updation stage

Evaluation stage

5-fold CV or
80/20 split

Figure 3: ,e proposed DE-CNN framework.

6 Computational Intelligence and Neuroscience

5.3. Performance Measures. A set of measures such as
precision, recall, accuracy, and F-score were used to evaluate
the performance. ,ese measures are defined as follows:

precision �
TP

TP + FP
× 100,

recall �
TP

TP + FN
× 100,

accuracy �
TP + TN

TP + TN + FP + FN
× 100,

F-score � 2 ×
precision × recall

precision + recall
,

(9)

where TP, TN, FP, and FN denote true positive, true neg-
ative, false positive, and false negative, respectively. Ex-
periments have been carried out on a machine with GeForce
GTX 1080 Ti graphic card and 126 Gb of RAM.

It is worth mentioning that 5-fold CV and 80/20 dataset
split techniques were used only in the DE algorithm eval-
uation stage to select the optimal configuration for each
dataset. If 80/20 dataset split is used, we evaluate the best
configuration again using 5-fold CV and we report the 5-fold
CV classification accuracy in our tables to assess the gen-
eralization of the selected configuration, whereas 10-fold CV
was used to calculate the final classification result for each
optimal configuration and compare it with state-of-the-art
methods, where most of them use 10-fold CV for evaluation.
However, to avoid the bias in the validity of the results when
using different data splitting strategies (i.e., 5-CV, 10-CV or
80/20 split), a new model is created with new weights ini-
tialization for each fold or evaluation stage. ,is means that
the CNN will be trained from scratch for each selected
configuration and dataset split. Besides, during the evalu-
ation stage in the DE algorithm, if 80/20 split is chosen to
calculate the fitness function, each time a new model is
created with new weights where 80% samples from the
dataset are used for training and 20% samples for testing. To
evaluate the optimal configuration obtained from searching
using 80/20 split using 5-CV or 10-CV, a new CNN is
created and trained from scratch for each evaluation iter-
ation with the same parameters and new weights as men-
tioned earlier. For that, each trained CNN is fitted and tested
on unseen samples.

5.4. Experimental Series 1: Influence of DE Algorithm
Parameters. In this experimental series, we analyze the in-
fluence of different parameters of DE algorithm, which in-
clude population size, mutation parameter F, and DE strategy
(i.e., DE/best/1, DE/best/2) defined using Equations (5) and
(6). Table 3 lists the results of the proposed DE-CNN with the
following DE parameters: population of sizes 5 or 10, DE/
best/1 as DE strategy, and F is set to 0.3 or 0.7. From this table,
it can be observed that the accuracy with population size 10 is
better than the accuracy with population size 5. On the
contrast, ArTwitter dataset gets less accuracy when pop-
ulation size changes from 5 to 10. However, the proposed DE-
CNN takes more time if population size is equal to 10.

After that, the value of F is changed to 0.7 with the same
strategy and population size. In this case, it can be seen that
the classification accuracy at a population size 5 is better
than accuracy when using a population of size 10 with
F � 0.3, but with less computational time. Moreover, the
average classification accuracy of the proposed model at
population of size 10 and F � 0.7 is the best as shown in
Table 3.

,e effect of DE strategy is tested through using DE/best/
2 as given in Table 4, where F is set to 0.3 or 0.7 and the
population size is set to 5 or 10. ,e reported time in all
tables is in seconds. As shown in Table 4, the classification
accuracy at population size equal to 5 and F � 0.3 is better
than all the results of the previously used DE strategy
(i.e., DE/best/1). However, the computation time is shorter.
With DE/best/2, population size 10, and F � 0.3, the best
average accuracy across all datasets and the shortest time can
be obtained. In this experimental series, the reported time
has been calculated during the process of selecting the
optimal configuration using 5-fold CV as the fitness eval-
uation technique for each individual.

From all results listed in Tables 3 and 4, we can select the
optimal configuration for the proposed model that balances
the accuracy and time. ,e best DE parameters are F � 0.3,
CR � 0.2, strategy DE/best/2, and population size equal to
10. ,e proposed DE-CNN model based on these DE al-
gorithm parameters can be named as DE-CNN-5CV model.
Table 5 shows the optimal configuration for each dataset
produced using DE-CNN-5CV model.

5.5. Experimental Series 2: Influence of Fitness Evaluation
Techniques. From the previous experimental series, we
noticed that DE-CNN takes a long time to select the optimal
configuration. ,at is due to the usage of 5-fold CV accuracy
as a fitness evaluation technique in DE evaluation stage for
each individual. In this experimental series, we analyze the
effect of using 80/20 dataset split as the default fitness
evaluation technique rather than using 5-fold CV. Tables 6
and 7 depict the classification accuracy of different selected
optimal configurations when using 80/20 dataset split. After
selecting the optimal configuration, 5-fold CV is applied to
reevaluate and assess the generalization of the resulted
configuration. In this experimental series, the accuracy and
the time cost are the main criteria to select the optimal
configuration.

According to the results in Tables 6 and 7, it can be
noticed that all experiments nearly have the same accuracy
values for each dataset. However, the accuracy when running
DE algorithm with the following parameters: DE/best/2
strategy, F � 0.3, and population size equal to 5 is the
best. Moreover, when comparing with the time results from
previous experimental series, it can be concluded that
adopting 5-fold CV requires more computation time to find
the optimal configuration for each dataset which is almost
three times compared to 80/20 dataset split. Moreover, the
classification accuracy in this case is better than the case were
5-fold CV is used. In contrast, the results for 80/20 dataset
split technique are not reliable since random splitting is

Computational Intelligence and Neuroscience 7

Table 3: ,e results based on 5-fold CV accuracy as fitness function value used with DE/best/1, different population sizes, and mutation
parameter.

DE parameters DE/best/1-F � 0.3-CR � 0.2 DE/best/1-F � 0.7-CR � 0.2

Population size 5 10 5 10

Dataset Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

ArTwitter 91.79 7585.98 91.58 22699.37 90.34 13523.39 91.68 22544.00
STD 86.75 4047.13 86.97 8578.22 86.63 10524.26 86.97 17972.58
AAQ 86.03 26251.50 86.10 56413.17 86.12 38387.81 86.73 66221.46
ASTD-B 80.60 6200.27 81.11 5690.58 80.98 4678.05 81.11 9112.36
AJGT 85.75 5061.12 88.56 7862.54 90.83 8486.48 91.72 18209.64
Average 86.18 9829.2 86.87 20248.78 86.98 15119.99 87.64 26812.01

Table 4: ,e results based on 5-fold CV accuracy as fitness function value used with DE/best/2, different population sizes, and mutation
parameter.

DE parameters DE/best/2-F � 0.3-CR � 0.2 DE/best/2-F � 0.7-CR � 0.2

Population size 5 10 5 10

Dataset Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

ArTwitter 91.48 16570.82 91.27 21842.62 91.37 12498.83 91.73 20115.25
STD 86.63 4160.50 87.03 8306.28 86.75 5956.65 86.75 9726.51
AAQ 85.54 14978.24 86.76 68793.32 83.86 22016.83 85.91 76816.73
ASTD-B 80.85 4408.58 81.48 8175.77 81.04 4455.77 82.05 9056.05
AJGT 91.06 6314.36 92.56 8543.75 92.06 3259.03 91.67 21229.50
Average 87.11 9286.5 87.82 23132.35 87.01 9637.42 87.62 27388.81

Table 5: ,e optimal configuration for each dataset based on the DE-CNN-5CV model.

Dataset Filter sizes list Number of neurons NFCS Initialization mode Dropout rate

ArTwitter [2, 3, 5] 350 50 LeCun uniform 0.6
STD [2, 4] 100 200 Normal 0.6
AAQ [4, 5, 6] 200 300 Normal 0.2
ASTD-B [3, 4] 100 100 He uniform 0.3
AJGT [2, 3, 6] 200 300 Uniform 0.2

Table 6: ,e results of DE/best/1 strategy, different population sizes, and mutation parameter using 80/20 dataset split reevaluated using 5-
fold CV.

DE parameters DE/best/1-F � 0.3-CR � 0.2 DE/best/1-F � 0.7-CR � 0.2

Population size 5 10 5 10

Dataset Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

ArTwitter 92.72 2341.01 93.44 3921.61 92.66 3270.71 92.61 6540.61
STD 87.97 1198.57 88.30 2643.58 88.42 3497.13 86.91 5547.04
AAQ 86.97 4949.27 86.38 11575.05 87.43 7880.75 87.39 17957.25
ASTD-B 82.04 1057.19 81.17 1940.99 82.29 1170.57 81.61 2114.62
AJGT 91.67 2858.29 92.56 5039.01 92.50 3382.44 92.44 5338.89
Average 88.27 2480.87 88.37 5024.05 88.66 3840.32 88.29 7499.68

Table 7: ,e results of DE/best/2, different population sizes, and mutation parameter using 80/20 dataset split reevaluated with 5-fold CV.

DE parameters DE/best/2-F � 0.3-CR � 0.2 DE/best/2-F � 0.7-CR � 0.2

Population size 5 10 5 10

Dataset Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

ArTwitter 92.72 1780.57 92.97 2716.75 92.36 3462.59 92.56 4735.10
STD 88.19 1302.01 87.69 2023.61 88.03 3117.11 88.14 3102.14
AAQ 87.29 9051.87 87.11 20436.34 86.99 7233.76 86.43 20061.08
ASTD-B 81.29 1140.01 82.23 1961.08 81.67 1152.20 82.48 1847.88
AJGT 92.44 3064.20 92.17 6451.25 92.50 2723.33 92.83 6598.21
Average 88.39 3267.73 88.43 6717.81 88.31 3537.80 88.49 7268.88

8 Computational Intelligence and Neuroscience

performed. ,erefore, we performed 5-fold CV to reevaluate
each selected configuration.

Table 8 depicts the optimal configuration produced for
each dataset using DE/best/2, the population of size 5,
F � 0.3, and CR � 0.2 as DE parameters with 80/20 dataset
split. We refer to this model as DE-CNN-TSF.

5.6. Experimental Series 3: Influence of DE Algorithm Cross-
over Probability. In this section, the influence of crossover
probability used as a parameter in DE algorithm is analyzed.
Two new crossover probability values were chosen, which
are 0.5 and 0.8. Conducted experiments in this section were
implemented using same setups as in experimental series 2,
where F � 0.3, population of sizes 5 or 10, DE/Best/1 and
DE/Best/2. Besides, 80/20 dataset split is used during the
search of the optimal configuration. Moreover, 5-fold CV
method is applied to the generated optimal configuration for
reevaluation, and the 5-fold CV accuracy is reported as the
final result in each experiment as shown in Tables 9 and 10
for DE/Best/1 and DE/Best/2, respectively.

From Table 9, it can be concluded that applying a
crossover probability CR � 0.8, a better average accuracy
and shorter computational time can be reached. Further-
more, by comparing the two different population sizes at
CR � 0.8, it can be observed that the population of size 5
has better results in both average accuracy and average
computation time. Moreover, setting crossover probability
CR to 0.8 can provide higher classification accuracy and
less computation time than setting CR to 0.5. As well as, the
population of size five can be more accurate and faster than
the population of size ten which takes almost twice the
computational time compared to the population of size
five.

From this experimental series, we can conclude that
the best DE-CNN model is constructed at CR � 0.8,
F � 0.3, population size 5, and DE/best/1 strategy. ,e
model takes a short time to search for the optimal con-
figuration with the highest accuracy values over all dif-
ferent CR values. We refer to this model as DE-CNN-TSC.
Table 11 lists optimal configuration of DE-CNN-TSC
model for each dataset.

5.7. Experimental Series 4: Building a General Model. In this
experimental series, a general model only having one op-
timal configuration is selected for all datasets. ,e general
model is constructed by selecting the most frequent pa-
rameters extracted from all optimal configurations during all
previous experimental series. We conducted previously
three experimental series where we selected the best DE-
CNN model that produces the optimal configuration for
each dataset. From experimental series 1, 2, and 3, we se-
lected DE-CNN-5CV (CR � 0.2, F � 0.3, and DE/best/2),
DE-CNN-TSF (CR � 0.2, F � 0.3, and DE/best/2), and DE-
CNN-TSC (CR � 0.8, F � 0.3, and DE/best/2) as best DE-
CNN models that produce optimal configuration based on
the average classification accuracy and computation time.
Figure 4 shows the frequency of common parameter values

when combining DE-CNN-5CV and DE-CNN-TSC.
Whereas, Figure 5 shows the frequency of common pa-
rameter values of DE-CNN-TSF and DE-CNN-TSC
combined.

From Figures 4 and 5, the most frequent value for each
parameter will be taken to generate the general model for
each combination. However, some parameter values have
the same frequency as shown in Figure 4, where two ini-
tialization modes (LeCun uniform and normal) have the
same frequency which is equal to 4. For that, two general
models will be built from each combination based on ini-
tialization modes from the first combination (DE-CNN-
5CV and DE-CNN-TSC) and dropout rate from the sec-
ond combination (DE-CNN-TSF and DE-CNN-TSC). Ta-
ble 12 lists the configurations of the four generated general
models based on the most frequent parameter values
extracted from the two different DE-CNN models
combinations.

In order to determine the optimal general model from
these four models listed in Table 12, they are evaluated on
the same datasets using the 10-fold CV. ,e resulted
classification accuracies are reported in Table 13. It can be
noticed that the accuracy average of DE-CNN-G1 over all
datasets is better than that of the other three models.
Moreover, it took less time compared to the other models.
,erefore, this model is selected to be the proposed general
model.

5.8. Experimental Series 5: Comparing with Other Meta-
heuristic Methods. In this section, the performance of DE
algorithm is compared against two metaheuristic methods
which are particle swarm optimization (PSO) [55] and
genetic algorithm (GA) [56] to search for the optimal
parallel CNN model. PSO was trained using parameters such
as ϕ � 2 and ω � 0.5, while GA trained using a crossover
probability equal to 0.5 and a mutation rate equal to 0.3. ,is
comparison is performed using two population sizes which
are 5 and 10 for five generations, where 80/20 split technique
is used in each metaheuristic algorithm. After generating the
optimal configuration using each metaheuristic algorithm,
5-fold and 10-fold evaluation methods are used to assess the
general performance of each configuration. Experimental
results are given in Table 14.

From Table 14, it can be concluded that the performance
of the three algorithms in terms of average classification
accuracy is almost the same. However, the DE algorithm has
the highest average accuracies and the shortest computation
time compared to PSO and GA.

5.9. Experimental Series 6: Comparing with State-of-the-Art
Methods. In this section, the results of the proposed DE-
CNN models are compared with state-of-the-art methods on
different Arabic sentiment classification datasets. For a fair
comparison with the state-of-the-art methods, the optimal
selected configuration from each experimental series is used
to build the CNN, where each CNN is evaluated using 10-
fold CV, and the results are listed in Table 15. State-of-the-
art methods used in the comparison are listed in Table 15.

Computational Intelligence and Neuroscience 9

Table 9: ,e results of DE/best/1, different population sizes, and crossover probability using 80/20 dataset split reevaluated with 5-fold CV.

DE parameters DE/best/1-F � 0.3-CR� 0.5 DE/best/1-F � 0.3-CR� 0.8

Population size 5 10 5 10

Dataset Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

ArTwitter 92.25 1861.73 93.03 3154.44 92.46 700.90 92.56 928.86
STD 88.31 1253.39 87.86 3548.95 88.36 383.54 87.69 730.12
AAQ 87.36 8404.20 87.88 12614.47 87.50 4009.01 87.55 7515.25
ASTD-B 81.54 1313.47 81.79 2041.57 82.17 1271.83 81.85 2756.65
AJGT 93.00 4424.83 92.50 6963.73 92.83 277.75 92.11 780.7900
Average 88.49 3451.52 88.61 5664.63 88.66 1328.61 88.35 2542.33

Table 10: ,e results of DE/best/2, different population sizes, and crossover probability using 80/20 dataset split reevaluated with 5-fold CV.

DE parameters DE/best/2-F � 0.3-CR� 0.5 DE/best/2-F � 0.3-CR� 0.8

Population size 5 10 5 10

Dataset Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

ArTwitter 92.56 1855.46 93.03 4105.46 93.03 747.39 92.51 1590.83
STD 87.47 2927.36 87.47 6936.65 88.03 444.72 87.64 3682.39
AAQ 87.39 8774.22 87.48 11471.57 87.39 6166.45 87.57 7590.81
ASTD-B 81.98 1015.00 81.48 2619.95 81.85 2330.10 82.10 3463.05
AJGT 92.39 3783.20 92.56 7449.43 92.67 636.44 92.44 1340.59
Average 88.36 3671.05 88.40 6516.61 88.59 2065.02 88.45 3533.53

Table 8: ,e optimal configuration for each dataset based on the DE-CNN-TSF model.

Dataset Filter sizes list Number of neurons NFCS Initialization mode Dropout rate

ArTwitter [2, 3, 5] 200 150 LeCun uniform 0.2
STD [2, 4, 5] 300 500 LeCun uniform 0.3
AAQ [8, 9] 350 250 LeCun uniform 0.3
ASTD-B [5, 6, 8] 300 150 He uniform 0.2
AJGT [2, 7, 8] 400 400 Normal 0.5

Table 11: ,e optimal configuration for each dataset based on the DE-CNN-TSC model.

Dataset Filter sizes list Number of neurons NFCS Initialization mode Dropout rate

ArTwitter [2, 5, 9] 50 200 LeCun uniform 0.2
STD [3, 4, 5] 300 300 LeCun uniform 0.3
AAQ [2, 5, 8] 300 500 Normal 0.5
ASTD-B [2, 3, 8] 350 150 LeCun uniform 0.3
AJGT [2, 3, 8] 350 50 Uniform 0.2

0

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.3 0.5 0.6

F
re
q
u
en
cy

Values

(a)

0

0.5

1

1.5

2

2.5

3

50 100 150 200 300 500

F
re
q
u
en
cy

Values

(b)

Figure 4: Continued.

10 Computational Intelligence and Neuroscience

Values

0

0.5

1

1.5

2

2.5

3

3.5

4

He_uniform LeCun_uniform Normal Uniform

F
re
q
u
en
cy

(c)

Values

F
re
q
u
en
cy

0

0.5

1

1.5

2

2.5

3

50 100 200 300 350

(d)

0

0.5

1

1.5

2

(2, 3, 5) (2, 3, 6) (2, 4) (3, 4) (4, 5, 6) (2, 3, 8) (2, 5, 8) (2, 5, 9) (3, 4, 5)

F
re

q
u

en
cy

Values

(e)

Figure 4: ,e frequency for each value with the best parameters over all datasets after combining DE-CNN-5CV and DE-CNN-TSC
parameters. (a) Dropout rate, (b) NFCS, (c) initialization mode, (d) number of neurons, and (e) filter sizes list.

1

1.5

2

2.5

3

3.5

4

0.2 0.3 0.5

F
re
q
u
en
cy

Values

(a)

0

0.5

1

1.5

2

2.5

3

50 150 200 250 300 400 500

F
re
q
u
en
cy

Values

(b)

0

1

2

3

4

5

6

He_uniform LeCun_uniform Normal

F
re
q
u
en
cy

Values

(c)

0

0.5

1

1.5

2

2.5

3

3.5

4

50 200 300 350 400

F
re
q
u
en
cy

Values

(d)

Figure 5: Continued.

Computational Intelligence and Neuroscience 11

(i) CNN-base: a CNN similar to the model described in
Section 3.2 trained on Twitter word embeddings
(Twt-CBOW) from [58]. A random configuration is
used, where parameters such as filter sizes list,
number of neurons, NFCS, initialization mode, and
dropout rate were set to [3, 5, 7], 150, 100, uniform,
and 0.7, respectively.

(ii) Combined LSTM: a model proposed by Al-Azani
and El-Alfy [57], where two long short-term

memory (LSTM) networks were combined using
different combination methods including: sum-
mation, multiplication, and concatenation.

(iii) Stacking ensemble (eclf14): a model based on
stacking ensemble presented in [21], where several
classifiers were included in the training. ,e used
ensemble-learning techniques are stochastic gradi-
ent descent (SGD) and nu-support vector classifi-
cation (NuSVC).

2

1.5

1

0.5

0
(2, 3, 5) (2, 4, 5) (2, 7, 8) (5, 6, 8) (8, 9) (2, 3, 8) (2, 5, 8) (2, 5, 9) (3, 4, 5)

F
re

q
u

en
cy

Values

(e)

Figure 5: ,e frequency for each value with the best parameters over all datasets after combining DE-CNN-TSF and DE-CNN-TSC
parameters. (a) Dropout rate, (b) NFCS, (c) initialization mode, (d) number of neurons, and (e) filter sizes list.

Table 12: General models configurations.

Combined DE-CNN models
Generated model

name
Filter sizes list

Number of
neurons

NFCS
Initialization

mode
Dropout

rate

DE-CNN-TSF and DE-CNN-
TSC

DE-CNN-G1 [2, 3, 8] 300 150 LeCun uniform 0.2
DE-CNN-G2 [2, 3, 8] 300 150 LeCun uniform 0.3

DE-CNN-5CV and DE-CNN-
TSC

DE-CNN-G3 [2, 3, 8] 350 300 Normal 0.2
DE-CNN-G4 [2, 3, 8] 350 300 LeCun uniform 0.2

Table 13: Comparison between general models using 10-fold CV.

Dataset
DE-CNN-G1 DE-CNN-G2 DE-CNN-G3 DE-CNN-G4

Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

ArTwitter 93.28 552.24 93.23 723.64 92.77 1061.17 93.13 1254.12
STD 88.14 458.10 87.75 486.06 87.97 728.43 88.14 1034.33
AAQ 87.50 1601.06 87.97 1610.54 87.69 2452.71 87.50 2434.58
ASTD-B 82.48 368.28 82.29 185.35 82.60 873.89 82.41 785.69
AJGT 93.06 690.82 92.61 699.20 92.94 1318.60 92.83 1285.41
Average 88.89 734.10 88.77 740.96 88.79 1286.96 88.80 1358.83

Table 14: Comparison between DE, PSO, and GA.

Dataset
DE GA PSO

Time (s) 5-Fold CV 10-Fold CV Time (s) 5-Fold CV 10-Fold CV Time (s) 5-Fold CV 10-Fold CV

ArTwitter 700.90 92.46 92.61 767.73 92.41 92.92 1326.14 92.82 92.61
STD 383.54 88.36 88.25 1122.77 87.03 87.80 2079.96 87.25 88.14
AAQ 4009.01 87.50 88.02 6969.59 87.41 87.78 3698.91 87.13 86.89
ASTD-B 1271.83 82.17 82.29 1693.62 81.85 81.73 683.22 82.17 82.29
AJGT 277.75 92.83 93.17 2320.46 92.33 92.72 1122.90 92.44 92.33
Average 1328.61 88.66 88.87 2574.83 88.21 88.59 1782.23 88.36 88.45

12 Computational Intelligence and Neuroscience

(iv) NuSVC: a model is employed in [7] as a classifier on
AAQ dataset.

(v) SVM(bigrams): a suport vector machine classifier
trained on TF-IDF as weighting scheme through
bigrams was evaluated in [52] on AJGT dataset.

From Table 15, it can be concluded that DE-CNN-5CV
and DE-CNN-G1 are the best models followed by DE-CNN-
TSC when comparing in terms of classification accuracy using
10-fold CV for Artwitter dataset. However, there is a small
difference between them, but the performance of our three
models is better than the performance of other methods on the
Artwitter dataset. For STD dataset, DE-CNN-TSF has the
highest accuracy value compared to the other two models. For
ASTD-B dataset, DE-CNN-G1 model has the best configu-
ration that allows it to possess the highest accuracy among
other models. Concerning AJGTand AAQ datasets, DE-CNN-
TSC got the highest accuracy among other models. Moreover,
regarding F1 measure, DE-CNN-G1 has better values for
ArTwitter and ASTD-B datasets. Moreover, the DE-CNN-TSC
has better F1 measure values in case of STD, AAQ, and AJGT
datasets. Meanwhile, based on the recall measure, DE-CNN-
G1 results in highest values for ArTwitter, AAQ, and ASTD-B
datasets while the DE-CNN-TSC has the highest recall value
for STD dataset. For AJGTdataset, the DE-CNN5CV and DE-
CNN-G1 have the same recall value which is the highest value
compared to other models recall values.

Moreover, the average performance results over all
datasets for DE-CNN models and CNN-base model are

depicted in Figure 6, where it can be concluded that the best
model is the DE-CNN-G1 over all performance measures
except at precision where the DE-CNN-TSC performs better.

From all the previous results, we can conclude that the
proposed DE-CNN-G1 is the best model over all the other
models in this study, where the DE algorithm finds the
optimal configuration to build the proper CNN model used
to improve Arabic sentiment classification. Moreover, after
analyzing DE parameters influence, it has been found that
crossover at 0.8, mutation parameters at 0.3, and DE/best/2
improved the ability of DE to find the optimal CNN con-
figuration. With all this accuracy improvement and com-
putational time saving, the proposed DE-CNN in general
and DE-CNN-G1 in specific still need to be improved since
finding the optimal parameters for the metaheuristic algo-
rithm such as mutation, population size, and the DE strategy
require more exploration and exploitation. One of the major
conclusions that can be drawn from the results obtained is
that the measuring technique of the fitness function value is
crucial to the exploration of the architecture and parameters
search space of the CNN. Moreover, training a deep neural
network usually relies on randomness to perform better.
Various forms of randomness can be applied in different
stages when training the network such as random initiali-
zation of the network weights, setting a regularization using
dropout, and during the optimization phase. ,is phe-
nomenon may affect the stability and repeatability of the
obtained results on different evaluation techniques such as
5-fold CV and 10-fold CV.

Table 15: Comparisons with other models.

Dataset Measures
Our models State-of-the-art models

CNN-base DE-CNN-5CV DE-CNN-TSF DE-CNN-TSC DE-CNN-G1 Combined LSTM [57]

ArTwitter

Acc 90.95 93.28 92.25 92.61 93.28 87.27
Prc 89.76 93.30 90.85 91.24 92.14 87.36
Rec 93.03 93.74 94.45 94.75 95.05 87.27
F1 91.32 93.44 92.57 92.91 93.55 87.28

STD

CNN-base DE-CNN-5CV DE-CNN-TSF DE-CNN-TSC DE-CNN-TS-G1 Stacking (eclf14) [21]
Acc 87.24 88.31 88.36 88.25 88.14 85.28
Prc 80.26 79.66 80.41 79.07 79.09 61.04
Rec 64.82 71.58 70.69 72.25 71.36 67.14
F1 71.39 75.33 75.14 75.36 74.93 63.95

AAQ

CNN-base DE-CNN-5CV DE-CNN-TSF DE-CNN-TSC DE-CNN-G1 NuCSV [7]
Acc 84.69 87.15 87.43 88.01 87.50 80.21
Prc 83.62 87.38 86.75 88.08 86.70 83.00
Rec 86.48 87.05 88.49 88.07 88.77 76.50
F1 85.00 87.16 87.58 88.03 87.70 79.62

ASTD-B

CNN-base DE-CNN-5CV DE-CNN-TSF DE-CNN-TSC DE-CNN-G1 Combined-LSTM [57]
Acc 80.47 81.60 80.72 82.28 82.48 81.63
Prc 81.08 81.89 82.18 82.66 81.86 82.32
Rec 79.72 81.35 78.84 81.85 83.48 81.63
F1 80.27 81.54 80.32 82.17 82.57 81.64

AJGT

CNN-base DE-CNN-5CV DE-CNN-TSF DE-CNN-TSC DE-CNN-G1 SVM (bigrams) [52]
Acc 90.16 92.72 92.56 93.17 93.06 88.72
Prc 89.62 91.80 91.86 92.79 92.36 92.08
Rec 91.00 93.89 93.44 93.67 93.89 84.89
F1 90.24 92.81 92.63 93.19 93.10 88.27

Computational Intelligence and Neuroscience 13

6. Conclusion

,is paper proposed a framework that adopts a differential
evolution (DE) algorithm for evolving the convolutional
neural network (CNN) and generating an Arabic sentiment
classification system. ,e DE mutation strategies help the
system by slightly increasing the performance in terms of
accuracy and time cost. To further assess the stability of the
proposed framework, we built and evaluated two general
DE-CNN models using the most frequent parameters
extracted from the all optimal configurations. Simulation
results show that the two DE-CNN models DE-CNN-TSC
and DE-CNN-G1 are robust and stable, and they can out-
perform state-of-the-art methods.

According to the promising results of the proposed DE-
CNN model for enhancing the Arabic sentiment classifi-
cation, in the future work, the proposed model can be ex-
tended and applied to several applications such as image
classification, object detection, and big data classification.

Data Availability

,e resources used to support the findings of this study have
been deposited in the Github repository (https://github.
com/dahouabdelghani).

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work was in part supported by the National Key Re-
search and Development Program of China (grant no.
2017YFB1402203), the Defense Industrial Technology De-
velopment Program (grant no. JCKY2018110C165), Hubei
Provincial Natural Science Foundation of China (grant no.
2017CFA012), and the Key Technical Innovation Project of
Hubei Province of China (grant no. 2017AAA122).

References

[1] B. Pang and L. Lee, “Opinion mining and sentiment analysis,”
Foundations and Trends in Information Retrieval, vol. 2,
no. 1–2, pp. 1–135, 2008.

[2] A. Alabdullatif, B. Shahzad, and E. Alwagait, “Classification of
Arabic twitter users: a study based on user behaviour and
interests,” Mobile Information Systems, vol. 2016, Article ID
8315281, 11 pages, 2016.

[3] N. Farra, E. Challita, R. A. Assi, and H. Hajj, “Sentence-level
and document-level sentiment mining for Arabic texts,” in
Proceedings of the 2010 IEEE International Conference on Data
Mining Workshops (ICDMW), pp. 1114–1119, Sydney, Aus-
tralia, December 2010.

[4] A. Zouaghi, M. Zrigui, G. Antoniadis, and L. Merhbene,
“Contribution to semantic analysis of Arabic language,”
Advances in Artificial Intelligence, vol. 2012, Article ID
620461, 8 pages, 2012.

[5] L. Li, S. Yu, L. Zhong, and X. Li, “Multilingual text detection
with nonlinear neural network,” Mathematical Problems in
Engineering, vol. 2015, Article ID 431608, 7 pages, 2015.

[6] M. Al-Ayyoub, A. Nuseir, K. Alsmearat, Y. Jararweh, and
B. Gupta, “Deep learning for Arabic NLP: a survey,” Journal of
computational science, vol. 26, pp. 522–531, 2018.

[7] A. Aziz and L. Tao, “Word embeddings for Arabic sentiment
analysis,” in Proceedings of the IEEE International Conference
on Big Data, pp. 3820–3825, Washington DC, USA, December
2016.

[8] R. Baly, H. Hajj, N. Habash, K. B. Shaban, and W. El-Hajj, “A
sentiment treebank and morphologically enriched recursive
deep models for effective sentiment analysis in Arabic,” ACM
Transactions on Asian and Low-Resource Language In-
formation Processing (TALLIP), vol. 16, no. 4, p. 23, 2017.

[9] R. Baly, G. Badaro, G. El-Khoury et al., “A characterization
study of Arabic twitter data with a benchmarking for state-of-
the-art opinion mining models,” in Proceedings of the Gird
Arabic Natural Language Processing Workshop, pp. 110–118,
Valencia, Spain, April 2017.

[10] M. Huang, Q. Qian, and X. Zhu, “Encoding syntactic
knowledge in neural networks for sentiment classification,”
ACM Transactions on Information Systems (TOIS), vol. 35,
no. 3, p. 26, 2017.

[11] L. Zhang, S. Wang, and B. Liu, “Deep learning for senti-
ment analysis: a survey,” Wiley Interdisciplinary Reviews:

80.00

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

89.00

Accuracy Precision Recall F1 score

A
ve

ra
ge

 %

CNN-base

DE-CNN-5CV

DE-CNN-TSF

DE-CNN-TSC

DE-CNN-G1

Figure 6: Average of results for the methods on various datasets.

14 Computational Intelligence and Neuroscience

https://github.com/dahouabdelghani
https://github.com/dahouabdelghani

Data Mining and Knowledge Discovery, vol. 8, article e1253,

2018.
[12] M. Yang, W. Tu, J. Wang, F. Xu, and X. Chen, “Attention

based LSTM for target dependent sentiment classification,” in

Proceedings of the Girty-First AAAI Conference on Artificial

Intelligence, pp. 5013-5014, San Francisco, CA, USA, February

2017.
[13] L. Zhou, Q. Li, G. Huo, and Y. Zhou, “Image classification

using biomimetic pattern recognition with convolutional

neural networks features,” Computational Intelligence and

Neuroscience, vol. 2017, Article ID 3792805, 12 pages, 2017.
[14] L. Rere, M. I. Fanany, and A. M. Arymurthy, “Metaheuristic

algorithms for convolution neural network,” Computational

Intelligence and Neuroscience, vol. 2016, Article ID 1537325,

13 pages, 2016.
[15] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “An experimental

study on hyper-parameter optimization for stacked auto-

encoders,” in Proceedings of the 2018 IEEE Congress on

Evolutionary Computation (CEC), pp. 1–8, Rio de Janeiro,

Brazil, July 2018.
[16] A. Baldominos, Y. Saez, and P. Isasi, “Evolutionary con-

volutional neural networks: an application to handwriting

recognition,” Neurocomputing, vol. 283, pp. 38–52, 2017.
[17] R. Storn and K. Price, “Differential evolution–a simple and

efficient heuristic for global optimization over continuous

spaces,” Journal of Global Optimization, vol. 11, no. 4,

pp. 341–359, 1997.
[18] M. Nabil, M. Aly, and A. F. Atiya, “ASTD: Arabic sentiment

tweets dataset,” in Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing (EMNLP),

pp. 2515–2519, Lisbon, Portugal, September 2015.
[19] H. ElSahar and S. R. El-Beltagy, “Building large Arabic multi-

domain resources for sentiment analysis,” in Proceedings of

the Computational Linguistics and Intelligent Text Processing,

pp. 23–34, Cairo, Egypt, April 2015.
[20] A. Al Sallab, H. Hajj, G. Badaro, R. Baly, W. El Hajj, and

K. B. Shaban, “Deep learning models for sentiment analysis in

Arabic,” in Proceedings of the Second Workshop on Arabic

Natural Language Processing, pp. 9–17, Beijing, China, July

2015.
[21] S. Al-Azani and E.-S. M. El-Alfy, “Using word embedding and

ensemble learning for highly imbalanced data sentiment

analysis in short Arabic text,” Procedia Computer Science,

vol. 109, pp. 359–366, 2017.
[22] S. Al-Azani and E.-S. El-Alfy, “Emojis-based sentiment

classification of Arabic microblogs using deep recurrent

neural networks,” in Proceedings of the 2018 International

Conference on Computing Sciences and Engineering (ICCSE),

pp. 1–6, Kuwait City, Kuwait, March 2018.
[23] A. M. Alayba, V. Palade, M. England, and R. Iqbal, Arabic

Language Sentiment Analysis on Health Services, 2017, http://

arxiv.org/abs/1702.03197.
[24] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and

R. M. Patton, “Optimizing deep learning hyper-parameters

through an evolutionary algorithm,” in Proceedings of the

Workshop onMachine Learning in High-Performance Computing

Environments, p. 4, New York, NY, USA, November 2015.
[25] P. Verbancsics and J. Harguess, “Image classification using

generative neuro evolution for deep learning,” in Proceedings

of the 2015 IEEE Winter Conference on Applications of

Computer Vision (WACV), pp. 488–493, Waikoloa, HI, USA,

2015.

[26] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-
based encoding for evolving large-scale neural networks,”
Artificial Life, vol. 15, no. 2, pp. 185–212, 2009.

[27] S. S. Tirumala, S. Ali, and C. P. Ramesh, “Evolving deep neural
networks: a new prospect,” in Proceedings of the 12th In-
ternational Conference on Natural Computation, Fuzzy Sys-
tems and Knowledge Discovery (ICNC-FSKD), pp. 69–74,
Changsha, China, August 2016.

[28] B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing Neural
Network Architectures using Reinforcement Learning, 2016,
http://arxiv.org/abs/1611.02167.

[29] I. Loshchilov and F. Hutter, CMA-ES for Hyperparameter
Optimization of Deep Neural Networks, 2016, http://arxiv.org/
abs/1703.00548.

[30] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic pro-
gramming approach to designing convolutional neural net-
work architectures,” in Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 497–504, Berlin,
Germany, 2017.

[31] L. Xie and A. L. Yuille, “Genetic CNN,” in Proceedings of the
2017 International Conference on Computer Vision,
pp. 1388–1397, Venice, Italy, October 2017.

[32] K. O. Stanley and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary computation,
vol. 10, no. 2, pp. 99–127, 2002.

[33] R. Miikkulainen, J. Liang, E. Meyerson et al., Evolving Deep
Neural Networks, 2017, http://arxiv.org/abs/1703.00548.

[34] E. Real, S. Moore, A. Selle et al., Large-Scale Evolution of Image
Classifiers, 2017, http://arxiv.org/abs/1703.01041.

[35] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evo-
lution: A Practical Approach to Global Optimization, Springer
Science & Business Media, Berlin, Germany, 2006.

[36] U. Mlakar, I. Fister, J. Brest, and B. Potočnik, “Multi-objective
differential evolution for feature selection in facial expression
recognition systems,” Expert Systems with Applications,
vol. 89, pp. 129–137, 2017.

[37] Z. Hu, Q. Su, and X. Xia, “Multiobjective image color
quantization algorithm based on self-adaptive hybrid differ-
ential evolution,” Computational Intelligence and Neurosci-
ence, vol. 2016, Article ID 2450431, 12 pages, 2016.

[38] D. M. Diab and K. M. El Hindi, “Using differential evolution
for fine tuning naı̈ve Bayesian classifiers and its application for
text classification,” Applied Soft Computing, vol. 54,
pp. 183–199, 2017.

[39] W. Gong and Z. Cai, “Differential evolution with ranking-
based mutation operators,” IEEE Transactions on Cybernetics,
vol. 43, no. 6, pp. 2066–2081, 2013.

[40] N. R. Sabar, J. Abawajy, and J. Yearwood, “Heterogeneous
cooperative co-evolution memetic differential evolution al-
gorithm for big data optimization problems,” IEEE Trans-
actions on Evolutionary Computation, vol. 21, no. 2,
pp. 315–327, 2017.

[41] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi,
“Inception-v4, inception-resnet and the impact of residual
connections on learning,” in Proceedings of the Girty-First
AAAI Conference on Artificial Intelligence, p. 12, San Fran-
cisco, CA, USA, February 2017.

[42] V. Mitra, G. Sivaraman, H. Nam, C. Espy-Wilson,
E. Saltzman, and M. Tiede, “Hybrid convolutional neural
networks for articulatory and acoustic information based
speech recognition,” Speech Communication, vol. 89,
pp. 103–112, 2017.

[43] Y. Qian, M. Bi, T. Tan, and K. Yu, “Very deep convolutional
neural networks for noise robust speech recognition,” IEEE/

Computational Intelligence and Neuroscience 15

http://arxiv.org/abs/1702.03197
http://arxiv.org/abs/1702.03197
http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.01041

ACM Transactions on Audio, Speech, and Language Process-
ing, vol. 24, no. 12, pp. 2263–2276, 2016.

[44] Y. Kim, Convolutional Neural Networks for Sentence Classi-
fication, pp. 1–6, 2014, http://arxiv.org/abs/1408.5882.

[45] S. Poria, H. Peng, A. Hussain, N. Howard, and E. Cambria,
“Ensemble application of convolutional neural networks and
multiple kernel learning for multimodal sentiment analysis,”
Neurocomputing, vol. 261, pp. 217–230, 2017.

[46] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their ap-
plications,” Neurocomputing, vol. 234, pp. 11–26, 2017.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in Neural Information Pro-
cessing Systems, pp. 3111–3119, MIT Press, Cambridge, MA,
USA, 2013.

[48] K. Hu, H. Wu, K. Qi et al., “A domain keyword analysis
approach extending term frequency-keyword active index
with google word2vec model,” Scientometrics, vol. 114, no. 3,
pp. 1031–1068, 2017.

[49] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted Boltzmann machines,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
pp. 807–814, Haifa, Israel, June 2010.

[50] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu, “Text
classification improved by integrating bidirectional lstm with
two-dimensional max pooling,” in Proceedings of the 26th
International Conference on Computational Linguistics
(COLING), pp. 3485–3495, Osaka, Japan, December 2016.

[51] S. M. Mohammad, M. Salameh, and S. Kiritchenko, “How
translation alters sentiment,” Journal of Artificial Intelligence
Research, vol. 55, pp. 95–130, 2016.

[52] K. M. Alomari, H. M. ElSherif, and K. Shaalan, “Arabic tweets
sentimental analysis using machine learning,” in Proceedings
of the International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, pp. 602–610,
Montreal, Canada, June 2017.

[53] N. A. Abdulla, N. A. Ahmed, M. A. Shehab, and M. Al-
Ayyoub, “Arabic sentiment analysis: Lexicon-based and
corpus-based,” in Proceedings of the 2013 IEEE Jordan Con-
ference on Applied Electrical Engineering and Computing
Technologies (AEECT), pp. 1–6, Amman, Jordan, 2013.

[54] A. Dahou, S. Xiong, J. Zhou, M. H. Haddoud, and P. Duan,
“Word embeddings and convolutional neural network for
Arabic sentiment classification,” in Proceedings of the 26th
International Conference on Computational Linguistics
(COLING), pp. 2418–2427, Osaka, Japan, December 2016.

[55] J. Kennedy and R. Eberhart, “PSO optimization,” in Pro-
ceedings of the IEEE International Conference on Neural
Networks, pp. 1941–1948, Perth, Australia, November 1995.

[56] J. H. Holland, Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Con-
trol, and Artificial Intelligence, MIT Press, Cambridge, MA,
USA, 1992.

[57] S. Al-Azani and E.-S. M. El-Alfy, “Hybrid deep learning for
sentiment polarity determination of Arabic microblogs,”
International Conference on Neural Information Processing,
Part of the Lecture Notes in Computer Science book series
(LNCS), vol. 10635, pp. 491–500, 2017.

[58] A. B. Soliman, K. Eissa, and S. R. El-Beltagy, “AraVec: a set of
Arabic word embedding models for use in Arabic NLP,”
Procedia Computer Science, vol. 117, pp. 256–265, 2017.

16 Computational Intelligence and Neuroscience

http://arxiv.org/abs/1408.5882

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable

Computing

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scientific
Programming

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

