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Synopsis 

A mutant lacking six ABA receptors and ABA-mediated activation of SnRK2.2/2.3/2.6 

kinases shows an extreme ABA-insensitive phenotype, even though other branches for 

ABA perception remain functional. ABA perception through PYR/PYL/RCAR 

receptors plays a major role to regulate seed germination and establishment, vegetative 

and reproductive growth, stomatal aperture and transcriptional response to ABA. 
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ABSTRACT 

Abscisic acid (ABA) is a key hormone for plant growth, development and stress 

adaptation. Perception of ABA through four types of receptors has been reported. We 

show here that impairment of ABA perception through the PYR/PYL/RCAR branch 

reduces vegetative growth and seed production, and leads to a severe open stomata and 

ABA insensitive phenotype, even though other branches for ABA perception remain 

functional. An Arabidopsis sextuple mutant impaired in 6 PYR/PYL receptors, namely 

PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8, was able to germinate and grow even on 

100 μM ABA. Whole-rosette stomatal conductance (Gst) measurements revealed that 

leaf transpiration in the sextuple pyr/pyl mutant was higher than in the ABA-deficient 

aba3-1 or ABA-insensitive snrk2.6 mutants. The gradually increasing Gst values of 

plants lacking three, four, five and six PYR/PYLs indicate quantitative regulation of 

stomatal aperture by this family of receptors. The sextuple mutant lacked ABA-

mediated activation of SnRK2s and ABA-responsive gene expression was dramatically 

impaired as was reported in snrk2.2/2.3/2.6. In summary, these results show that ABA 

perception by PYR/PYLs plays a major role to regulate seed germination and 

establishment, basal ABA signaling required for vegetative and reproductive growth, 

stomatal aperture and transcriptional response to the hormone.  
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INTRODUCTION 

The phytohormone abscisic acid (ABA) plays a key role to regulate different aspects of 

plant growth and development as well as plant response to both biotic and abiotic stress 

(Cutler et al., 2010). ABA elicits plant responses through binding to soluble 

PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY 

COMPONENTS OF ABA RECEPTORS (RCAR) receptors, which constitute a 14-

member family. All of them (except PYL13) are able to activate ABA-responsive gene 

expression using protoplast transfection assays (Fujii et al., 2009);  however, according 

to their different expression patterns (Antoni et al., 2012; Kilian et al., 2007; Laubinger 

et al., 2008; Winter et al., 2007; Yang et al., 2008)(Supplemental Figure 1), substantial 

functional differences among them can be expected. For instance, expression of PYL3 

and PYL10-13 is very low to undetectable in different whole-genome microarrays 

(Yamada et al., 2003; Chekanova et al., 2007; Laubinger et al., 2008), whereas 

significant expression levels are found for PYR1 and PYL1-9 in different tissues and in 

response to developmental and environmental cues (Kilian et al., 2007; Winter et al., 

2007)(Supplemental Figure 1). From a biochemical point of view, recent studies reveal 

at least two families of PYR/PYL receptors, characterized by a different oligomeric 

state, some being dimeric (PYR1, PYL1 and PYL2), whereas others are monomeric (for 

instance PYL5, PYL6, PYL8) (Dupeux et al., 2011a; Hao et al., 2011). The dimeric 

receptors show a higher Kd for ABA (>50 μM, lower affinity) than monomeric ones (~1 

μM), however, in the presence of certain clade A protein phosphatases 2C (PP2Cs), 

both groups of receptors form ternary complexes with high affinity for ABA (Kd 30-60 

nM) (Ma et al., 2009; Santiago et al., 2009a, b). The highest genetic impairment of 

PYR/PYL function is currently represented by the pyr1pyl1pyl2pyl4 quadruple mutant, 

abbreviated as 1124, which shows strong ABA insensitivity, including reduced 

sensitivity to ABA-mediated inhibition of germination and root growth, impaired ABA-

induced stomatal closure and ABA inhibition of stomatal opening as well as reduced 

expression of some ABA-responsive genes (Nishimura et al., 2010; Park et al., 2009).  

  PYR/PYL receptors perceive ABA intracellularly and as a result, form ternary 

complexes inhibiting clade A PP2Cs (Ma et al., 2009; Park et al., 2009). This allows the 

activation of downstream targets of the PP2Cs, such as the sucrose non-fermenting 1-

related subfamily 2 (SnRK2s) protein kinases, i.e. SnRK2.2/D, 2.3/I and 2.6/OST1/E, 

which are key players to regulate ABA signaling, including regulation of transcriptional 
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response to ABA and stomatal aperture (Fujii and Zhu, 2009; Fujita et al., 2009; 

Umezawa et al., 2009; Vlad et al., 2009). Indeed, a snrk2.2/2.3/2.6 triple mutant shows 

a dramatic ABA-insensitive phenotype in different responses to the hormone, being able 

to germinate and establish in the range 50-300 μM ABA (Fujii and Zhu, 2009; Fujita et 

al., 2009). The 1124 quadruple mutant shows impaired ABA-mediated-activation of the 

three  SnRK2s because of reduced inhibition of clade A PP2Cs and, conversely, a hab1-

1 abi1-2 pp2ca-1 triple pp2c knockout shows partial constitutive activation of SnRK2s 

(Fujii et al., 2009; Park et al., 2009; Rubio et al., 2009). Even though the 1124 

quadruple mutant shows strong ABA-insensitivity, it was not able to establish and 

develop the first pair of true leaves in medium supplemented with 5 μM ABA at 7 days 

after sowing (see below). Although ABA-induced activation of SnRK2s was notably 

impaired in 1124, some activation of SnRK2s in response to ABA was observed (Park 

et al., 2009). This result suggests that additional members of the PYR/PYL family are 

still able to inhibit clade A PP2Cs to a certain extent in 1124, leading to some activation 

of both SnRK2s and other PP2C targets. Additionally, other types of ABA receptors 

might contribute to ABA signaling in 1124 (Pandey et al., 2009; Shen et al., 2006).  

 Five different types of ABA receptors have been reported in the literature. The 

original article describing the first one, the RNA binding protein FCA involved in 

regulation of flowering time, was later on retracted (Razem et al., 2008). A second ABA 

binding protein, ABAR/CHLH, has been isolated from Vicia faba and Arabidopsis 

using an ABA-affinity chromatography technique that relies on the linkage of the 

carboxylic group of ABA to a functionalized Sepharose resin (Shen et al., 2006; Wu et 

al., 2009). ABAR/CHLH is a chloroplastic protein involved in both chlorophyll 

biosynthesis, acting as protoporphyrin IX-magnesium chelatase, and plastid-to-nucleus 

signaling, and according to recent results it also antagonizes a group of WRKY 

transcription factors to relieve inhibition of ABA-responsive genes (Shang et al., 2010). 

However, structural compelling evidence supporting ABA binding by ABAR/CHLH is 

still lacking (reviewed by Antoni et al., 2011).  The third ABA receptor to be described 

was GCR2, which according to Liu et al., (2007) is a G protein-coupled protein that 

works as a plasma membrane receptor for ABA. However, there is controversy 

regarding its definition as a G-protein coupled receptor and its role in ABA signaling 

during germination and seedling establishment (reviewed by Cutler et al., 2010). 

Following pharmacological and genetic evidence suggesting the involvement of G-
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protein coupled signaling in the ABA pathway, Pandey et al., (2009) reported a family 

of two G-protein coupled receptors, GTG1 and GTG2, which work as plasma 

membrane ABA receptors. Finally, Ma et al., (2009) and Park et al., (2009) reported the 

PYR/PYL/RCAR family of ABA receptors, which form a core hormone signaling 

pathway with clade A PP2Cs and SnRK2.2/2.3/2.6. Potential perception of ABA 

through different types of receptors or by different members of the PYR/PYL/RCAR 

family raises several questions that have not been addressed yet, such as what is the 

relative contribution of each type of receptor and how are multiple inputs of perception 

integrated into ABA signaling. In order to evaluate the relative contribution to ABA 

signaling of ABA perception mediated by the PYR/PYL/RCAR family, we aimed to 

generate a pyr/pyl mutant lacking ABA-mediated activation of SnRK2s. To this end, we 

knocked out six PYR/PYL genes that showed high expression level in different tissues 

(Supplemental Figure 1). Thus, we were able to generate a pyr1pyl1pyl2pyl4pyl5pyl8 

sextuple mutant that is extremely insensitive to ABA even though other branches of 

ABA perception remain functional. 

RESULTS 

Reporter gene analysis of PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 promoters  

Data from whole-genome arrays (Yamada et al., 2003; Chekanova et al., 2007; 

Laubinger et al., 2008) found in the Arabidopsis transcriptome database indicate that 

PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 genes are expressed in different tissues, as 

we confirmed through a detailed reporter gene analysis (Figure 1;  Supplemental Figure 

1, 2 and 3).  For instance, PYR1, PYL1, PYL4 and PYL8 genes rank among the top-four 

most expressed receptors of the PYR/PYL family in root, seedling, leaf young, stem, 

vegetative apex, fruit and whole inflorescence (Supplemental Figure 1D). In order to 

visualize the expression of PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 genes through 

histochemical staining, sequences comprising between 1.5 to 2 kb upstream of the ATG 

start codon and the first 30 bp of the ORF were fused to a reporter gene encoding β-

glucuronidase (GUS). Independent transgenic lines were generated and the GUS 

expression pattern of at least three lines was analyzed by histochemical GUS staining 

(Figure 1). Germinating embryos were dissected from the seed coat and endosperm at 

24 or 48 h after imbibition and imaging of GUS within germinating embryos was 

performed as previously described (Truernit et al., 2008). Interestingly, at 24 h, the 
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expression of PYR1, PYL8 and to lower extent PYL1 was detected in the endosperm 

(Figure 1B), whereas expression of PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 was 

detected in the peripheral layer of the embryo (embryo epidermal layer) as well as in the 

provascular cells within the cotyledons and hypocotyls, but not in the radicle (Figure 1A 

and C). However, at 48 h after imbibition and following the completion of germination, 

expression of PYR1, PYL1, PYL2, PYL4 and PYL8 could be detected in the vascular 

tissue of the root (Figure 1C).    

 In 5-d-old seedlings, expression of PYR1, PYL1, PYL2, PYL4 and PYL8 was 

detected in the vascular bundle of the primary root, whereas PYR1 and PYL5 were 

expressed in the cortex of the upper part of the root (Figure 1D;  Supplemental Figure 

2). Interestingly, PYL1, PYL4 and PYL8 were also expressed in the columella cells 

(Figure 1D). In 15-d-old seedlings, expression of PYR1, PYL1, PYL2, PYL4, PYL5 and 

PYL8 was detected in guard cells, and also in vascular tissue of the leaves with the 

exception of PYL5 (Figure 1E-F). The predominant expression of PYR/PYL genes in 

vascular bundles of root and leaves is particularly interesting since the vascular system 

is a node of systemic stress responses and immunological studies have localized the 

NCED3, ABA2 and AAO3 ABA-biosynthetic enzymes in vascular parenchyma cells 

(Endo et al., 2008). Finally, ABA-treatment inhibited or strongly attenuated GUS 

expression driven by these promoters (Supplemental Figure 3). This result provides in 

situ evidence for the down-regulation of gene expression of members of the PYR/PYL 

family by ABA (Santiago et al., 2009a; Szostkiewicz et al., 2010).   

Generation of pyr1pyl1pyl2pyl4pyl5pyl8 sextuple mutant 

Different combinations of multiple mutants containing lesions in PYR/PYL genes were 

generated, namely pyr1pyl4pyl5 (145), pyl4pyl5pyl8 (458), pyr1pyl4pyl8 (148) triple 

and pyr1pyl4pyl5pyl8 (1458) quadruple mutants. Seed germination and seedling 

establishment analyses showed that these genotypes were less sensitive to ABA than wt 

(Figure 2). All of them, as well as the previously described pyr1pyl1pyl4 (114) and 

1124 mutants (Park et al., 2009), were able to establish in 1 μM ABA;  however, only 

1458 was able to establish in 5 μM ABA at 7-d after sowing, whereas 1124 established 

in 3 μM ABA. We crossed the 1124 and 1458 quadruple mutants and selected F2 

individuals able to germinate and establish in MS medium supplemented with 10 μM 

ABA. PCR-based genotyping and gene sequencing of the pyr1-1 allele identified 
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pyr1pyl2pyl4pyl5pyl8 pentuple, abbreviated as 12458, and pyr1pyl1pyl2pyl4pyl5pyl8 

sextuple, abbreviated as 112458, mutants (Figure 3A). The 12458 and particularly 

112458 mutants showed impaired growth, which was reminiscent of growth inhibition 

previously reported in the snrk2.2/2.3/2.6 triple mutant (Figure 3B-C). Although lower 

growth and seed yield was observed in the sextuple mutant compared to wt, it could 

bolt, flower and produced viable seeds under greenhouse conditions (40-50% relative 

humidity) (Figure 3C-E). Increasing humidity (70-80%) improved growth and seed 

yield of 112458, however it also caused fungal contamination of the seeds.  

Extreme ABA-insensitive phenotype of pyr1pyl1pyl2pyl4pyl5pyl8 sextuple mutant 

We analyzed the effect of ABA to inhibit seed germination and seedling establishment 

of the pentuple and sextuple mutants in comparison to wt and the extremely ABA-

insensitive snrk2.2/2.3/2.6. Radicle emergence of 12458, 112458 and snrk2.2/2.3/2.6 

was resistant even to 50-100 μM ABA, however only the 112458 and snrk2.2/2.3/2.6 

mutants were able to develop expanded green cotyledons and the first pair of true leaves 

at such high ABA concentrations (Figure 4A, C and D). Root length in MS medium of 

12458 and 112458 mutants was lower than wt, but it improved by the presence of 3-20 

μM ABA in the germination plate, which indicates that these mutants require ABA 

supplementation for optimal in vitro root growth (Figure 4A-B). The snrk2.2/2.3/2.6 

triple mutant also showed a reduced root growth in MS medium compared to wt, 

however, in contrast to pentuple and sextuple pyr/pyl mutants, ABA supplementation 

did not improve root growth (Figure 4B).  

 High concentrations of ABA inhibit seedling growth of wt, whereas certain 

ABA-insensitive mutants are resistant to inhibition of vegetative growth. We transferred 

4-d-old seedlings from different genotypes to MS medium plates lacking or 

supplemented with 20 or 50 μM ABA. Root growth was measured 10 days after transfer 

and as a result, 12458, 112458 and snrk2.2/2.3/2.6 were resistant to ABA-mediated 

inhibition of root growth compared to wt (Figure 5A-B). Moreover, ABA 

supplementation improved slightly root growth of 12458 and 112458. Shoot growth was 

evaluated by either measuring the maximum rosette radius or fresh weight of plants 

grown for 11-d or 21-d, respectively, in MS medium either lacking or supplemented 

with ABA (Figure 5C-F). As a result, shoot growth of 12458 was found to be inhibited 
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by ABA, whereas both 112458 and snrk2.2/2.3/2.6 were notably resistant to ABA-

mediated inhibition of growth. 

 Previous microarray analyses (Yang et al., 2008) showed that the six PYR/PYL 

genes studied here were all expressed in guard cells (Supplemental Figure 4). Indeed, 

GUS expression driven by PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 promoters was 

detected in guard cells (Figure 1F). Therefore, to study the contribution of these genes 

to the regulation of stomatal aperture, we performed water-loss and stomatal assays in 

different genotypes. Water-loss assays were done using 15-d-old seedlings grown in a 

controlled environment growth chamber to reduce developmental differences among the 

different genotypes. As a result, enhanced shrinking and higher fresh weight-loss was 

found in the excised 12458, 112458 and snrk2.2/2.3/2.6 plants compared to wt (Figure 

6A and B). For instance, both 112458 and snrk2.2/2.3/2.6 lost approximately 40% of 

fresh weight in 30 minutes whereas wt only 20%. Direct measurements of stomatal 

aperture using whole leaf imaging (Chitrakar and Melotto, 2010) revealed that stomata 

of both 112458 and snrk2.2/2.3/2.6 were more open than in wt (Figure 6C) and 112458 

was insensitive to ABA-induced stomatal closing (Figure 6D).  

 We also used a gas exchange system that monitors steady state stomatal 

conductance (Gst) of whole Arabidopsis rosette, enabling to analyze Gst in intact whole 

plants under basal conditions (Kollist et al., 2007; Vahisalu et al., 2008). Plants carrying 

different combinations of pyr/pyl mutations showed higher steady state Gst than wt, 

which indicates that stomata of different pyr/pyl mutants have higher aperture than wt 

(Figure 6E). Interestingly, both 12458 and 112458 showed more 2-fold higher Gst than 

well known wilty mutants such as snrk2.6 or aba3-1. The snrk2.6/ost1 mutant showed 

1.7-fold higher Gst value than wt, whereas snrk2.2/2.3 double mutant was similar to wt, 

which is in agreement with water-loss assays reported previously (Fujii and Zhu, 2009). 

We tried to perform Gst measurements with snrk2.2/2.3/2.6, but this mutant is severely 

impaired in growth and we could not obtain enough foliar surface to perform the 

experiments. A transgenic line harbouring the hab1
G246D

 hypermorphic mutation 

(Robert et al., 2006), which represents a PP2C version refractory to PYR/PYL-mediated 

inhibition (Dupeux et al., 2011b), showed a dramatic increase in Gst compared to wt. 

This result is in agreement with the more open stomata phenotype of pyr/pyl mutants, 

since these mutants must contain higher PP2C activity because of reduced inhibition by 

PYR/PYL receptors and this in turn suppresses the activation of positive regulators of 
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stomatal closure, such as SnRK2.6. Taken together these results suggest that ABA and 

PYR/PYL receptors are required for adjustment of stomatal aperture in steady-state 

resting conditions. 

Transcriptional response to ABA is severely impaired in pyr1pyl1pyl2pyl4pyl5pyl8 

sextuple mutant 

The phenotypes described above indicate that PYR/PYL receptors are major players for 

ABA perception and signaling. To examine the effect of impaired ABA perception via 

the PYR/PYL pathway on transcriptional response to ABA, we compared 

transcriptomic profiles of wt, 112458 and snrk2.2/2.3/2.6 in response to ABA using 

Agilent´s Arabidopsis 44k oligonucleotide microarrays (Figure 7A; Supplemental 

Figure 5). Large-scale transcriptome analysis has previously showed that ABA-

dependent gene expression was globally and drastically impaired in snrk2.2/2.3/2.6 

(Fujita et al., 2009). We confirmed these results under our experimental conditions and 

found that 112458 also showed a globally impaired transcriptional response to ABA 

(Figure 7A). After 10 μM ABA treatment for 3h, 2432 and 2283 genes showed reduced 

expression (≥2-fold, false discovery rate P<0.05) in the snrk2.2/2.3/2.6 and 112458 

mutants compared to the wt, respectively. Among them, 1974 genes overlapped, which 

indicates that more than 85% of the genes whose expression was impaired in 112458 

upon ABA-treatment were regulated in the wt through the activity of SnRK2.2/2.3/2.6 

kinases. Among the different groups of ABA-responsive genes that showed diminished 

expression in snrk2.2/2.3/2.6 and 112458 mutants, we found for instance the clade A 

PP2Cs, ABI5/ABFs/AREBs bZIP family, the proline biosynthetic gene Δ1
-pyrroline-5-

carboxylate synthetase 1(P5CS1), a high number of late embryogenesis-abundant (LEA) 

genes or different ABA- and osmotic stress marker genes that belong to responsive to 

ABA (RAB), desiccation/dehydration (RD/ERD) and cold-inducible/cold-

responsive/low temperature inducible gene families (KIN/COR/LTI) (Figure 7B). A 

complete list is provided in Supplemental Table 1. We confirmed the data described 

above using RT-qPCR analysis. For instance, ABA-mediated induction of the genes 

RAB18, RD29B and KIN1 was dramatically reduced both in snrk2.2/2.3/2.6 and 112458 

(Figure 7C). Other pyr/pyl mutants also showed a reduced expression of these genes; 

however triple pyr/pyl mutants such as 148 or 458 still retained between 25-40% of wt 

expression, whereas 112458 showed only residual 4 %, 0.3 % and 1.5 % of wt 

expression for RAB18, RD29B and KIN1, respectively. Interestingly, the PYL1 gene 
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appears to provide an important contribution to the induction of these genes, since their 

induction by ABA in 1124 was more impaired than in 1458 or 12458 mutants (Figure 

7C).   

 Finally, we monitored the in vivo activation status of SnRK2s by an in-gel 

kinase assay using protein extracts from Col wt, 112458 and snrk2.2/2.3/2.6 (Figure 

7D). The in-gel-kinase assay here reported uses a ΔCABF2 fragment (amino acids 1-

173) as substrate and the three ABA-activated SnRK2s were identified as a double band 

between 42-44 kDa that was present in ABA-treated Col wt but absent in 

snrk2.2/2.3/2.6. Likewise, in 112458, the in-gel-kinase assay did not detect activation of 

the SnRK2s by 100 μM ABA treatment, which is in agreement with gene expression 

data shown above for 112458 and snrk2.2/2.3/2.6.     

DISCUSSION 

ABA perception by different types of ABA receptors has been reported during the last 

years (Shen et al., 2006; Liu et al., 2007; Pandey et al., 2009; Ma et al., 2009; Park et 

al., 2009). Perception through PYR/PYL receptors is evolutionary conserved from 

bryophytes and presumably represents an essential mechanism to mediate, for instance, 

plant adaptive responses to drought in crops (Umezawa et al., 2010). In this work, we 

show that impairment of ABA perception mediated by key members of the PYR/PYL 

family leads to a global dramatic ABA-insensitive phenotype, impaired growth and seed 

production as well as constitutively more open stomata phenotype. Impaired growth and 

reproduction has been previously documented in ABA-deficient and ABA-insensitive 

mutants, and it could not be fully restored by growing plants in high humidity 

conditions (Barrero et al., 2005; Cheng et al., 2002; Fujii and Zhu, 2009). Indeed, even a 

mild reduction in basal ABA levels negatively affects vegetative growth (Frey et al., 

2011). Therefore, our results show that ABA perception through the PYR/PYL 

receptors is required for the basal ABA signaling that promotes plant growth, normal 

seed production and regulates steady-state transpiration. Even under in vitro conditions 

of high humidity and sucrose supplementation of the medium, both the pentuple and 

sextuple mutants here described showed reduced root growth compared to wt, which 

was restored by ABA supplementation. These results suggest that the residual 

perception mediated by other PYR/PYLs or alternative receptors is required for optimal 

root growth, which is in agreement with the reported role of ABA to maintain primary 
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root growth during water deficits (Sharp et al., 2004) and low ABA concentrations (<1 

μM) to stimulate root growth under non-stress conditions (Zeevart and Creelman, 

1998). Several mechanisms have been proposed to explain root growth promotion by 

ABA, such as restriction of ethylene production, enhanced proline accumulation in the 

tip of water-stressed roots, induction of certain cell wall-loosening proteins and 

antioxidant enzymes as well as control of K+ translocation from root to shoot (Gaymard 

et al., 1998; Sharp et al., 2004). Recently, it has been confirmed in 17 natural accessions 

of Arabidopsis that a key physiological response to soil drying is an increased root 

versus shoot biomass partitioning, and the key role played by the transcriptomic 

response to ABA for coping with drought stress (Des Marais et al., 2012). On the other 

hand, growth inhibition of snrk2.2/2.3/2.6 could not be complemented by ABA, which 

likely reflects a bottleneck in ABA signaling downstream of ABA perception or 

additional functions of these kinases. Indeed, SnRK2.6 has been also shown to be 

involved in the regulation of sucrose metabolism and plant growth (Zheng et al., 2010).       

 To our knowledge, both 112458 and snrk2.2/2.3/2.6 are the most ABA-

insensitive mutants described so far. For instance, 112458 was able to germinate and 

establish in the presence of 100 μM ABA, which was not possible for other ABA-

insensitive mutants impaired in ABA receptors (Pandey et al., 2009; Shen et al., 2006). 

Likewise, both 112458 and snrk2.2/2.3/2.6 were able to maintain sustained growth in 50 

μM ABA for 21 days, which was close to that of wt in MS medium. These results, 

together with the partial constitutive activation of ABA signaling found in triple pp2c 

knockouts (Fujii et al., 2009; Rubio et al., 2009), reinforce the importance of the core 

components, i.e. PYR/PYL receptors, PP2Cs and SnRK2s. Moreover, even though 

other branches of ABA perception such as ABAR/CHLH and GTG1/GTG2 remain 

presumably active in the sextuple pyr/pyl mutant, they do not show a major effect on 

ABA-mediated growth inhibition  

 The sextuple pyr/pyl mutant, in addition to showing strongly reduced sensitivity 

to ABA-mediated inhibition of germination and growth, was also drastically impaired in 

the regulation of both stomatal aperture and ABA-responsive gene expression. The 

stomatal aperture in the sextuple pyr/pyl mutant under steady state conditions was 70% 

higher than in wt and stomata did not close in response to ABA. Stomatal conductance 

measurements of different triple pyr/pyl mutants rendered values similar to the open 
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stomata1 mutant, ost1-3/snrk2.6, which was originally identified because of a defective 

regulation of transpiration upon water stress (Mustilli et al., 2002; Yoshida et al., 2002). 

Moreover, the sextuple pyr/pyl mutant rendered record Gst values, more than 2-fold 

higher than in ost1-3/snrk2.6 or the ABA-deficient aba3-1 mutant. Therefore, our 

results highlight that PYR/PYL receptors play a major role in basal ABA signaling 

required for regulation of stomatal aperture even under non-stress conditions. The 

progressive inactivation of PYR/PYL genes generated a clear additive effect on stomatal 

conductance, which can be illustrated by the three successive steps of increasing Gst 

values represented by triple/quadruple, pentuple and sextuple pyr/pyl mutants (Figure 

6E). Microarray data and gene-reporter analysis have showed that different PYR/PYL 

receptors co-exist in the same tissues and therefore can combine their different 

biochemical properties and preferential inhibition of certain clade A PP2Cs to 

quantitatively modulate ABA sensitivity (Antoni et al., 2012; Dupeux et al., 2011a; Hao 

et al., 2011). Moreover, since the six receptors here studied are expressed in guard cells 

at different levels (Yang et al., 2008), we might expect, for instance, different 

phenotypes in triple combinations of pyr/pyl mutant loci. Apparently this was not the 

case, since 114, 148, 145 and 458 triple mutants rendered similar Gst values. Thus, 

some functional redundancy for regulation of stomatal aperture occurs among these 

receptors and these results suggest that a similar degree of PP2C inhibition can be 

attained by combined action of different PYR/PYL receptors in guard cells. Further 

studies to address protein levels of PYR/PYL receptors in guard cells and additional 

combinations of pyr/pyl mutants might shed novel light on this subject.  

 On the other hand, different evidences indicate non-redundant functions for 

PYR/PYL genes. First, the histochemical analysis of PYR/PYL expression patterns points 

out to specific functions of certain members of the family in different tissues. For 

instance, expression of PYR1, PYL8 and to lower extent PYL1, but not PYL2, PYL4 and 

PYL5, could be detected in the endosperm at 24 h after imbibition. Imaging of GUS 

staining in the embryo at 24 or 48 h after imbibition suggests spatio-temporal regulation 

of ABA signaling by certain receptors. Likewise, root ABA signaling seems to use 

different types of receptors whether we consider expression of PYR/PYLs in root 

vascular bundle, cortex or columella cells. Second, some ABA responses of multiple 

pyr/pyl mutants were clearly different depending on the combination considered. For 

instance, the 1458 mutant was less sensitive to ABA-mediated inhibition of seedling 
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establishment than 1124. Induction of RAB18, RD29B and KIN1 was more impaired in 

1124 than 1458 or 12458, which suggests PYL1 might play a more relevant role to 

control transcriptional response to ABA of certain genes.                

 Finally, ABA-responsive gene expression was dramatically impaired in 112458 

as it was in snrk2.2/2.3/2.6 (Fujii and Zhu, 2009; Fujita et al., 2009)(Figure 7). 

Previously, expression of three ABA-responsive genes, RD29A, NCED3 and P5CS1, 

was found to be diminished in 1124 compared to wt (Park et al., 2009), but no global 

analysis of ABA response in pyr/pyl mutants had been previously reported. Our results 

provide evidence that perception of ABA through the PYR/PYL receptors exerts a 

major control on the transcriptional response to ABA. Numerous osmotic stress-

responsive genes were notably down-regulated in 112458, which together with the 

important role of PYR/PYL receptors to regulate stomatal aperture highlights the 

relevance of the PYR/PYL pathway to cope with drought stress. Additionally, the 

strong overlap between the impaired response to ABA of 112458 and snrk2.2/2.3/2.6 

mutants was biochemically corroborated by an in-gel kinase assay that shows lack of 

ABA-mediated activation of SnRK2s in 112458 (Figure 7D). In summary, using large-

scale experiments and biochemical analysis, we show that PYR/PYL receptors exert a 

major control on ABA transcriptional response through PP2C-dependent regulation of 

SnRK2s. Future comparative studies using transcript profiling of mutants impaired in 

other types of receptors could shed additional light on the regulation of transcriptional 

response to ABA. 

 

METHODS 

Plant material and growth conditions.  

Arabidopsis thaliana plants were routinely grown under greenhouse conditions (40-50% 

relative humidity) in pots containing a 1:3 vermiculite-soil mixture. For plants grown 

under growth chamber conditions, seeds were surface sterilized by treatment with 70% 

ethanol for 20 min, followed by commercial bleach (2.5 % sodium hypochlorite) 

containing 0.05 % Triton X-100 for 10 min, and finally, four washes with sterile 

distilled water. Stratification of the seeds was conducted in the dark at 4ºC for 3 days. 

Then, seeds were sowed on Murashige-Skoog (MS) plates composed of MS basal salts, 
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0.1% 2-[N-morpholino]ethanesulfonic acid, 1% sucrose and 1% agar. The pH was 

adjusted to 5.7 with KOH before autoclaving. Plates were sealed and incubated in a 

controlled environment growth chamber at 22ºC under a 16 h light, 8 h dark 

photoperiod at 80-100 μE m
-2

 sec
-1

. The pyr1-1 allele and the T-DNA insertion lines for 

pyl1, pyl2, pyl4 and pyl5 have been described previously (Lackman et al., 2011; Park et 

al., 2009). Seeds of snrk2.6/ost1-3 and pyl8 insertion lines, SALK_008068 and 

SAIL_1269_A02, respectively, were obtained from the Nottingham Arabidopsis Stock 

Centre. 

ProPYR1, ProPYL1, ProPYL2, ProPYL4, ProPYL5 and ProPYL8:GUS fusions.  

To construct the ProPYL8:GUS gene, a fragment comprising 2 kb 5’ upstream of the 

ATG start codon plus the first 30 bp of the PYL8 coding sequence was amplified by 

PCR and cloned into pCR8/GW/TOPO T/A. Next, it was recombined by Gateway LR 

reaction into pMDC163 destination vector (Curtis and Grossniklaus, 2003). To generate 

ProPYR1, ProPYL1, ProPYL2, ProPYL4 and ProPYL5:GUS genes, the upstream 

sequence amplified was approximately of 1.5 kb to avoid overlapping with regulatory 

sequences of neighboring genes. The different pMDC163-based constructs carrying 

ProPYR/PYL:GUS genes were transferred to Agrobacterium tumefaciens pGV2260 

(Deblaere et al., 1985) by electroporation and used to transform Col wt plants by the 

floral dipping method. Seeds of transformed plants were harvested and plated on 

hygromycin (20 μg/ml) selection medium to identify T1 transgenic plants and T3 

progenies homozygous for the selection marker were used for further studies. Imaging 

of GUS within germinating embryos was performed as previously described (Truernit et 

al., 2008).  

RNA analyses.  

ABA treatment, total RNA extraction and RT-quantitative PCR amplifications were 

performed as previously described (Saez et al., 2004). Briefly, about 10-12 seven-day-

old seedlings were transferred from MS plates to 100-ml flasks containing 2.5 ml of MS 

solution and 1 % sucrose. Seedlings were grown in a controlled environment growth 

chamber at 22º under a 16 h light, 8 h dark photoperiod at 80-100 μE m
-2

 sec
-1

. After 10 

days, seedlings were either mock- or 10 μM ABA-treated for 3 h. Transcriptome 

analysis was done using the Agilent Arabidopsis (V4) Gene Expression 4x44,000 
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Microarray, which contained 43,803 probes (60-mer oligonucleotides) and was used in 

a two color experimental design according to MIAME guidelines (Brazma et al., 2001). 

Four biological replicas for each genotype, 112458, snrk2.2/2.3/2.6 and Col wt plants, 

were analyzed and each mutant line was compared with the wt, with dye-swap. Total 

RNA integrity was assessed using the 2100 Bioanalyzer (Agilent). Sample RNA (0.5 

µg) was amplified and labeled with the Agilent Low Input Quick Amp Labeling Kit. 

Agilent’s Spike-In Kit was used to assess the labeling and hybridization efficiencies. 

Hybridization and slide washing were carried out with the Gene Expression 

Hybridization Kit and Gene Expression Wash Buffers, respectively. After washing and 

drying, slides were scanned in an Agilent G2565AA microarray scanner, at 5 µm 

resolution, and using the double scanning, as recommended. Image files were analyzed 

with the Feature Extraction software 9.5.1. Inter-array analyses were performed with the 

GeneSpring 11.5 software. To ensure high quality dataset, control features were 

removed, and only features for which the ‘IsWellAboveBG’ parameter was 1 at least in 

three out of four replicas were selected (31,912 and 31908 features, representing 21,392 

and 21,438 genes for 112458 and snrk2.2/2.3/2.6 mutant analysis, respectively). To 

identify significantly expressed genes in each comparison, a t-test analysis was carried 

out with FDR adjustment according to Benjamini and Hochberg’s method. Features 

were selected only if p-value was below 0.05 after correction for multiple-testing and 

expression ratio was above 2-fold difference. Gene Ontology (GO) analysis of the 

Biological Process level, with corrected p-value of 0.05, was carried out with the 

GeneSpring software.  

 

Seed germination and seedling establishment assays.  

After surface sterilization of the seeds, stratification was conducted in the dark at 4ºC 

for 3 d. Next, approximately 100 seeds of each genotype were sowed on MS plates 

supplemented with different ABA concentrations per experiment. To score seed 

germination, radical emergence was analyzed at 72 h after sowing. Seedling 

establishment was scored as the percentage of seeds that developed green expanded 

cotyledons and the first pair of true leaves at 7-d. Additionally, root length of seedlings 

germinated and grown on different ABA concentrations was measured at 7-d.  
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Root and shoot growth assays.  

Seedlings were grown on vertically oriented MS plates for 4 to 5 days. Afterwards, 20 

plants were transferred to new MS plates lacking or supplemented with the indicated 

concentrations of ABA. The plates were scanned on a flatbed scanner after 10-d to 

produce image files suitable for quantitative analysis of root growth using the NIH 

Image software ImageJ v1.37. As an indicator of shoot growth, either the maximum 

rosette radius or fresh weight was measured after 11 or 21-d, respectively. 

Water-loss and stomatal aperture assays.  

2-3 weeks-old seedlings grown in MS plates were used for water-loss assays. Four 

seedlings per genotype with similar growth, three independent experiments, were 

submitted to the drying atmosphere of a flow laminar hood. Kinetic analysis of water-

loss was performed and represented as the percentage of initial fresh weight loss at each 

scored time point. Stomatal aperture measurements were done in leaves of 5-week-old 

plants using whole leaf imaging (Chitrakar and Melotto, 2010). To score ABA-induced 

stomatal closing, leaves were first incubated for 2 h in stomatal opening buffer, 10 mM 

KCl and 10 mM MES-KOH pH 6.2, at 20ºC. Then, they were incubated for 2 h in the 

same buffer supplemented or not with 1 μM ABA. Next, staining of whole leaves with 

propidium iodide was conducted and the aperture of 30-40 stomata (ratio width/length, 

two independent experiments) was measured using a Leica TCS-SL confocal 

microscope.  

 

Whole-rosette stomatal conductance measurements.  

The Arabidopsis whole-rosette gas exchange measurement device, plant growth practice 

and custom written program to calculate Gst for water vapour have been described 

previously (Vahisalu et al., 2008). For gas-exchange experiments, 21-26-d-old plants 

(rosette area 5-15 cm
2
) were used. Until measurements, plants were grown in growth 

chambers (AR-66LX and AR-22L, Percival Scientific, IA, USA) at 12/12 photoperiod, 

23/18ºC temperature, air relative humidity of 70-80% and 150 µmol m
-2

 s
-1 

light. 

In-gel kinase assay.  

It was performed as described previously (Fujii et al., 2007). Proteins were extracted 
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from 12-d-old seedlings that were either mock- or 100 μM ABA-treated for 30 min. As 

kinase substrate we used His6-ΔCABF2 (amino acids 1-173) (Antoni et al., 2012). 

 

Accession numbers 

The Arabidopsis Genome Initiative locus identifiers for PYR1, PYL1, PYL2, PYL3, 

PYL4, PYL5, PYL6, PYL7, PYL8, PYL9, PYL10, PYL11, PYL12 and PYL13 are, 

At4g17870, At5g46790, At2g26040, At1g73000, At2g38310, At5g05440, At2g40330, 

At4g01026, At5g53160, At1g01360, At4g27920, At5g45860, At5g45870 and 

At4g18620, respectively.  

Raw microarray data have been deposited in the Gene Expression Omnibus: 

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=vbahzkiuseisszw&acc=GSE36692 

 

Supplemental data 

The following materials are available in the online version of this article 

Supplemental Figure 1. Gene expression levels of the PYR/PYL/RCAR ABA 

receptors in the Arabidopsis transcriptome genomic express database and Arabidopsis 

whole-genome tiling array (At-TAX). 

Supplemental Figure 2. Photographs showing GUS expression driven by ProPYL1, 

ProPYR1, ProPYL2, ProPYL4, ProPYL5 and ProPYL8:GUS genes in roots of 5-d-old 

seedlings. 

Supplemental Figure 3. ABA treatment inhibits or attenuates GUS expression driven 

by ProPYL1, ProPYR1, ProPYL2, ProPYL4, ProPYL5 and ProPYL8:GUS genes. 

Supplemental Figure 4. Expression of PYR/PYL genes in guard cells mock or 100 μM 

ABA-treated. 

Supplemental Figure 5. Scheme of the transcriptomic experiment. ABA-response of 

wt, 112458 and snrk2.2/2.3/2.6 mutants was compared using Agilent´s Arabidopsis 44k 

oligonucleotide microarrays.  
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Figure legends. 

Figure 1. Photographs showing GUS expression driven by ProPYL1, ProPYR1, 

ProPYL2, ProPYL4, ProPYL5 and ProPYL8:GUS genes in different tissues. (A, C) 

Embryos dissected from mature seeds imbibed for 24 h or 48 h, respectively. (B) Seed 

coat and endosperm imbibed for 24 h. (D) Primary root from 5-d-old seedlings. (E, F) 

Vascular tissue and guard cells in leaves of 15-d-old seedlings, respectively. The bar 

corresponds to 100 μm.  

Figure 2. Quantification of ABA-mediated inhibition of germination and seedling 

establishment of Col wt compared to different genotypes. Approximately 100 seeds of 

each genotype (three independent experiments) were sowed on each plate and scored for 

radicle emergence 3-d-later (A) or for the presence of both green cotyledons and the 

first pair of true leaves 7-d-later (B). Values are averages ±SE. 

Figure 3. Combined loss of function of PYR/PYL genes impairs plant growth and seed 

yield. (A) Schematic diagram of the PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 genes 

showing the position of the T-DNA insertion or the nonsense mutation in the pyr1-1 

allele. RT-PCR analyses of mRNAs from wt, 12458 and 112458. The position of the 

primers used for genotyping and RT-PCR is indicated by arrows. (B, C, D) Photographs 

show the impairment of growth and reproduction in extreme ABA-insensitive mutants. 

Photographs of 24-d-old plants (B), 50-d-old plants (C) and siliques (D) grown under 

greenhouse conditions of Col wt, 12458, 112458 and snrk2.2/2.3/2.6. (E) Quantification 

of maximum rosette radius, plant height, seed production and silique length of the 

different genotypes. Data are average values obtained for 20 plants. 

Figure 4. Extreme ABA-insensitive phenotype of 112458 for germination and seedling 

establishment assays. (A) Photographs of Col wt, 12458, 112458 and snrk2.2/2.3/2.6 

grown for 7-d on MS medium either lacking or supplemented with different 

concentrations of ABA. (B) Quantification of root length in 7-d-old seedlings of panel 

A. Data are averages ±SE from three independent experiments (n =15 each). The 

asterisk indicates P<0.01 (Student´s t test) with respect to medium lacking ABA. (C, D) 

Quantification of ABA-mediated inhibition of germination and seedling establishment 
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of Col wt compared to 12458, 112458 and snrk2.2/2.3/2.6. Approximately 100 seeds of 

each genotype were sowed on each plate and scored for radicle emergence 3-d-later (C) 

or for the presence of both green cotyledons and the first pair of true leaves 7-d-later 

(D). SE values were lower than 7% and are not indicated.  

Figure 5. ABA-insensitive phenotype of 112458 for ABA-mediated inhibition of 

growth assays. (A) Photograph of representative seedlings 10 d after the transfer of 4-d-

old seedlings to MS plates lacking or supplemented with 50 µM ABA. (B) 

Quantification of ABA-mediated root growth inhibition of Col wt compared to 12458, 

112458 and snrk2.2/2.3/2.6. Data are averages ±SE from three independent experiments 

(n =15 each). The asterisk indicates P<0.01 (Student´s t test) with respect to medium 

lacking ABA. (C, E) Photograph of representative seedlings 11-d or 21-d after the 

transfer of 4-d-old seedlings from MS medium to plates lacking or supplemented with 

ABA. (D, F) Quantification of ABA-mediated shoot growth inhibition of Col wt 

compared to 12458, 112458 and snrk2.2/2.3/2.6. Data are averages ±SE from three 

independent experiments (n =15 each).  

Figure 6. Water-loss and stomatal conductance assays in pyr/pyl mutants. (A) 

Photograph of representative excised plants submitted for 90 minutes to the drying 

atmosphere of a flow laminar hood. (B) Loss-of-fresh weight of 18-d-old excised plants 

that were submitted to the drying atmosphere of a flow laminar hood. (C) Increased 

stomatal aperture of 21-d-old plants of 112458 and snrk2.2/2.3/2.6 compared to wt. (D) 

ABA-insensitive stomatal closing of 21-d old plants of 112458 compared to wt. (E) 

Leaf gas exchange measurements reveal increased stomatal conductance (Gst) in 

different pyr/pyl mutants and additive effects upon progressive inactivation of PYR/PYL 

genes. The different letters denote significant differences between mutants (P<0.05, 

n=5-17, Tukey´s post-hoc comparison, Student´s t and Fisher LSD tests for comparison 

between snrk2.6 and Col wt).).  

Figure 7. ABA-responsive gene expression is drastically impaired in 112458. (A) 

Global impairment of transcriptional response to ABA in 112458 and snrk2.2/2.3/2.6 

compared to Col wt. Genes showing ≥2-fold higher expression upon ABA-treatment in 

Col than in the mutants (false discovery rate p<0.05) are represented using Venn 

diagram. Analyses were made in quadruplicate on independent RNA samples of 2-

week-old seedlings that were treated with 10 μM ABA for 3 h. The transcriptome 

20 
 



profile was obtained using the Agilent's gene expression 4x44000 microarray. (B) 

Relative induction level of selected genes after ABA treatment in each mutant compared 

to wt (value 1). (C) Relative expression of three ABA-responsive genes in the indicated 

genotypes after ABA treatment compared to wt (value 1) as determined by RT-qPCR. 

Expression of RAB18, RD29B and KIN1 was up-regulated 86-, 634- and 312-fold by 

ABA in the wt, respectively. (D) SnRK2s are not activated by ABA in 112458. Proteins 

extracted from wt, 112458 and snrk2.2/2.3/2.6 seedlings that were either mock (-) or 

100 μM ABA-treated (+) for 30 min were analysed by an in-gel-kinase assay. 
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Figure 1. Photographs showing GUS expression driven by ProPYL1, ProPYR1, ProPYL2, ProPYL4,

ProPYL5 and ProPYL8:GUS genes in different tissues. (A, C) Embryos dissected from mature seeds

imbibed for 24 h or 48 h, respectively. (B) Seed coat and endosperm imbibed for 24 h. (D) Primary root

from 5-d-old seedlings. (E, F) Vascular tissue and guard cells in leaves of 15-d-old seedlings,

respectively. The bar corresponds to 100 μm.
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Figure 2. Quantification of ABA-mediated inhibition of germination and seedling

establishment of Col wt compared to different genotypes. Approximately 100 seeds of

each genotype (three independent experiments) were sowed on each plate and scored for

radicle emergence 3-d-later (A) or for the presence of both green cotyledons and the first

pair of true leaves 7-d-later (B). Values are averages ±SE.
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Figure 3. Combined loss of function of PYR/PYL genes impairs plant growth and seed yield. (A) Schematic diagram
of the PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 genes showing the position of the T-DNA insertion or the nonsense
mutation in the pyr1-1 allele. RT-PCR analyses of mRNAs from wt, 12458 and 112458. The position of the primers
used for genotyping and RT-PCR is indicated by arrows. (B, C, D) Photographs show the impairment of growth and
reproduction in extreme ABA-insensitive mutants. Photographs of 24-d-old plants (B), 50-d-old plants (C) and siliques
(D) grown under greenhouse conditions of Col wt, 12458, 112458 and snrk2.2/2.3/2.6. (E) Quantification of maximum
rosette radius, plant height, seed production and silique length of the different genotypes. Data are average values
obtained for 20 plants.
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Figure 4. Extreme ABA-insensitive phenotype of 112458 for germination and seedling

establishment assays. (A) Photographs of Col wt, 12458, 112458 and snrk2.2/2.3/2.6 grown for 7-

d on MS medium either lacking or supplemented with different concentrations of ABA. (B)

Quantification of root length in 7-d-old seedlings of panel A. Data are averages ±SE from three

independent experiments (n =15 each). The asterisk indicates P<0.01 (Student´s t test) with

respect to medium lacking ABA. (C, D) Quantification of ABA-mediated inhibition of

germination and seedling establishment of Col wt compared to 12458, 112458 and

snrk2.2/2.3/2.6. Approximately 100 seeds of each genotype were sowed on each plate and scored

for radicle emergence 3-d-later (C) or for the presence of both green cotyledons and the first pair

of true leaves 7-d-later (D). SE values were lower than 7% and are not indicated.
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Figure 5. ABA-insensitive phenotype of 112458 for ABA-mediated inhibition of growth assays. (A)

Photograph of representative seedlings 10 d after the transfer of 4-d-old seedlings to MS plates

lacking or supplemented with 50 µM ABA. (B) Quantification of ABA-mediated root growth

inhibition of Col wt compared to 12458, 112458 and snrk2.2/2.3/2.6. Data are averages ±SE from

three independent experiments (n =15 each). The asterisk indicates P<0.01 (Student´s t test) with

respect to medium lacking ABA. (C, E) Photograph of representative seedlings 11-d or 21-d after the

transfer of 4-d-old seedlings from MS medium to plates lacking or supplemented with ABA. (D, F)

Quantification of ABA-mediated shoot growth inhibition of Col wt compared to 12458, 112458 and

snrk2.2/2.3/2.6. Data are averages ±SE from three independent experiments (n =15 each).
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Figure 6. Water-loss and stomatal conductance assays in pyr/pyl mutants. (A) Photograph of

representative excised plants submitted for 90 minutes to the drying atmosphere of a flow

laminar hood. (B) Loss-of-fresh weight of 18-d-old excised plants that were submitted to the

drying atmosphere of a flow laminar hood. (C) Increased stomatal aperture of 21-d-old plants

of 112458 and snrk2.2/2.3/2.6 compared to wt. (D) ABA-insensitive stomatal closing of 21-d

old plants of 112458 compared to wt. (E) Leaf gas exchange measurements reveal increased

stomatal conductance (Gst) in different pyr/pyl mutants and additive effects upon progressive

inactivation of PYR/PYL genes. The different letters denote significant differences between

mutants (P<0.05, n=5-17, Tukey´s post-hoc comparison, Student´s t and Fisher LSD tests for

comparison between snrk2.6 and Col wt).
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Figure 7 ABA-responsive gene expression is drastically impaired in 112458 (A) Global impairmentFigure 7. ABA-responsive gene expression is drastically impaired in 112458. (A) Global impairment

of transcriptional response to ABA in 112458 and snrk2.2/2.3/2.6 compared to Col wt. Genes

showing ≥2-fold higher expression upon ABA-treatment in Col than in the mutants (false discovery
rate p<0.05) are represented using Venn diagram. Analyses were made in quadruplicate on

independent RNA samples of 2-week-old seedlings that were treated with 10 μM ABA for 3 h. The

transcriptome profile was obtained using the Agilent's gene expression 4x44000 microarray. (B)

Relative induction level of selected genes after ABA treatment in each mutant compared to wt (value

1) (C) R l ti i f th ABA i i th i di t d t ft ABA1). (C) Relative expression of three ABA-responsive genes in the indicated genotypes after ABA

treatment compared to wt (value 1) as determined by RT-qPCR. Expression of RAB18, RD29B and

KIN1 was up-regulated 86-, 634- and 312-fold by ABA in the wt, respectively. (D) SnRK2s are not

activated by ABA in 112458. Proteins extracted from wt, 112458 and snrk2.2/2.3/2.6 seedlings that

were either mock (-) or 100 μMABA-treated (+) for 30 min were analysed by an in-gel-kinase assay.
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Supplemental Figure 1. Gene expression levels of the PYR/PYL/RCAR ABA receptors in the Arabidopsis transcriptome genomic express

database and Arabidopsis whole-genome tiling array (At-TAX). (A-C) Gene expression data were obtained from the Arabidopsis transcriptome

genomic express database (http://signal.salk.edu). The figure shows the gene expression picture for each PYR/PYL gene using whole-genome microarrays

(A) Salk transcriptome (Yamada et al., 2003), (B) Exosome (Chekanova et al., 2007) and (C) At-TAX (Laubinger et al., 2008), Arabidopsis whole-

genome tiling array (http://www.weigelworld.org/resources/microarray/at-tax). (D)Arabidopsis thaliana Tiling Array Express (At-TAX) expression data

of the PYR/PYL/RCAR gene family. Gene expression data were obtained from the Weigel World webpage (http://www.weigelworld.org/resources/

microarray/at-tax) using the TileViz web resource (http://jsp.weigelworld.org/tileviz/tileviz.jsp). Data correspond to 9 different tissues at various stages

of plant development from Col-0 wild-type. Root, seedling and vegetative apex materials were obtained from 7-d-old plants; young and old leaf

materials were obtained from 17 and 35 day-old plants respectively. Remaining plant material was obtained from plants grown for 21 or more days. Y

axis represents the intensity of the gene expression in arbitrary units.

Supplemental Data. Gonzalez-Guzman et al. Plant Cell. (2012). 10.1105/tpc.112.098574
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(D)Arabidopsis thaliana Tiling Array Express (At-TAX) expression data of the PYR/PYL/RCAR gene family.
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ProPYR1:GUS ProPYL1:GUS ProPYL2:GUS

ProPYL4:GUS ProPYL5:GUS ProPYL8:GUS

Supplemental Figure 2. Photographs showing GUS expression driven by ProPYL1, ProPYR1, ProPYL2,

ProPYL4, ProPYL5 and ProPYL8:GUS genes in roots of 5-d-old seedlings. Upper arrows point to mature root,

while lower arrows point the root differentiation zone. Mature roots from ProPYR1:GUS and ProPYL5:GUS lines

show cortex expression while expression of the other receptors is located only in vascular tissue.
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ProPYL4:GUS ProPYL5:GUS ProPYL8:GUS

MS ABA

Supplemental Figure 3. ABA treatment inhibits or attenuates GUS expression driven by

ProPYL1, ProPYR1, ProPYL2, ProPYL4, ProPYL5 and ProPYL8:GUS genes. Photographs

show 5-d-old seedlings that were either mock or 10 µM ABA -treated for 10 h.

MS ABA MS ABA
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ProPYL1:GUS ProPYL2:GUSProPYR1:GUS
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Supplemental Figure 4. Expression of PYR/PYL genes in guard cells mock or 100 μM ABA-treated. Data were obtained from

experiments reported by Yang et al., (2008). Five-six weeks old plants were sprayed with 100 μM ABA or water for 4h before cell

isolation. Next, guard cell protoplast isolation and RNA extraction were performed as previously described by Leonhardt et al.,

(2004). Experiment I included the addition of 33 mg/L actinomycin D and 100 mg/L cordycepin during protoplast isolation to inhibit

modulation of gene expression in response to stress during guard cell protoplast preparation. Experiment II lacked these compounds.
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Scheme of the 

transcriptomic

experiment. 
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compared using 
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microarrays. See also

methods. 
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