

Workshop on computer science and information technologies CSIT’2010, Moscow – Saint-Petersburg, Russia, 2010

75

Arabic Text Classification Using Decision Trees

Motaz K. Saad

Computer Engineering Department

Islamic University of Gaza

Gaza, Palestine

e-mail: msaad@iugaza.edu.ps

Wesam Ashour

Computer Engineering Department

Islamic University of Gaza

Gaza, Palestine

e-mail: washour@iugaza.edu.ps

Abstract
1

Text mining draw more and more attention recently,

it has been applied on different domains including

web mining, opinion mining, and sentiment

analysis. Text pre-processing is an important stage

in text mining. The major obstacle in text mining is

the very high dimensionality and the large size of

text data. Natural language processing and

morphological tools can be employed to reduce

dimensionality and size of text data. In addition,

there are many term weighting schemes available in

the literature that may be used to enhance text

representation as feature vector. In this paper, we

study the impact of text pre-processing and different

term weighting schemes on Arabic text

classification. In addition, develop new

combinations of term weighting schemes to be

applied on Arabic text for classification purposes.

1. Introduction

Text Mining is a vital process due to huge availability of

information in text documents which exists in various

format. However, the task is not trivial to make the text at

human level understanding to machines. The process

includes derive linguistic features from text to be at

human like interpretation to be mined, particularly, for

Arabic language.

Text mining is well motivated, due to the fact that much

of the world’s data can be found in text form (newspaper

articles, emails, literature, web pages, etc). Mining text

has the same goals as data mining including, text

categorization, clustering, document summarization, and

extracting useful knowledge/trends. Text mining must

overcome a major difficulty that there is no explicit

structure [4]. Machines can reason relational data well

since schemas are explicitly available. Text, however,

encodes all semantic information within natural language.

Proceedings of the 12
th

 international workshop on

computer science and information technologies

CSIT’2010, Moscow – Saint-Petersburg, Russia, 2010

Text mining algorithms, then, must make some sense out

of this natural language representation. Humans are great

at doing this, but this has proved to be a problem for

machines [4]. Text mining usually involves the process of

structuring the input text (parsing, along with the addition

of some derived linguistic features and the removal of

others), deriving patterns within the structured data, and

finally evaluation and interpretation of the output. High

quality in text mining usually refers to some combination

of relevance, novelty, and interestingness.

Arabic is one of the most widely used languages in the

world. It is spoken by more than 280 million people as a

first language and by 250 million as a second language.

Despite Arabic is wide language, there are relatively few

studies on the retrieval/mining of Arabic text documents

in the literature. This is due to the unique nature of Arabic

language morphological principles. Arabic is a

challenging language for a number of reasons [1, 2, 3, 5,

12]:

1. Orthographic with diacritics is less ambiguous

and more phonetic in Arabic, certain

combinations of characters can be written in

different ways.

2. Arabic has a very complex morphology

recording as compare to English language.

3. Broken plurals are common. Broken plurals are

somewhat like irregular English plurals except

that they often do not resemble the singular form

as closely as irregular plurals resemble the

singular in English. Because broken plurals do

not obey normal morphological rules, they are

not handled by existing stemmers.

4. In Arabic we have short vowels which give

different pronunciation. Grammatically they are

required but omitted in written Arabic texts.

5. Arabic synonyms are widespread.

The impact of text pre-processing and different term

weighting schemes combinations on Arabic text

classification has not been studied in the literature. In this

Arabic Text Classification Using Decision Trees

76

paper, we study this impact on Arabic corpus collected

manually from Aljazeera news web site. In addition,

develop new combinations of term weighting schemes to

be applied on Arabic text for classification purposes.

The rest paper is organized as follows: section 2

describes text pre-processing steps and stages.

Experimental results are presented in section 3, and

finally, we draw the conclusion.

2. Text Pre-processing

One of widely used methods for text mining presentations

is viewing text as a bag-of-tokens (words, n-grams).

Under that model we can already summarize, classify,

cluster, and compute co-occurrence stats over text. These

are quite useful for mining and managing large volumes

of text. However, there is a potential to do much more.

The Bag-Of-Tokens (BOT) approach loses a lot of

information contained in text, such as word order,

sentence structure, and context. These are precisely the

features that humans use to interpret text. Natural

Language Processing (NLP) attempts to understand

document completely (at the level of a human reader).

General NLP has proven to be too difficult. The reason

that NLP in general is so difficult is that text is highly

ambiguous. Natural Language is meant for human

consumption and often contains ambiguities under the

assumption that humans will be able to develop context

and interpret the intended meaning.

The main function of term weighting is to enhance text

document representation as feature vector. Popular term

weighting schemes are Boolean model, Term Frequency

(TF), Inverse Document Frequency (IDF), and Term

Frequency-Inverse Document Frequency (TFIDF).

Boolean model indicates absence or presence of a word

with Booleans 0 or 1 respectively. Term frequency

TF(t,d) is the number that the term t occurred in the

document d. Document frequency DF(t) is number of

documents in which the term t occur at least once. The

inverse document frequency can be calculated from

document frequency using the formula log(num of

Docs/num of Docs with word i). The inverse document

frequency of a term is low if it occurs in many documents

and high if the term occurs in only few documents. Term

discrimination consideration suggests that the best terms

for document content identification are those able to

distinguish certain individual documents from the

collection. This implies that the best terms should have

high term frequencies but low overall collection

frequencies (num of Docs with word i). A reasonable

measure of term importance may then be obtained by

using the product of the term frequency and the inverse

document frequency (TF * IDF) [7, 10, 11].

In many situations, short documents tend to be

represented by short-term vectors, whereas much larger-

term sets are assigned to the longer documents. Normally,

all text documents should have the same importance for

text mining purposes. This suggests that a normalization

factor to be incorporated into the term-weighting to

equalize the length of the document vectors [7, 10, 11].

Terms have many morphological variants that will not be

recognized by term matching algorithm without

additional text processing. In most cases, these variants

have similar semantic interpretation and can be treated as

equivalence in text mining. Stemming algorithm can be

employed to perform term reduction to a root form.

Stemming algorithm by Khoja [9] one is of well know

Arabic Stemmers.

Weka (Waikato Environment for Knowledge Analysis)

[6] is a popular suite of machine learning software written

in Java, developed at the University of Waikato. It is free

software available under the GNU General Public

License. Weka provides a large collection of machine

learning algorithms for data pre-processing, classification,

clustering, association rules, and visualization, which can

be invoked through a common Graphical User Interface.

Using Weka StringToWordVector tool options with

different combinations, we setup the term weighting

combinations presented in table 1 to be passed to C4.5

decision tree [9] to classify text documents. We combine

TF, IDF, TFIDF, pruning, and normalization. These

combinations have not been applied on Arabic text before

in the literature. The resulting combinations (described in

table 2) are Boolean, wc, wc-tf , wc-idf, wc-tf-idf, wc-

norm, wc-minFreq3, wc-norm-minFreq3, and wc-all-

minFreq3.

Two major combinations are used; Bag of Tokens (BOT)

(without stemming), and term Stemming. Symbols used in

experiment setup preprocessing combinations for Stem

and BOT are shown in table 2.

Workshop’s Proceedings are published by CSIT

Organizing Committee both in a hard copy and

electronically.(style CSIT-Plane Text)

This means that instead of receiving printed copies of the

papers customers will select an electronic format

(WinWord).

 Papers from Workshops will be printed out

individually. This means each page of each paper

should have enough context information to identify

the paper and the Workshop it came from.

 The print area of the page is defined to be the largest

area which fits on A4 paper with 2 cm margins

(everywhere as this template).(style CSIT-List N)

3. Experimental results and analysis

We perform Experiments on Arabic text dataset collected

manually from Aljazeera news website

(http://www.aljazeera.net). The dataset contains 119 text

documents belonging to one of the three categories (sport,

health, computer & communications). For text

classification, we use C4.5 decision tree [9] with 10 folds

cross-validation.

Workshop on computer science and information technologies CSIT’2010, Moscow – Saint-Petersburg, Russia, 2010

77

Table 1: Weka String to Word Vector options

TF Transform log(1+fij), where fij is the frequency of word i in document dj.

IDF Transform
fij*log(num of Docs/num of Docs with word i), where fij is the frequency of word i in
document dj.

TFIDF Transformation
log(1 + fij) * log (num of Docs/num of Docs with word i), where fij is the frequency of
word i in document dj.

minTermFreq Sets the minimum term frequency (apply term pruning)

normalizeDocLength Sets whether if the word frequencies for a document should be normalized or not.

outputWordCounts
Output word counts rather than Boolean 0 or 1(indicating absence or presence of a
word).

Stemmer The stemming algorithm to be use on the words (Khoja Arabic Stemmer Algorithm).

Table 2: Symbols used in experiment setup preprocessing combinations for Stem and BOT

Boolean Indicating presence (1) or absence (0) of a word.

wc Output word counts

wc-tf Apply TF transformation on word count

wc-idf Apply IDF transformation on word count

wc-tf-idf Apply TFIDF transformation on word count

wc-norm Apply document normalization on word count

wc-minFreq3 Apply term pruning on word count that less than 3

wc-norm-minFreq3 Apply normalization and term pruning on word count that less than
3

wc-all-minFreq3 Apply TFIDF and normalization on word count
Table 3: Classification result for BOT and Stemmed term using different text preprocessing combinations

Attributes % correctly Running Time

BOT Stemmed BOT Stemmed BOT Stemmed

Boolean 11617 4558 88 96 106.1 37.5

wc 11617 4558 87 95 105.9 39.57

wc-tf 11617 4558 88 95 105.2 40.39

wc-idf 11617 4558 87 95 105.5 35.29

wc-tf-idf 11617 4558 88 95 105.4 39.65

wc-norm 11617 4558 85 96 102.1 37.48

wc-minFreq3 873 736 90 95 6.99 5.9

wc-norm-minFreq3 2461 1402 87 97.4 22.6 9.98

wc-all-minFreq3 873 736 87 94 6.85 5.85

Table 3 shows classification performance for BOT and

Stemmed terms using preprocessing combinations

described in table 2. Figure 1 describes dimensionality

reduction for text dataset using different preprocessing

combinations. Comparing BOT and Stemmed Term,

using term stemming lead to reduce dimensionality for

all preprocessing combinations because stemming

reduce many terms, which have many morphological

variants, to their root. Dimensionality dramatically

reduced using term pruning with minimum frequency of

3 because there are many infrequent terms in the

document collection. The presence of infrequent terms

leads to decrease classification accuracy.

Figure 2 shows classification accuracy for different text

preprocessing combinations, wc-norm-minFreq3 give

highest accuracy for Stemmed terms, while wc-

minFreq3 give the highest accuracy for BOT.

Obviously, pruning infrequent terms enhance

classification accuracy. The accuracy for stemmed

terms is better than BOT for all preprocessing

combinations. Stemming enhance term weighting and

this affect classification accuracy.

Figure 3 depicts the running time for classification

process. Shortest running time is achieved when use

term pruning with minimum 3 occurrences. Again,

Arabic Text Classification Using Decision Trees

78

running time for stemmed terms is shorter than BOT for

all pre-processing combinations. Term stemming and

pruning dramatically reduce dimensionality and

enhance classification accuracy and performance.

The empirical results also show that wc-norm and wc-

tfidf give good accuracy and performance; this may

vary from dataset to another. Furthermore, it is known

that document normalization and TFIDF work well for

large text dataset [7, 10, 11].

Figure 1: text dataset dimensionality for different text preprocessing combinations.

Figure 2: C4.5 classification accuracy for each text preprocessing combinations.

4. Conclusions

Text preprocessing is an important step in text mining.

There are many preprocessing combination that can be

used for text preprocessing, but it is very difficult to

determine the best preprocessing and term weighting.

In this paper we evaluated text preprocessing

combinations on Arabic text mining. Empirical results

showed Term stemming and pruning, document

normalization, and term weighting dramatically reduce

dimensionality, enhance text representation and directly

impact text mining performance.

Acknowledgements
We would like to thank Dr. Alaa El-Halees for his

comments.

Workshop on computer science and information technologies CSIT’2010, Moscow – Saint-Petersburg, Russia, 2010

79

Figure 3: text classification running time for each text preprocessing combinations.

References

1. Al-Marghilani A., Zedan H., Ayesh A., A

GENERAL FRAMEWORK FOR MULTILINGUAL

TEXT MINING USING SELF-ORGANIZING

MAPS. The 25th IASTED Int. Multi-Conf:

Artificial Intelligence and Applications (AIA'07),

Innsbruck, Austria, pp. 520-525, 2007.

2. Al-Marghilani A., Zedan H., Ayesh A., Text Mining

Based on the Self-Organizing Map Method for

Arabic-English Documents. Proc. of the 19
th

Midwest Artificial Intelligence and Cognitive

Science Conf. (MAICS 2008), Cincinnati, USA, pp.

174-181 , 2008.

3. El-Halees A., A Comparative Study on Arabic Text

Classification. Egyptian Computer Science Journal

Vol. 20 no. 2 May, 2008.

4. Feldman R., Sanger J., The Text Mining Handbook:

Advanced Approaches in Analyzing Unstructured

Data. Cambridge University Press, 2007.

5. Ghwanmeh S., Applying Clustering of Hierarchical

K-means-like Algorithm on Arabic Language. Int.

Journal of Information Technology Vol. 3 No 3.

2005.

6. Hall M., Frank E., Holmes G., Pfahringer B.,

Reutemann P., Witten I., The WEKA Data Mining

Software: An Update. SIGKDD Explorations, Vol.

11, No. 1, 2009.

7. Jing L., Huang H., Shi H.: Improved feature

selection approach TFIDF in text mining. Proc. of

the 1
st
 int. conf. of machine learning and

cybernetics, Beijing, 2002.

8. Khoja S., Garside R., Stemming Arabic text.

Computer Science Department, Lancaster

University, Lancaster, UK, 1999.

9. Quinlan R., C4.5: Programs for Machine Learning.

Morgan Kaufmann Publishers, San Mateo, CA.

1993.

10. Said D., Wanas N., Darwish N., Hegazy N.: A

Study of Arabic Text preprocessing methods for

Text Categorization. 2
nd

 Int. conf. on Arabic

Language Resources and Tools, Cairo, Egypt, 2009.

11. Salton G., Buckley C.: Term weighting approaches

in automatic text retrieval. Proc. of information

processing & management, Vol. 24, No. 5, pp 513-

523, 1998.

12. Taghva, K., Elkhoury, R., Coombs, J.: Arabic

stemming without a root dictionary. Information

Technology: Coding and Computing, ITCC, Vol. 1,

pp 152 – 157, 2005.

	Arabic Text Classification Using Decision Trees
	Abstract
	1. Introduction
	2. Text Pre-processing
	3. Experimental results and analysis
	4. Conclusions
	References

