
University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Papers in Plant Pathology Plant Pathology Department

2-2010

Arabidopsis RNA-Dependent RNA Polymerases
and Dicer-Like Proteins in Antiviral Defense and
Small Interfering RNA Biogenesis during Turnip
Mosaic Virus Infection
Hernan Garcia-Ruiz
Oregon State University, hgarciaruiz2@unl.edu

Atsushi Takeda
Oregon State University

Elisabeth J. Chapman
Oregon State University

Christopher M. Sullivan
Oregon State University

Noah Fahlgren
Oregon State University, NFahlgren@danforthcenter.org

See next page for additional authorsFollow this and additional works at: http://digitalcommons.unl.edu/plantpathpapers

Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology
Commons

This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It

has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Garcia-Ruiz, Hernan; Takeda, Atsushi; Chapman, Elisabeth J.; Sullivan, Christopher M.; Fahlgren, Noah; Brempelis, Katherine J.; and
Carrington, James C., "Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small
Interfering RNA Biogenesis during Turnip Mosaic Virus Infection" (2010). Papers in Plant Pathology. 361.
http://digitalcommons.unl.edu/plantpathpapers/361

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/plantpathpapers?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/plantpath?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/plantpathpapers?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/109?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/107?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/107?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/plantpathpapers/361?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors

Hernan Garcia-Ruiz, Atsushi Takeda, Elisabeth J. Chapman, Christopher M. Sullivan, Noah Fahlgren,
Katherine J. Brempelis, and James C. Carrington

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/plantpathpapers/361

http://digitalcommons.unl.edu/plantpathpapers/361?utm_source=digitalcommons.unl.edu%2Fplantpathpapers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages


Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like
Proteins in Antiviral Defense and Small Interfering RNA
Biogenesis during Turnip Mosaic Virus Infection W OA

Hernan Garcia-Ruiz, Atsushi Takeda,1 Elisabeth J. Chapman,2 Christopher M. Sullivan, Noah Fahlgren,

Katherine J. Brempelis, and James C. Carrington3

Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis,

Oregon 97331

Plants respond to virus infections by activation of RNA-based silencing, which limits infection at both the single-cell and

system levels. Viruses encode RNA silencing suppressor proteins that interfere with this response. Wild-type Arabidopsis

thaliana is immune to silencing suppressor (HC-Pro)-deficient Turnip mosaic virus, but immunity was lost in the absence of

DICER-LIKE proteins DCL4 and DCL2. Systematic analysis of susceptibility and small RNA formation in Arabidopsis mutants

lacking combinations of RNA-dependent RNA polymerase (RDR) and DCL proteins revealed that the vast majority of virus-

derived small interfering RNAs (siRNAs) were dependent on DCL4 and RDR1, although full antiviral defense also required

DCL2 and RDR6. Among the DCLs, DCL4 was sufficient for antiviral silencing in inoculated leaves, but DCL2 and DCL4 were

both involved in silencing in systemic tissues (inflorescences). Basal levels of antiviral RNA silencing and siRNA biogenesis

were detected in mutants lacking RDR1, RDR2, and RDR6, indicating an alternate route to form double-stranded RNA that

does not depend on the three previously characterized RDR proteins.

INTRODUCTION

In plants and some animal lineages, such as insects, RNA silenc-

ing is a potent defense mechanism against viruses and has

remarkable specificity and adaptability (Ding and Voinnet, 2007).

To counter this defense mechanism, viruses encode suppressor

proteins that interfere with RNA silencing. Antiviral silencing can

be conceptualized into initiation, amplification, and systemic

spread phases (Voinnet, 2005). Initiation consists of the recog-

nition of the trigger RNA and formation of primary small interfer-

ing RNAs (siRNAs), while amplification is characterized by the

synthesis of double-stranded RNA (dsRNA) by one or more

RNA-dependent RNA polymerases and the formation of sec-

ondary siRNA. Systemic spread involves cell-to-cell and phloem-

dependent transport of a silencing signal (Ding and Voinnet, 2007).

Dicer-like ribonucleases (DCLs), Argonaute (AGO) proteins,

dsRNA binding proteins (DRBs), and RNA-dependent RNA poly-

merase (RDR) proteins are core components of plant RNA

silencing pathways involved in siRNA biogenesis or effector

pathways. Four DCLs in Arabidopsis thaliana catalyze formation

of microRNAs (miRNAs; DCL1), or 22-nucleotide (DCL2),

24-nucleotide (DCL3), and 21-nucleotide (DCL4) siRNAs from

several classes of dsRNA precursors. DCL1 functions with

the dsRNA binding protein HYL1 and SERRATE to accurately

process predominantly 21-nucleotide miRNAs from foldback

precursors (Park et al., 2002; Reinhart et al., 2002; Han

et al., 2004; Grigg et al., 2005; Dong et al., 2008). Most, but not

all, Arabidopsis miRNAs function in association with AGO1

(Vaucheret et al., 2004; Baumberger and Baulcombe, 2005;

Qi et al., 2006; Mi et al., 2008). DCL4 functions with DRB4 to

process RDR6-dependent dsRNA precursors for trans-acting

siRNA (tasiRNA) (Gasciolli et al., 2005; Xie et al., 2005; Yoshikawa

et al., 2005).Most tasiRNAsalso functionwithAGO1 (Baumberger

and Baulcombe, 2005; Mi et al., 2008). DCL3 functions to

process RDR2-dependent dsRNA precursors that form at nu-

merous endogenous loci, and at many of these loci, the resulting

24-nucleotide siRNAs function through AGO4/Pol V complexes

to direct DRM2-dependent RNA-directed DNA methylation at

cytosine positions in a CNN context (Cao and Jacobsen, 2002;

Zilberman et al., 2003; Xie et al., 2004; Li et al., 2006; Pontes

et al., 2006; Wierzbicki et al., 2009). DCL2 is less well studied

than the other DCL proteins, although it is known to play a role in

formation of natural antisense siRNA and in transitive silencing of

transgene transcripts (Borsani et al., 2005; Bouche et al., 2006;

Mlotshwa et al., 2008).

Antiviral RNA silencing depends on some of the core factors

that participate in the biogenesis and activity of endogenous

siRNAs (Ding and Voinnet, 2007). DCL4 catalyzes formation

of 21-nucleotide siRNAs from several RNA and DNA viruses

(Blevins et al., 2006; Deleris et al., 2006; Fusaro et al., 2006;

Diaz-Pendon et al., 2007). In the absence of DCL4, 22- and
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24-nucleotide-long virus-derived siRNAs are produced by DCL2

and DCL3, respectively (Blevins et al., 2006; Deleris et al., 2006;

Fusaro et al., 2006; Diaz-Pendon et al., 2007). DCL1 may play an

indirect role as a negative regulator of DCL4 (Qu et al., 2008) and

as a facilitator in the biogenesis of geminivirus- and caulimovirus-

derived siRNAs (Blevins et al., 2006; Moissiard and Voinnet,

2006). siRNA biogenesis or antiviral silencing have also been

shown to be dependent on one or more of RDR1, RDR2, and

RDR6 (Mourrain et al., 2000; Qu et al., 2005, 2008; Schwach

et al., 2005; Diaz-Pendon et al., 2007; Donaire et al., 2008;

Qi et al., 2009; Wang et al., 2010). Systemic RNA silencing

in Arabidopsis requires RDR1 and RDR6 for amplification of

Cucumber mosaic virus (CMV)-derived sRNAs (Wang et al.,

2010). RDR1 may couple with other defense responses because

its expression is induced by salicylic acid (Ji and Ding, 2001; Xie

et al., 2001; Yu et al., 2003). It is noted, however, that most

studies to date do not clearly link virus-derived siRNA accumu-

lation patterns and bona fide antiviral defense where the virus is

actually suppressed or limited. When wild-type viruses are used,

the activity of a virus-encoded silencing suppressor can mask

the activity of silencing factors. Thus, wild-type plants often

exhibit virus susceptibility phenotypes similar to those of mu-

tants that lack RNA silencing factors (Dalmay et al., 2000;

Mourrain et al., 2000; Yang et al., 2004; Deleris et al., 2006;

Wang et al., 2010).

In this report, a silencing suppressor (HC-Pro)-deficient Turnip

mosaic virus (TuMV)mutant encoding a green fluorescent protein

tag (TuMV-AS9-GFP) was produced and propagated with the

aid of a heterologous silencing suppressor provided in trans.

The sensitivity of TuMV-AS9-GFP and parental TuMV-GFP vi-

ruses to antiviral silencing, and the siRNA-generating patterns,

were compared in a series of single and combination dcl and

rdr Arabidopsis mutants. The results revealed a distinct set of

requirements for antiviral silencing and siRNA generation in

inoculated and noninoculated tissues.

RESULTS

Mutational Inactivation of TuMV HC-Pro

Ala-scanning (AS) mutations were introduced in the central

domain of Tobacco etch virus (TEV) HC-Pro (Kasschau et al.,

1997). This resulted in several mutants, including TEV-AS9,

which replicated to low levels in tobacco (Nicotiana tabacum)

protoplasts and were unable to systemically infect plants

(Kasschau et al., 1997). These phenotypes correlated with loss

of RNA silencing suppression activity (Kasschau and Carrington,

2001). The AS9 mutation was introduced into the equivalent

position in TuMV HC-Pro, and effects on silencing suppression

activity were tested using a miRNA-directed silencing assay in

whichmiR171 guides targeting of SCL6-IV transcript (Llave et al.,

2002a; Kasschau et al., 2003). Both wild-type and AS9 mutant

versions were tested in parallel with several other wild-type

and mutant forms of silencing suppressors, including p19 from

Tomato bushy stunt virus and p21 from Beet yellows virus

(Chapman et al., 2004). Leaves were agroinfiltrated with con-

structs to coexpress SCL6-IV mRNA, miR171, and a silencing

suppressor. The wild type, but not the mutant, forms of all the

suppressors inhibitedmiR171-guidedcleavageofSCL6-IVmRNA

(Figure 1), showing that the AS9 mutation debilitated TuMV

HC-Pro silencing suppressor activity.

Generation and Propagation of

Suppressor-Deficient TuMV-AS9-GFP

We reasoned that infection of Arabidopsis plants by a suppres-

sor-deficient TuMV would be arrested at points where antiviral

RNA silencing responses are active. This approach would allow

analysis of local and systemic infection ofArabidopsis plantswith

inactivating mutations in genes encoding RNA silencing factors.

The AS9 mutation was introduced into TuMV-GFP, generating

TuMV-AS9-GFP. This mutant accumulated to low levels in

Nicotiana benthamiana, limiting the potential to propagate the

virus to generate reliable inoculum. However, coexpression of

constructs expressing the TuMV-AS9-GFP genome with p19

was predicted to rescue the suppressor-defective virus. Infec-

tion efficiency of TuMV-AS9-GFP was compared with parental

TuMV-GFP in N. benthamiana. In fact, p19 rescued TuMV-AS9-

GFP, as revealed by fluorescence and TuMV coat protein (CP)

accumulation, in a dose-dependent manner (Figure 2A) and

enhanced local infection efficiency of TuMV-GFP (Figure 2B). In

the absence of p19, the number of TuMV-AS9-GFP infection

(multicellular fluorescent) foci was only 36%of that measured for

TuMV-GFP. In the presence of p19, infection efficiency of

TuMV-AS9-GFP was similar to that of TuMV-GFP (Figure 2B).

These results suggest that TuMV-GFP HC-Pro was not able to

block completely the silencing response in N. benthamiana.

Alternatively, or additionally, some viral RNA transcribed from the

cDNA cassettes carried by Agrobacterium tumefaciens may

have been targeted by the silencing machinery before RNA

replication was established.

Figure 1. TuMV HC-Pro Containing the AS9 Substitution Lacks RNA Silencing Suppressor Activity in a miR171-Guided Transient Assay in N.

benthamiana Leaves.

Parental and mutant forms of HC-Pro (HC), or two other suppressors (p19 and p21), were coinfiltrated with 35S:miR171-precursor and 35S:SCL6-IV.

Leaves were collected 48 h after infiltration. SCL6-IV mRNA (a) and its miR171-guided 39 cleavage product (b) were analyzed in three independent

samples by RNA gel blot assays using randomly primed 32P-radiolabeled probes. For each treatment, the average (a)/(b) ratio for three replicates is

indicated. Note that the parental, but not mutant, forms of the suppressors inhibited target cleavage.

482 The Plant Cell



Systemic infection of N. benthamiana by TuMV-GFP was

detected at 6 d after inoculation (DAI). By contrast, no systemic

infection of N. benthamiana by TuMV-AS9-GFP was detected

either in the presence or absence of p19 at 15DAI. At 21DAI,mild

systemic infection of N. benthamiana by TuMV-AS9-GFP was

detected, although GFP intensity was substantially lower than

that observed for TuMV-GFP at 6 DAI.

TuMV-AS9-GFP Is Limited by siRNA-Dependent Antiviral

Defense That Is Normally Suppressed by HC-Pro

TuMV-AS9-GFP failed to infect wild-type Arabidopsis (Columbia-0

[Col-0]) (Table 1, Figure 3A) despite using enriched, undiluted

inoculum (at least 100-fold more concentrated than needed to

give 100% systemic infection efficiency in dcl2-1 dcl3-1 dcl4-2

plants) (see Supplemental Figure 1 online). If immunity of wild-

type plants was due entirely or predominantly to effective

antiviral silencing in the absence of suppression function, as

opposed to the loss of another HC-Pro function, then the mutant

should gain infection competence in the siRNA-defective triple

mutant with dcl2-1 dcl3-1 dcl4-2 alleles. For TuMV-GFP, an

equal number of local infection foci, and similar amounts of CP,

were measured in inoculated leaves and inflorescences of Col-0

and dcl2-1 dcl3-1 dcl4-2 mutant plants (Figures 3A and 3B).

No local infection foci or CP were detected in inoculated leaves

or inflorescence, and symptoms did not develop in Col-0 inoc-

ulated with TuMV-AS9-GFP (Figures 3A to 3C). By contrast, both

local and systemic infection occurred in dcl2-1 dcl3-1 dcl4-2

mutant plants inoculated with TuMV-AS9-GFP (Figures 3A and

3B). Rescue of the defective infection phenotype in dcl2-1 dcl3-1

dcl4-2mutant plants strongly supports the idea that RNA silenc-

ing limits the suppressor-defective virus and that HC-Pro pro-

motes systemic infection by suppressing an siRNA-dependent

activity. Interestingly, in dcl2-1 dcl3-1 dcl4-2 triplemutant plants,

symptoms caused by TuMV-AS9-GFP were similar to those

caused by TuMV-GFP (Figure 3C).

To rigorously confirm that infection of the triple dcl mutant

by TuMV-AS9-GFP was not due to viral reversion mutations

(Garcia-Ruiz and Ahlquist, 2006), a bioassay was done using

virus recovered from inflorescences of systemically infected

plants at 15 DAI. Virus was concentrated and used to inoculate

leaves of Col-0 and dcl2-1 dcl3-2 dcl4-2 triple mutant plants.

While modest numbers of infection foci and systemic infection

were detected in the triple mutant, no local or systemic infection

Figure 2. Propagation of TuMV-AS9-GFP in a Transient Infection

System.

(A) Infection of N. benthamiana leaves by TuMV-AS9-GFP after launch-

ing by Agrobacterium infiltration in the presence of p19-HA at the

indicated cell densities. Infection was measured as the number of

multicellular infection foci at 5 DAI under UV light in a 4-cm2 area in the

middle of the leaf.

(B) Effect of p19-HA on infection efficiency of N. benthamiana leaves by

TuMV-AS9-GFP and TuMV-GFP. Cultures expressing p19-HA were

provided at constant cell density (OD600 = 5 3 10�1). Cultures trans-

formed with pCB-TuMV-AS9-GFP or pCB-TuMV-GFP were provided at

10-fold dilutions of OD600 = 5 3 10�1. Empty vector was used to

normalize the cell density to OD600 = 1.0. Images were taken at 5 DAI

under UV light. Infection foci were plotted for samples receiving cultures

at OD = 53 10�4. The histogram shows the average and SE for 16 leaves

per treatment.

(C) Time course of accumulation of TuMV-AS9-GFP CP in N. benthami-

ana leaves infiltrated with Agrobacterium cultures containing pP19-HA

and pCB-TuMV-AS9-GFP (OD600 = 5 3 10�1). Relative accumulation

was plotted using 6 DAI measurements equal to 1.0. The histogram

shows the average and SE for three replicates (individual leaves) per

treatment.
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was detected in Col-0 plants (Figure 3D), confirming that the

original infections of triple mutant plants by TuMV-AS9-GFP

were not due to reversion mutations.

Genome-Wide Profiling of TuMV-Derived siRNAs

Genetic rescue of TuMV-AS9-GFP infection in dcl2-1 dcl3-1

dcl4-2 mutant plants (Figure 3) shows that TuMV is targeted by

an RNA silencing mechanism that requires one or more of the

siRNA-generating DCLs. To obtain a detailed view of the siRNAs

formed during TuMV infection, deep sequencing analysis of

small RNA from Col-0, dcl2-1 dcl3-1 dcl4-2 triple mutant, and

dcl1-7 single mutant plants was done. The dcl1-7mutant, which

is a partial loss-of-function mutant, was included because of the

possibility that DCL1 might act on foldback structures within

the TuMV genome and because of potential effects of DCL1 on

the siRNA-generating enzymes (Blevins et al., 2006; Moissiard

and Voinnet, 2006; Qu et al., 2008). Wild-type TuMV was used

instead of TuMV-GFP to prevent GFP sequences from affecting

the formation or accumulation of virus-derived siRNAs. As de-

scribed for TuMV-GFP (Figure 3B), TuMV accumulated to similar

levels in inflorescences of Col-0, dcl1-7 single, and dcl2-1 dcl3-1

dcl4-2 triple mutant plants both at 7 and 10 DAI.

Small RNA libraries (three independent biological replicates/

treatment) were made from whole plants at both 7 and 10 DAI

using sequencing-by-synthesis methods (Fahlgren et al., 2009).

The frequency of reads obtained for the internal small RNA

standards (Fahlgren et al., 2009) indicated consistent amplicon

preparation across libraries. Results described below are from

averages of biological replicates.

In infected plants, the number of reads with a perfect match to

TuMV varied from 12,000 to 108,000 (Figure 4A; see Supple-

mental Table 1 online). In Col-0 and dcl1-7 plants at 7 and 10DAI,

98% of TuMV-derived small RNAs were 21 to 24 nucleotides

long, with the vast majority 21 and 22 nucleotides (Figure 4A). In

agreement with a recent study (Donaire et al., 2009), small RNAs

originated from both strands, although with a slight bias toward

antisense reads (Figure 4A). By contrast, the abundance of virus-

derived siRNAs in all size classes was significantly reduced in

dcl2-1 dcl3-2 dcl4-2 triple mutant plants (Figure 4A).

Genome-wide maps of small RNA reads from 10 DAI data sets

revealed a high density of TuMV-derived siRNAs along both

strands in Col-0 plants. Based on the numbers of reads mapping

to the TuMV genome from mock-inoculated plants due to se-

quencing errors, the false discovery rate in our sequencing was

estimated at 0.0079 per nucleotide and at 0.000053 per read.

The distribution trends were similar between Col-0 and dcl1-7

(Figure 4B), indicating that decreased levels of DCL1 have little

effect on the pattern of TuMV-derived small RNA accumulation.

By contrast, ;26-fold fewer reads were detected in dcl2-1

dcl3-1 dcl4-2 triple mutant plants, with the decrease distributed

proportionally across the TuMV genome (Figure 4B). As the

majority of these reads were 21 and 22 nucleotides in length, it is

possible that DCL1 accounted for at least some of the reads in

the triple mutant. In all plant genotypes tested, a large number of

readsweremapped to the antisense strand of the 59 untranslated

region (UTR), specifically to the first 40 nucleotides (Figure 4C;

see Supplemental Table 1 online). In dcl2-1 dcl3-1 dcl4-2 triple

mutants, these small RNAs were still prevalent, accounting for

74% of the total TuMV-derived reads (Figure 4C). Similar results

were obtained for 21-nucleotide TuMV-derived siRNAs at 7 DAI

(see Supplemental Figure 2 online) and for 22-nucleotide siRNAs

from both 7 and 10 DAI (see Supplemental Figures 3 and 4

online). However, blot assays showed that the 21-nucleotide

siRNA from the 59UTR region were sensitive to loss of DCL4 (see

Supplemental Figure 5 online). In the absence of DCL4, this

region yielded siRNAs that were 22 nucleotides in length and

dependent on DCL2. The basis for the unusual abundance of

antisense 59UTR–derived siRNAs in each of the sequencing data

sets was unclear.

The ratio of antisense-to-sense 21-nucleotide TuMV-derived

siRNAs, and the occurrence of each of the four nucleotides at the

siRNA 59 position, was analyzed. In Col-0 and dcl1-7, the

antisense strand bias was modest (see Supplemental Figure

6A online). The antisense/sense strand bias in the dcl2-1 dcl3-1

dcl4-2 triple mutant was far greater. However, the antisense

strand bias was due almost entirely to the relatively high propor-

tion of reads from the antisense 59UTR region (see Supplemental

Figure 6A online). Reads of 21 nucleotides were also grouped by

their first nucleotide (A, U, G, or C) and their relative abundance

compared with values expected from the nucleotide composi-

tion of the sense and antisense strands. The proportion of reads

containing a 59 A, C, or G were close to the expected values.

TuMV-derived siRNAs with a 59 U, however, were overrepre-

sented in each of Col-0, dcl1-7, and the dcl2-1 dcl3-1 dcl4-2

triple mutant plants, with accumulation levels that were 1.3- to

2.6-fold higher than expected from the TuMV genome nucleotide

composition (see Supplemental Figure 6B online). These results

suggest that there is preferential accumulation of virus-derived

siRNAs with a 59 terminal U, possibly through association with

Table 1. TuMV-GFP and TuMV-AS9-GFP Infection of Col-0 and Mutant Arabidopsis

Genotype Virus Plants

Inoculated Rosette

Leavesa
Noninoculated

Rosette

Bolt

Tissue

Cauline

Leaves

Inflorescence

7 DAI 15 DAI

Col-0 TuMV-AS9-GFP 13 0 0 0 0 0 0

TuMV-GFP 13 13 13 13 13 13 13

dcl2-1 dcl3-1 dcl4-2 TuMV-AS9-GFP 13 13 13 13 13 10 13

TuMV-GFP 13 13 13 13 13 11 13

Number of plants showing local and systemic infections were scored by GFP fluorescence under UV illumination. A total of 13 plants were analyzed.

Except for a set of inflorescence samples, systemic infection data were from plants at 15 DAI.
aLocal infection at 7 DAI.
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AGO1, which is known to have a 59 U preference (Mi et al., 2008;

Montgomery et al., 2008a).

Participation of Arabidopsis DCL4 and DCL2 in Antiviral

Defense against TuMV

To systematically analyze the requirement of DCL1, DCL2,

DCL3, and DCL4 in antiviral RNA silencing and siRNA biogen-

esis, single and combination mutants were inoculated with

parental TuMV-GFP and the suppressor-deficient TuMV-AS9-

GFP. TuMV CP (as a reflection of virus accumulation) and virus-

derived siRNAs were measured in inoculated rosette leaves,

noninoculated cauline leaves, and inflorescence tissues. Virus

spreadwas alsomonitored usingGFP fluorescence in inoculated

and noninoculated tissue. The experiment with replicates was

repeated twice with similar results.

TuMV-GFP infected, both locally and systemically, Col-0 and

all dcl mutants tested (Table 2, Figure 5A), but no significant

differences (P > 0.05) were detected in numbers of TuMV-GFP

infection foci in inoculated leaves (Figure 5A) or the general

pattern of accumulation in systemic tissues (Table 2, Figures 5B

and 5C). By contrast, TuMV-AS9-GFP infection foci in inoculated

leaves were visible only in inoculated rosette leaves of mutants

containing the dcl4-2 allele (Table 2, Figure 5A). This was

reflected in similar CP levels in inoculated leaves of dcl4-2 single,

dcl2-1 dcl4-2 double, dcl3-1 dcl4-2 double, and dcl2-1 dcl3-1

dcl4-2 triple mutants (Figure 5D; see Supplemental Figure 7

online). Each mutant containing the dcl4-2 allele also supported

systemic infection by TuMV-AS9-GFP to cauline leaves, al-

though combining the dcl4-2 and dcl2-1 mutations enhanced

virus accumulation by approximately sixfold (Figures 5B and 5D).

Interestingly, only mutants containing both dcl4-2 and dcl2-1

alleles supported TuMV-AS9-GFP spread to inflorescence tis-

sues (Figure 5D). These data suggest differences between re-

quirements of antiviral defense at the local (DCL4-dependent)

and systemic (DCL4- or DCL2-dependent) levels, supporting a

Figure 3. Local and Systemic Infection of Arabidopsis by TuMV-GFP and TuMV-AS9-GFP.

(A) Infection efficiency and CP accumulation in inoculated leaves at 7 DAI. Images were taken at 7 DAI under UV light. The number of infection foci for

TuMV-GFP and TuMV-AS9-GFP was expressed relative to those in Col-0 (2.6 6 1 foci per leaf) or dcl2-1 dcl3-2 dcl4-2 (4.6 6 1.5), respectively. The

histogram shows the average and SE for 52 leaves and 13 plants per treatment. For each virus, bars with the same letter are not statistically different

(Tukey’s test with a = 0.01). CP accumulation values (average 6 SE) were normalized to the average number of infection foci. M, mock inoculated.

(B) CP accumulation in inflorescence clusters at 7 and 15 DAI, relative to TuMV-AS9-GFP in dcl2-1 dcl3-2 dcl4-2 plants. Average and SE for each virus-

Arabidopsis genotype combination are indicated at the bottom.

(C) Col-0 and dcl2-1 dcl3-2 dcl4-2 triple mutant plants inoculated with TuMV-AS9-GFP or TuMV-GFP (10 DAI) or mock-inoculated.

(D) Bioassay of TuMV-AS9-GFP from systemically infected dcl2-1 dcl3-2 dcl4-2mutant source plants (15 DAI). Average number of infection foci (+ SE) at

7 DAI were plotted. Bars with the same letter are not statistically different (Tukey’s test with a = 0.01).
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Figure 4. Profile of TuMV-Derived siRNAs in Whole Arabidopsis Plants at 10 DAI.

Values are averages and SE from three replicate libraries, normalized to reads/million. Sense and antisense polarity reads were plotted on the y axis in

the positive and negative directions, respectively.

(A) Abundance, by size class and polarity, of TuMV-derived small RNAs at 10 DAI in three plant genotypes.

(B) Genome-wide distribution of 21-nucleotide TuMV-derived siRNAs at 10 DAI. The scale was capped at 150 reads.

(C) Distribution of 21-nucleotide siRNAs mapping to the 59 UTR region of TuMV RNA at 10 DAI. Numbers in parenthesis indicate the percentage of

antisense TuMV-derived reads that mapped to the 59 UTR. Based on length, a random distribution of siRNA along the TuMV genome would yield 1.3%

mapping to the 59 UTR.
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model for cooperative interaction or redundancy between DCL4

and DCL2 during systemic antiviral silencing.

Consistent with previous findings (Xie et al., 2004; Fusaro et al.,

2006) and with our sequencing results (Figure 4A), TuMV-GFP–

derived siRNAs in Col-0 plants were predominantly 21 nucleo-

tides in all tissues tested (Figures 6A to 6C). As wasmost evident

in cauline leaves and inflorescences, the loss of DCL4 resulted

in a size shift of the siRNA population to 22 nucleotides (Figures

6B to 6D). Loss of both DCL2 and DCL4 led to accumulation of

24-nucleotide, DCL3-dependent siRNAs (Figures 6B and 6C). All

size classes of siRNA were lost in the dcl2-1 dcl3-1 dcl4-2 triple

mutant (Figures 6A to 6C). Thus, although there was a clear

dependence on DCL4 for the abundant 21-nucleotide TuMV

siRNA, and DCL2 and DCL3 could recognize TuMV-derived

dsRNA tomake 22- and 24-nucleotide siRNA, respectively, there

was no correlation between any measurable siRNA accumula-

tion patterns and antiviral defense against the suppressor-com-

petent TuMV-GFP.

TuMV-AS9-GFP–derived siRNAs in inoculated leaves were

below detection levels in all plants (Figure 6A), although they

were detected at low levels in cauline or inflorescence tissues of

most mutant plants in which systemic spread was detected

(Figures 6A to 6C and 6E). As systemic infection by TuMV-AS9-

GFP required loss of DCL4 and (in inflorescences) DCL2, the

sizes of virus-derived siRNAs reflected the availability of DCLs. In

cauline leaves of dcl4-2 single or dcl3-1 dcl4-2 double mutants,

TuMV-AS9-GFP–derived siRNAs were 22 nucleotides in length

and dependent on DCL2; in inflorescence tissues of dcl2-1

dcl4-2 double mutant plants, the DCL3-dependent 24-nucleotide

size class of siRNA was detected (Figures 6B, 6C, and 6E). All

TuMV-AS9-GFP siRNAs were lost in the triple mutant.

Participation of Arabidopsis RDR1, RDR2, and RDR6 in

Antiviral Defense against TuMV

In Arabidopsis and N. benthamiana, biogenesis of virus-derived

siRNAs has been shown to involve RDR genes (Diaz-Pendon

et al., 2007; Donaire et al., 2008; Qu et al., 2008; Wang et al.,

2010), but virus accumulation was not always enhanced in rdr

mutants (Diaz-Pendon et al., 2007; Donaire et al., 2008; Qi et al.,

2009). Arabidopsis RDR1 participates in the biogenesis of CMV-

and Tobacco mosaic virus–derived siRNAs (Diaz-Pendon et al.,

2007; Qi et al., 2009; Wang et al., 2010), while the biogenesis of

Tobacco rattle virus (TRV)-derived siRNAs involves the com-

bined activity of RDR1, RDR2, and RDR6 (Donaire et al., 2008).

Loss of RDR6 enhances accumulation of CMV (Mourrain et al.,

2000; Wang et al., 2010). As with the dcl mutant series, a

systematic analysis of the roles of RDR1, RDR2, and RDR6 in

anti-TuMV silencing and siRNA biogenesis was explored using

both suppressor-competent and suppressor-defective viruses.

Each experiment was repeated four times with similar results.

TuMV-GFP systemically infected Col-0 and all rdr mutants

tested. In all single and combination rdr mutants, TuMV-GFP

infection induced symptoms similar to the observed for Col-0

(Figures 3C and 7C), and no significant differences (P > 0.05)

were detected in numbers of infection foci in inoculated leaves or

virus accumulation in cauline leaves or inflorescence tissues

(Table 3, Figures 7A to 7E; see Supplemental Figure 8 online).

Table 2. TuMV-GFP and TuMV-AS9-GFP Infection in Single and Multiple dcl Arabidopsis Mutants

Virus

Arabidopsis

Genotype Plants

Inoculated Rosette

Leavesa
Noninoculated

Rosette

Bolt

Tissue

Cauline

Leaves

Inflorescences

7 DAI 15 DAI %b

TuMV-GFP

Col-0 14 14 14 14 14 11 14 100

dcl1-7 14 14 14 14 14 0 14 100

dcl2-1 14 14 14 14 14 10 14 100

dcl3-1 14 14 14 14 14 8 14 100

dcl4-2 14 14 14 14 14 6 14 100

dcl2-1 dcl3-1 14 14 14 14 14 9 14 100

dcl2-1 dcl4-2 14 14 14 14 14 6 14 100

dcl3-1 dcl4-1 14 14 14 14 14 7 14 100

dcl2-1 dcl3-1 dcl4-2 14 14 14 14 14 7 14 100

TuMV-AS9-GFP

Col-0 14 0 0 0 0 0 0 0

dcl1-7 14 0 0 0 0 0 0 0

dcl2-1 14 0 0 0 0 0 0 0

dcl3-1 14 0 0 0 0 0 0 0

dcl4-2 14 14 14 14 14 0 0 0

dcl2-1 dcl3-1 14 0 0 0 0 0 0 0

dcl2-1 dcl4-2 14 14 14 14 14 8 14 100

dcl3-1 dcl4-1 14 14 14 14 14 0 0 0

dcl2-1 dcl3-1 dcl4-2 14 14 14 14 14 8 14 100

Number of plants showing local and systemic infection were scored by GFP fluorescence under UV illumination. A total of 14 plants were analyzed.

Except for a set of inflorescence samples, systemic infection data were from plants at 15 DAI.
aLocal infection at 7 DAI.
bPercentage (average of 14 plants) of inflorescence clusters showing GFP at 15 DAI.
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However, there were significant (P < 0.05) differences in TuMV-

GFP–derived siRNA accumulation among the mutants. TuMV-

GFP siRNAs in rdr2-1 and rdr6-15 single, and in rdr2-1 rdr6-15

double, mutants accumulated to similar levels as those in Col-0

(Figures 8A to 8D). By contrast, accumulation of siRNAs derived

from the cylindrical inclusion (CI) or from the 59 UTR (see

Supplemental Figure 5B online) of TuMV was significantly re-

duced in each single, double, and triple mutants harboring the

rdr1-1 allele (Figures 8A to 8D), indicating that RDR1 is a major

contributor to biogenesis of TuMV-derived siRNAs. However, in

Figure 5. Local and Systemic Infection of Arabidopsis dcl Mutants by TuMV-GFP and TuMV-AS9-GFP.

(A) Local infection foci in inoculated rosette leaves at 6 DAI. The histogram shows average (+ SE) number of foci from 14 plants, each with four inoculated

leaves. For each virus, bars with the same letter are not statistically different (Tukey’s test with a = 0.01). TuMV-GFP and TuMV-AS9-GFP infection

efficiency is expressed relative to Col-0 and to dcl2-1 dcl3-2 dcl4-2, respectively.

(B)GFP fluorescence in noninoculated rosette and cauline leaves from plants inoculated with TuMV-AS9-GFP at 15 DAI. TuMV-GFP infection of Col-0 is

shown for comparison.

(C) TuMV-GFP accumulation (CP, average + SE) in leaves (7 and 15 DAI) and inflorescence (15 DAI), expressed relative to accumulation of TuMV-AS9-

GFP CP in dcl2-1 dcl3-2 dcl4-2.

(D) TuMV-AS9-GFP accumulation (CP, average + SE) in leaves (7 and 15 DAI) and inflorescence (15 DAI), relative to dcl2-1 dcl3-2 dcl4-2. Within each

tissue, bars with the same letter are not statistically different (Tukey’s test with a = 0.01).
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each tissue, a basal level of TuMV-GFP–derived siRNAs was

detected in the rdr1-1 rdr2-1 rdr6-15 triple mutant (Figures 8A to

8D). These levels were higher than those detected in the siRNA-

defective dcl2-1 dcl3-2 dcl4-2 triple mutant, suggesting an

alternative source of dsRNA during infection. In all rdr mutants,

siRNAs were 21 nucleotides in length, which was consistent

with dsRNA processing primarily by DCL4 (Figure 3A). Surpris-

ingly, all single, double, and triple rdr mutants inoculated with

suppressor-defective TuMV-AS9-GFP yielded a similar number

of infection foci, whereas no foci were detected in Col-0 plants

(Figure 7A, Table 3). Infection foci were less bright and CP

accumulated to lower levels in inoculated leaves of each rdr

single or combination mutant compared with what was detected

in dcl2-1 dcl3-2 dcl4-2 plants (Figures 7A and 7E).

While TuMV-AS9-GFP was restricted to initial infection foci in

rdr2-1 plants, the virus was able to move to cauline leaves and

inflorescence tissue in each single or combination mutant con-

taining either rdr1-1 or rdr6-15 alleles (Table 3, Figures 7B and

7E). Thus, RDR1 and RDR6 act additively or cooperatively to

limit systemic infection of the suppressor-defective virus. How-

ever, in the rdr triple mutant, TuMV-AS9-GFP failed to induce

symptoms (Figure 7C) and accumulated to lower levels than in

the dcl triple mutant (Figure 7E; see Supplemental Figure 8

online), supporting the idea of a basal level of antiviral silencing

that is RDR1, RDR2, and RDR6 independent. In fact, a low level

of TuMV-AS9-GFP–derived siRNAs was detected in the both the

rdr1-1 rdr6-15 double and rdr1-1 rdr2-1 rdr6-15 triple mutants

(Figures 8B and 8C).

DISCUSSION

Extensive usewasmade of TuMV-GFP and suppressor-deficient

TuMV-AS9-GFP to expose antiviral silencing activities in Arabi-

dopsis. Wild-type plants were immune to TuMV-AS9-GFP, but

immunity was effectively suppressed by loss of DCL2 and DCL4,

indicating that TuMV normally masks the effects of an siRNA-

dependent antiviral response. As noted previously (Deleris et al.,

2006; Diaz-Pendon et al., 2007; Qu et al., 2008), suppressor-

mediated masking has hampered interpretation of genetic

analyses to understand antiviral silencing. This reinforces the

requirement to examine suppressor-deficient viruses to gauge

the contributions of silencing components during antiviral RNA

silencing.

siRNA Biogenesis and Antiviral Silencing

Abundance of TuMV-derived siRNA within infected plants is

a rather inaccurate reflection of antiviral silencing activity.

During TuMV-GFP infection, large pools of 21-nucleotide siRNA

Figure 6. Accumulation of TuMV-GFP– and TuMV-AS9-GFP–Derived

siRNAs in Arabidopsis dcl Mutants.

Virus-derived siRNA were detected using 32P-radiolabeled probes made

by random priming of cDNA corresponding to the CI protein coding

region. Virus-derived siRNA signals were normalized to U6 RNA signals

from the same blots. In dcl4-2 single and dcl3-1 dcl4-2 double mutants,

siRNAs were 22 nucleotides long. In dcl2-1 dcl4-2 double mutants,

siRNAs were 24 nucleotides long.

(A) Inoculated rosette leaves at 7 DAI.

(B) Noninoculated cauline leaves at 15 DAI.

(C) Inflorescence clusters at 15 DAI.

(D) Average (+ SE) TuMV-GFP–derived siRNA signal intensity in four

independent replicates in each genotype. Within each tissue, bars with

the same letter are not statistically different (Tukey’s test with a = 0.01).

(E) Accumulation of TuMV-AS9-GFP–derived siRNAs.
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Figure 7. Local and Systemic Infection Arabidopsis rdr Mutants by TuMV-GFP and TuMV-AS9-GFP.

(A) Local infection foci in inoculated rosette leaves at 6 DAI. The histogram shows average (+ SE) number of foci from 14 plants, each with four inoculated

leaves. For each virus, bars with the same letter are not statistically different (Tukey’s test with a = 0.01). TuMV-GFP and TuMV-AS9-GFP infection

efficiency is expressed relative to Col-0 and to dcl2-1 dcl3-2 dcl4-2, respectively.

(B) GFP fluorescence in noninoculated rosette and cauline leaves from plants inoculated with TuMV-AS9-GFP, at 15 DAI. TuMV-GFP infection of Col-0

is shown for comparison.

(C) rdr1-1 rdr2-1 rdr6-15 triple mutant plants (10 DAI) inoculated with TuMV-AS9-GFP, TuMV-GFP, or mock inoculated.

(D) TuMV-GFP accumulation (CP, average + SE) in leaves (7 and 15 DAI) and inflorescence (15 DAI), relative to CP levels in Col-0. Within each tissue

type, no statistically significant differences (Tukey’s test with a = 0.01) were detected between genotypes.

(E) TuMV-AS9-GFP CP accumulation in leaves (7 and 15 DAI) and inflorescence (15 DAI), relative to dcl2-1 dcl3-2 dcl4-2. Within each tissue, bars with

the same letter are not statistically different (Tukey’s test with a = 0.01).
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accumulated concomitant with amplification and spread of the

virus in wild-type plants (Figure 4B). This can be reconciled with

the known activity of HC-Pro in sequestration or inactivation of

small RNAs, whereby siRNAs accumulate but lack activity

(Lakatos et al., 2006). More importantly, this effect points out

the need to carefully analyze both siRNA-related activities and

antiviral immunity.

DCL4 and RDR1 were revealed as major contributors to the

abundant pool of 21-nucleotide TuMV-GFP–derived siRNAs

(Figures 6D and 8D). However, in the absence of DCL4,

22-nucleotide DCL2-dependent siRNAs were formed. Further-

more, in the absence of DCL4 and DCL2, 24-nucleotide DCL3-

dependent siRNAs were produced (Figure 6D). However, the

24-nucleotide siRNA (in the dcl2-1 dcl4-2 double mutant) had no

apparent effect on antiviral silencing, and the 22-nucleotide

siRNA (in the dcl4-2 mutant) did not restrict movement of the

suppressor-defective virus to cauline leaves. Thus, while each of

the siRNA-generating DCL proteins has hierarchical access to

double-stranded viral RNA, it is clear that different size classes of

siRNA function differentially, or not at all (24-nucleotide siRNAs),

during antiviral defense. Similar conclusions were reached pre-

viously for infection of Arabidopsis by TRV (Deleris et al., 2006).

RDR6 is an important component of anti-TuMV silencing, as

RDR6 was essential (along with RDR1) for restricting systemic

infection by the suppressor-defective virus (Figure 7E). However,

the rdr6-15mutation had no detectable effect on the biogenesis

of TuMV-GFP–derived siRNAs (Figure 8). Thus, either RDR6

contributes very little to the dsRNA pool fromwhichmost siRNAs

arise, or RDR6 activity is inhibited by HC-Pro during infection by

TuMV-GFP.

Modular Activity of RNA Silencing Factors in

Antiviral Silencing

The DCL4-dependent virus-derived siRNAs were necessary

and sufficient (among the DCL family) to prevent initial infection

foci in TuMV-AS9-GFP–inoculated leaves (Figures 5 and 6). By

contrast, DCL2-dependent siRNAs were neither necessary nor

sufficient to limit infections of TuMV-AS9-GFP in either inocu-

lated leaves or cauline leaves. Interestingly, DCL2 limited sys-

temic infection of inflorescence tissues in the absence of DCL4

(Figure 5D, Table 2). Why, in the absence of DCL4, is DCL2

sufficient to prevent viral infection in inflorescences but not in

inoculated leaves? It is likely not due to differential expression,

as both of DCL4 and DCL2 are expressed at similar levels in

both leaf and inflorescence tissues (Schmid et al., 2005). These

results also cannot be explained by differential access by DCL2

to dsRNA substrates because 22-nucleotide-long TuMV-GFP–

derived siRNAs were detected both in leaves and in inflores-

cence of dcl4-2 single mutant plants (Figure 6D). A quantitative

DCL2-mediated reduction of local viral accumulation resulting

in limited systemic spread is also unlikely, as DCL2 alone had

no effect on suppressor-deficient virus accumulation in inocu-

lated leaves (Figures 5A and 5D). Several nonmutually exclusive

scenarios might explain the differential role of DCL2 in siRNA

biogenesis and antiviral defense in inoculated leaves and inflo-

rescences. DCL2 may have unique functions or cofactors in

inflorescences or yield siRNAs that function with inflorescence-

specific AGO effectors. Alternatively, in inoculated leaves,

DCL2 might participate in the formation of a mobile, non-cell-

autonomous signal that potentiates an antiviral response in

Table 3. TuMV-GFP and TuMV-AS9-GFP Infection in Single and Multiple rdr Arabidopsis Mutants

Virus Arabidopsis Genotype Plants

Inoculated Rosette

Leavesa
Noninoculated

Rosette

Bolt

Tissue

Cauline

Leaves

Inflorescences

7 DAI 15 DAI %b

TuMV-GFP

Col-0 14 14 14 14 14 14 14 100

rdr1-1 14 14 14 14 14 14 14 100

rdr2-1 14 14 14 14 14 14 14 100

rdr6-15 14 14 14 14 14 14 14 100

rdr1-1 rdr2-1 14 14 14 14 14 14 14 100

rdr1-1 rdr6-15 14 14 14 14 14 14 14 100

rdr2-1 rdr6-15 14 14 14 14 14 14 14 100

rdr1-1 rdr2-1 rdr6-15 14 14 14 14 14 14 14 100

dcl2-1 dcl3-1 dcl4-2 14 14 14 14 14 13 14 100

TuMV-AS9-GFP

Col-0 14 0 0 0 0 0 0 0

rdr1-1 14 14 14 14 14 0 2 0.45

rdr2-1 14 14 0 0 0 0 0 0

rdr6-15 14 14 14 14 14 0 0 0

rdr1-1 rdr2-1 14 14 14 14 14 0 0 0

rdr1-1 rdr6-15 14 14 14 14 14 12 14 51

rdr2-1 rdr6-15 14 14 14 14 14 0 0 0

rdr1-1 rdr2-1 rdr6-15 14 14 14 14 14 9 14 49

dcl2-1 dcl3-1 dcl4-2 14 14 14 14 14 14 14 100

Number of plants showing local and systemic infection were scored by GFP fluorescence under UV illumination. A total of 14 plants were analyzed.

Except for a set of inflorescence samples, systemic infection data were from plants at 15 DAI.
aLocal infection at 7 DAI.
bPercentage (average of 14 plants) of inflorescence clusters showing GFP at 15 DAI.
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inflorescences. Interestingly, DCL2was shown to function during

transitive amplification of transgene silencing in an RDR6-de-

pendent manner (Mlotshwa et al., 2008).

No detectable effect was associated to RDR2 or RDR6 on

accumulation of TuMV-GFP–derived siRNAs (Figures 7 and 8).

However, the appearance of infection foci in inoculated leaves of

rdr1-1, rdr2-1, and rdr6-15 single mutant plants means that the

three RDR proteins work coordinately to limit primary infections.

Thus, RDR1, RDR2, and RDR6 are complementary, or act in

coordination, to restrict infection in primarily inoculated leaves

by an unknown mechanism. Both RDR1 and RDR6 were neces-

sary, but individually insufficient, to prevent systemic infection of

cauline leaves. In inflorescence tissues, RDR1 and RDR6 were

redundant in restricting infection, as TuMV-AS9-GFP was largely

restricted from inflorescence tissues in single rdr1-1 and rdr6-15

mutants (Figure 7E, Table 3).

One hypothesis to explain the differential effects associated

to RDR1 andRDR6 in the biogenesis of virus-derived siRNAs and

in antiviral RNA silencing is that Arabidopsis RDR-dependent

pathways differ in their sensitivity to HC-Pro–mediated silencing

suppression. RDR1 and RDR6 are known to have distinct func-

tions or properties. RDR6, but not RDR1, participates in the

biogenesis of tasiRNA (Peragine et al., 2004; Vazquez et al.,

2004) and in posttranscriptional trans-gene silencing (Dalmay

et al., 2000; Mourrain et al., 2000). Furthermore, RDR1, but not

RDR6, is induced by salicylic acid or pathogen infection (Xie

et al., 2001). Differential sensitivity to HC-Pro might constitute an

additional difference. Alternatively, triggers that activate RDR1-

and RDR6-dependent activities might be differentially sensitive

to HC-Pro. As proposed for RDR6-dependent formation of

dsRNA during tasiRNA formation, it is postulated that RDR-

dependent amplification during virus infection would occur after

initial AGO-siRNA targeting events on TuMV genomic RNA

(Montgomery et al., 2008a, 2008b). The initial AGO-siRNA tar-

geting events might involve cleavage and deadenylation of viral

RNA as well as noncleavage association of AGO-siRNA com-

plexes with viral RNA. The associated AGO protein might serve

as a flag for direct or indirect recruitment of RDR1 and RDR6.

This line of reasoning implies that RDR1 and RDR6 triggers are

different.

Entry of Viral RNA into Silencing Pathways

Two lines of evidence support the existence of an antiviral

dsRNA-generating mechanism that is both independent from

RDR1, RDR2, and RDR6 and that is insensitive to HC-Pro. First,

suppressor-deficient TuMV-AS9-GFP accumulated to lower

levels in rdr1-1 rdr2-1 rdr6-15 than in dcl2-1 dcl3-2 dcl4-2 triple

Figure 8. Accumulation of TuMV-GFP– and TuMV-AS9-GFP–Derived

siRNAs in Arabidopsis rdr Mutants.

Blot assays were done as described in Figure 6.

(A) Inoculated leaves at 7 DAI.

(B) Noninoculated cauline leaves at 15 DAI.

(C) Inflorescence clusters at 15 DAI. Both TuMV-GFP and TuMV-AS9-

GFP-inoculated samples were tested.

(D) Average (+ SE) TuMV-GFP–derived siRNA signal intensity in four

independent replicates in each genotype. Within each tissue, bars with

the same letter are not statistically different (Tukey’s test with a = 0.01).

(�) and (+) indicate Col-0 mock-inoculated or TuMV-GFP infected,

respectively.
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mutants (Figure 7E), indicating an alternate source of dsRNA that

functions as a substrate for DCL activity in the triple rdr mutant.

Second, low but consistent levels of virus-derived siRNAs

were detected in rdr1-1 rdr2-1 rdr6-15 triple mutant plants

infected with TuMV-GFP (Figure 8), which is consistent with

similar findings by Donaire et al. (2008). The presumed dsRNA

in rdr1-1 rdr2-1 rdr6-15 triple mutants could arise from the

activities of one or more of RDR3, RDR4, and/or RDR5, none of

which have been shown to be functional. Alternatively, in rdr1-1

rdr2-1 rdr6-15 triple mutants, the siRNA may be the result of

processing of dsRNA from viral RNA replication products or

intermediates as described for Flock house virus infections of

Drosophila melanogaster (Aliyari et al., 2008; Flynt et al., 2009).

The initial trigger events for recognition of TuMV RNA remain

unclear. Analysis of Cymbidium ringspot tumbusvirus–derived

siRNAs in N. benthamiana showed that sense siRNA predomi-

nated over antisense siRNAs and that segments of the genome

with extensive secondary structure yielded siRNAs at higher

frequency (Molnar et al., 2005). Rather than a sense strand bias, a

slight antisense bias was detected in most of the TuMV siRNA

libraries analyzed (Figure 4A; see Supplemental Figure 6 online),

although this could be reflective of modest stabilization differ-

ences due to the likelihood of siRNAs forming with 59 ends

containing each of the four possible nucleotides. Given that the

antisense strand has a higher proportion of uracil than does the

sense strand, it would be expected that more siRNA would have

a 59 U residues, which would promote association with, and

stabilization by, AGO1 (Mi et al., 2008; Montgomery et al.,

2008a). Although nomiRNA precursor-like structures were found

in TuMV using criteria established for canonical miRNA precur-

sors (Meyers et al., 2008), it is still possible that initial trigger

events involve DCL-mediated cleavage of positive-strand viral

RNA. These putative events could even be catalyzed by DCL1,

even though the small RNA profile in dcl1-7 mutant plants was

similar to that from wild-type plants. The dcl1-7 allele is a partial

loss-of-function allele, meaning that residual activity might yield

sufficient numbers of primary processing events that initiate

amplification cycles that involve RDR1 and RDR6.

METHODS

Plant Materials

Nicotiana benthamiana plants used for virus propagation or transient RNA

silencing assays were 40 d old and had six to eight leaves at the time of

inoculation or infiltration. Arabidopsis thalianamutant lines rdr1-1, rdr2-1,

rdr6-15, dcl1-7, dcl2-1, dcl3-1, dcl4-2, dcl2-1 dcl3-1, dcl2-1 dcl4-2, dcl3-

1- dcl4-2, and dcl2-1 dcl3-1- dcl4-2 were described (Allen et al., 2004,

2005; Xie et al., 2004, 2005; Deleris et al., 2006). rdr1-1 rdr2-1, rdr1-1 rdr6-

15, rdr2-1 rdr6-15, and rdr1-1 rdr2-1 rdr6-15were generated by standard

crossing.While dcl1-7 is a partial loss of function allele (Xie et al., 2004), all

other lines carry null alleles. Plants were maintained in a greenhouse or a

growth room at 228C with a 16-h-light/8-h-dark cycle. Thirty-day-old

Arabidopsis plants were inoculated.

DNA Plasmids and Constructs

Recombinant plasmids and constructs used are described in the Sup-

plemental Methods online.

Transient RNA Silencing Assays in N. benthamiana

Agrobacterium tumefaciens infiltration of N. benthamiana was done as

described (Johansen and Carrington, 2001). A. tumefaciens GV3101

contained 35S:miR171, 35S:SCL6-IV (Llave et al., 2002b), 35S:GFP, 35S:

GUS (Johansen and Carrington, 2001), virus-encoded silencing suppres-

sor constructs, or empty vector sequences. The concentration of each

component was as follows: 35S:miR171 OD600 = 0.75; 35S:SCL6-IV,

OD600 = 0.10; RNA silencing suppressors, OD600 = 0.15; empty vector

OD600 = variable. Infiltrated leaves were harvested 48 h after injection,

total RNA was extracted and 10 mg used for RNA gel blotting. SCL6-IV

mRNA and its corresponding 39 cleavage product were detected by RNA

gel blot assays with a 32P-labeled DNA probe corresponding to the 39 end

of SCL6-IV. Hybridization intensities were quantified using an Instant

Imager (Molecular Dynamics) and exposures in the linear range of

detection.

Virus Propagation and Inoculum Enrichment

Both TuMV-GFP and TuMV-AS9-GFP were propagated in N. benthami-

ana. TuMV-GFP infection was launched by inoculation with Agrobacte-

rium containing pCB-TuMV-GFP, and systemically infected leaves were

collected 13 DAI. TuMV-AS9-GFP infection was launched by coinjection

of leaves with pCB-TuMV-AS9-GFP and p19-HA (Chapman et al., 2004),

and injected leaves were harvested 5 DAI (Figure 2C). Virus preparations

for subsequent inoculum were prepared using a polyethylene glycol

precipitation procedure essentially as described (Choi et al., 1977) (see

Supplemental Figure 1 online). The virus-enriched pellets were resus-

pended in 50 mM potassium phosphate, pH 7.5, and stored in 40%

glycerol at 2208C.

Virus Infection Assays

Four Arabidopsis rosette leaves were dusted with carborundum and rub-

inoculated using 3mL of inoculum/leaf. In all experiments, inoculum levels

were adjusted to levels at least fivefold higher than needed to achieve

100% systemic infection efficiency by TuMV-AS9-GFP in dcl2-1 dcl3-1-

dcl4-2 mutant plants, based on inoculum titration assays (see Supple-

mental Figure 1 online). Control plants were dusted with carborundum

and mock-inoculated using 50 mM potassium phosphate, pH 7.5. Local

and systemic infection of Arabidopsis by TuMV-GFP or TuMV-AS9-GFP

was scored initially by GFP fluorescence. TuMV CP was detected by

immunoblotting and chemiluminescence using antibody PVAS-134 at a

1:5000 dilution (Lellis et al., 2002) and Western Lighting plus-ECL sub-

strate (Perkin-Elmer). Blots were exposed to film for 10, 30, 60, and 180 s

to ensure signal detection in linear range. Four inoculated rosette leaves/

plant were collected at 7 DAI and pooled into a single sample. From

the same plants at later time points, four cauline leaves or four inflores-

cence clusters were pooled. In all experiments, four replicate samples

were analyzed for each virus-plant genotype combination at each time

point and for each tissue type. Total protein extracts were adjusted to 1.0

mg/mL prior to dilution for blot assays using 6.5 mg of total protein. The

linear range of detection was between 0.5 and 12.6 mg of total protein for

TuMV-AS9-GFP–infected dcl2-1 dcl3-1 dcl4-2 triple mutant plants.

RNA Extraction and Small RNA Gel Blot Analysis

Total RNA was extracted using Trizol (Invitrogen) from whole individual

plants or from independent pools of four inoculated rosette leaves, four

noninoculated cauline leaves, or four inflorescence clusters. Blot hybrid-

ization was done as described (Llave et al., 2002a). 32P-radiolabeled

probes corresponding to the coding region for CI protein were generated

by random priming of a PCR fragment [primers CI-F d(ACTCTCAATGA-

TATAGAGGATG) and CI-R d(TTGATGGTGAACTGCCTCAAG)] using
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pCB-TuMV as template. Blots were stripped and reprobed for endoge-

nous RDR2/DCL3-dependent siRNA02, RDR6/DCL1/DCL4-dependent

TAS1 tasiRNA 255, and U6 RNA using cDNA oligonucleotides end-

labeled with [g-32P]ATP using Optikinase (USB). Hybridization intensities

were quantified as described for the transient assays and normalized to

the U6 RNA signal.

Profiling TuMV-Derived siRNAs by High-Throughput Sequencing

Small RNA libraries from TuMV-infected or mock-inoculated plants were

generated using sequencing-by-synthesis technology (Illumina Genome

Analyzer I) (Fahlgren et al., 2009) and analyzed as described (Fahlgren

et al., 2009). Bar-coded 59 adaptors (Cuperus et al., 2010) were used for

multiplexing purposes. For each treatment, small RNA libraries were

made independently from triplicate samples using 100 mg of total RNA

extracted from aerial tissue from three plants. Four sets of amplicons

were prepared using different bar-coded adaptors and were mixed in

equal amounts (0.83 pMol/amplicon) and sequenced simultaneously in

one lane. Small RNA sequences were parsed, and Arabidopsis and TuMV

reads were identified, mapped, and quantified using CASHX (Fahlgren

et al., 2009). Reads were normalized per 1,000,000 total reads.

Accession Number

Sequence data from this article can be found in Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number

GSE20197.
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infected Arabidopsis plants at 10 DAI. 

Values are averages and standard error from three replicate libraries, normalized to (Arabidopsis 

plus TuMV) reads per million.Sense- and antisense-polarity reads were plotted on the y-axis in the 

positive and negative directions, respectively. Scale was capped at 150 reads.
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A   Arabidopsis dcl mutants at 15 DAI

Supplemental Figure 5. Accumulation of antisense siRNAs derived from the 5’ UTR of TuMV-GFP in 

inflorescence clusters of Arabidopsis dcl (A) and rdr (B) mutants.

For the samples described in Fig. 6C and 8C, accumulation of antisense siRNAs derived from the 5’ UTR 

was determined by Northern blotting. siRNAs were detected using a mixture of four overlapping 42-nt long 

oligos spanning the entire 5’ UTR and end-labeled with 32P-ATP. U6 is idicated as a loading control. The 

asterisk indicates a background 24-nt long sRNA detected in mock inoculated Col-0  and other genotypes in 

a DCL3- and RDR2-dependent manner. 
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A   Strand bias of 21-nt virus-derived sRNAs
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B   Abundance of 21-nt sRNAs by 5’ terminal nucleotide, at 10 DAI
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Supplemental Figure 6. Strand and nucleotide bias of TuMV-derived siRNAs.

(A) Strand bias of 21-nt long virus-derived siRNAs obtained at 7 and 10 DAI, measured as the ratio of 

antisense to sense reads per genotype and time point. The histogram shows the average and standard error 

of three replicate libraries for RPM normalized reads mapping to the entire TuMV genome (left panel), or 

excluding the 5' UTR (right panel). Dashed horizontal lines indicate the values expected from the nucleotide 

composition of the TuMV genome (antisense/ sense). (B) Relative abundance by polarity and 5' terminal 

nucleotide of 21-nt long virus-derived siRNAs mapping to the entire TuMV genome, the 5' UTR, or the rest of 

the genome, in the libraries made from TuMV infected plants at 10 DAI. Dashed, horizontal colored lines 

indicate the values expected from the TuMV nucleotide composition (sense or antisense).

Excluding the 5’ UTR

R
e

la
ti
v
e

 a
b

u
n

d
a

n
c
e

 (
%

)

60

40

20

0

20

40

60

Col dcl1-7 dcl2-1

dcl3-1

dcl4-2

Sense

Antisense

R
e

la
ti
v
e

 a
b

u
n

d
a

n
c
e

 (
%

)

80

60

40

20

0

20

40

60

80 Sense

Antisense

Col dcl1-7 dcl2-1

dcl3-1

dcl4-2

5’ UTR

U

A

C

G

5’ terminal nt

Supplemental Data. Garcia-Ruiz et al. (2010). Plant Cell 10.1105/tpc.109.073056



CP

C
ol
-0

d
c
l2
 d

c
l3
 d

c
l4

M
oc

k

CP

CP

CP

CP

CP

dc
l1
-7

d
c
l2
-1

d
c
l3
-1

d
c
l4
-2

d
c
l2
 d

c
l3

d
c
l2
 d

c
l4

d
c
l3
 d

c
l4

TuMV-GFP

TuMV-AS9-GFP

TuMV-GFP

TuMV-AS9-GFP

TuMV-GFP

TuMV-AS9-GFP

A   Inoculated rosette leaves at 7 DAI

B   Noninoculated cauline leaves at 15 DAI

C   Inflorescence clusters at 15 DAI

(+)

Supplemental Figure 7. Accumulation of TuMV-GFP and TuMV-AS-GFP in Arabidopsis dcl mutants.

Coat protein (CP) was detected by immunoblotting using antibody PVAS-134. For each virus-plant genotype 

combination, at each time point and for each tissue type, four replicates samples were analyzed using 6.25 

micrograms of total protein and exposing to film several times. Representative blots are shown. In blots 

containing TuMV-GFP, TuMV-AS9-GFP in dcl2-1 dcl3-1 dcl4-2 was included as normalization control. (A) 

Inoculated leaves. (B) Noninoculated cauline leaves. (C) Inflorescence. (+) indicates dcl2-1 dcl3-1 dcl4-2  

plants infected by TuMV-AS9-GFP, for comparison.
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Supplemental Figure 8. Accumulation of TuMV-GFP and TuMV-AS-GFP in Arabidopsis rdr mutants.

Coat protein (CP) was detected by immunoblotting using antibody PVAS-134. For each virus-plant genotype 

combination, at each time point and for each tissue type, four replicates samples were analyzed using 6.25 

micrograms of total protein and exposing to film several times. Representative blots are shown. In blots 

containing TuMV-GFP, TuMV-AS9-GFP in dcl2-1 dcl3-1 dcl4-2 was included as normalization control. (A) 

Inoculated leaves. (B) Noninoculated cauline leaves. (C) Inflorescence. (+) indicates dcl2-1 dcl3-1 dcl4-2  

plants infected by TuMV-AS9-GFP, for comparison.
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Supplemental Table 1. Abundance and distribution of 21 nt TuMV-derived 

siRNA in whole Arabidopsis plants at 7 and 10 DAI a.   

a 
Average number of reads obtained in three replicate libraries per treatment, normalized to reads per million (Arabidopsis 

plus TuMV reads).  Numbers in parenthesis are the relative abundance, in percentage, of TuMV-derived sRNA reads with 

respect to the total. This table is a numeric summary of the data presented in Figure 4 and Supplemental Figure 2. 

 

 

Genotype Time  TuMV genome 5' UTR Excluding the 5' UTR  

 point Total Sense Antisense Sense Antisense Sense Antisense 

Col-0 7 DAI 50,617 
(100%) 

20,503 
(40.5%) 

30,114 
(59.5%) 

55 
(0.1%) 

4,541 
(9.0%) 

20,448 
(40.4%) 

25,573 
(50.5%) 

 10 DAI 108,591 
(100%) 

45,297 
(41.7%) 

63,294 
(58.3%) 

68 
(0.1%) 

8,031 
(7.4%) 

45,229 
(41.7%) 

55,263 
(50.9%) 

dcl1-7 7 DAI 39,981 
(100%) 

15,968 
(39.9%) 

24,013 
(60.1%) 

47 
(0.1%) 

2,790 
(7.0%) 

15,921 
(39.8%) 

21,222 
(53.1%) 

 10 DAI 80,637 
(100%) 

35,885 
(44.5%) 

44,752 
(55.5%) 

128 
(0.2%) 

5,100 
(6.3%) 

35,756 
(44.3%) 

39,652 
(49.2%) 

 
dcl2-1 

7 DAI 11,614 
(100%) 

609 
(5.2%) 

11,005 
(94.8%) 

20 
(0.2%) 

10,956 
(94.3%) 

589 
(5.1%) 

49 
(0.4%) 

dcl3-1 

dcl4-2 

10 DAI 15,891 
(100%) 

1,746 
(11.0%) 

14,144 
(89.0%) 

19 
(0.1%) 

11,862 
(74.6%) 

1,728 
(10.9%) 

2,283 
(14.4%) 
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DNA plasmids and constructs.  Recombinant plasmids were constructed as 

follows. 

pCBP1/HCProHA-AS9. The TuMV HC-Pro sequence in pCBP1/HCProHA-

AS9 has the AS9 mutation, which leads to the same amino acid changes as the 

Tobacco ecth virus AS9 mutation (Kasschau et al., 1997). Plasmid 

pCBP1/HCProHA-AS9 was generated by site-directed mutagenesis of 

pCBP1/HCProHA (Chapman et al., 2004)  by using two sets of primers: Nco-HC-

F d(ATCGCCATGGCAGCAGTTACATTTGCAACCGCTATCA) and AS9-R 

d(CGTGACCCATTTGGTGCAGCTGCTGTCTCGTATTGG); and AS9-F 

d(CCAATACGAGACAGCAGCTGCACCAAATGGGTCACG) and pCBXba-R 

d(GGTGATTTGCGGACTCTAGA). Then, a PCR fragment was amplified from 

these two PCR fragments by using Nco-HC-F and pCBXba-R. The NcoI-XbaI 

fragment was used to replace the NcoI-XbaI fragment of pCBP1/HCProHA. 

pCB-TuMV-GFP (Accession EF028235). Plasmid p35STuMV-GFP (Lellis et 

al., 2002) contains a TuMV cDNA cassette and sequence encoding a soluble-

modified GFP between P1 and HC-Pro under control of the Cauliflower mosaic 

virus 35S promoter and Nos terminator (Sanchez et al., 1998). The SmaI-ApaI 

fragment of p35STuMV-GFP was inserted between SmaI and ApaI sites of 

pCB302 (Xiang et al., 1999), creating pCB-TuMV-GFP, a binary vector suitable 

for launching TuMV-GFP infection by Agrobacterium infiltration.  

pCRGFP-HCPro-AS9. Two PCR fragments were amplified from pCBTuMV-

GFP by using two sets of primers: TuP1-ApaLI-F d(CGGTGCACAGAATATGCA) 

and TuHC-Eco57iR d(GTGAACCCTTCTCAATGT); and TuMV2579F 

d(CCATCTAGTGATTGGTAAC) and TuMV3490R d(AGAATGGCATGGTGG-

AATGCAA). The third PCR fragment was amplified from pCBP1/HCProHA-AS9 

by using TuMV2124F d(AGCACGATACCTGAAGAAC) and HCgsR 



d(CCTTGACATTTACCAACATGG). Then, a PCR fragment was amplified from 

these three PCR fragments by using TuP1-ApaLI-F and TuMV3490R. Such PCR 

fragment was inserted into pCR4zeroblunt TOPO vector (Invitrogen), creating 

pCRGFP-HCPro-AS9 which was used for making pCB-TuMV-AS9-GFP. 

pCB-TuMV-AS9-GFP. The small NcoI-SnaBI fragment from pCRGFP-HCPro-

AS9 was used to replace the NcoI-SnaBI fragment of pCB-TuMV-GFP.  

pCB-TuMV. The small StuI-AgeI fragment from pCBP1/HCProHA (Chapman 

et al., 2004)  was used to replace the equivalent StuI-AgeI fragment of pCB-

TuMV-AS9-GFP. 

pCB-TuMV-AS9. The small StuI-AgeI fragment from pCBP1/HCProHA-AS9 

(Chapman et al., 2004)  was used to replace the small StuI-AgeI fragment of 

pCB-TuMV-AS9-GFP. 

Silencing suppressor constructs.  P19-HA and p21-HA constructs were 

described previously (Chapman et al., 2004) and encoded HA-tagged versions of 

suppressors from Tomato bushy stunt virus and Beet yellows virus, respectively. 

Silencing suppression-defective mutants p19m (p19W39/42R) (Vargason et al., 

2003) and described previously (Chiba et al., 2006) have been described 

previously. 
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