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Abstract

Salmons raised in aquaculture farms around the world are increasingly subjected to sub-

optimal environmental conditions, such as high water temperatures during summer sea-

sons. Aerobic scope increases and lipid metabolism changes are known plasticity

responses of fish for a better acclimation to high water temperature. The present study

aimed at investigating the effect of high water temperature on the regulation of fatty acid

metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic

acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo

enzyme activities and gene expression of lipid metabolism pathways. Three experimental

diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate

groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that

fatty acid metabolic utilisation, and likely also their dietary requirements for optimal perfor-

mance, can be affected by changes in their relative levels and by environmental tempera-

ture in Atlantic salmon. Thus, the increase in temperature, independently from dietary

treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as

observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcrip-

tion factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsi-

ble for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-,

were both increased at the higher water temperature. An interesting interaction was

observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in

the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA

expression and enzyme activity was recorded in fish with limited supply of dietary EPA,

whereas at higher temperature these were recorded in fish with limited ARA supply. In con-

sideration that fish at higher water temperature recorded a significantly increased feed

intake, these results clearly suggested that at high, sub-optimal water temperature, fish

metabolism attempted to increment its overall ARA status -the most bioactive LC-PUFA par-

ticipating in the inflammatory response- by modulating the metabolic fate of dietary ARA

(expressed as % of net intake), reducing its β-oxidation and favouring synthesis and

PLOSONE | DOI:10.1371/journal.pone.0143622 November 24, 2015 1 / 25

OPEN ACCESS

Citation: Norambuena F, Morais S, Emery JA,

Turchini GM (2015) Arachidonic Acid and

Eicosapentaenoic Acid Metabolism in Juvenile

Atlantic Salmon as Affected by Water Temperature.

PLoS ONE 10(11): e0143622. doi:10.1371/journal.

pone.0143622

Editor: James P. Meador, Northwest Fisheries

Science Center, NOAA Fisheries, UNITED STATES

Received: August 14, 2015

Accepted: November 6, 2015

Published: November 24, 2015

Copyright: © 2015 Norambuena et al. This is an

open access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This research was supported under the

Australian Research Council's Discovery Projects

funding scheme (Project DP1093570). The views

expressed herein are those of the authors and are

not necessarily those of the Australian Research

Council. SM was supported by the European

Commission Marie Curie Actions (FP7-PEOPLE-

2010-RG, Project No. 274184). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0143622&domain=pdf
http://creativecommons.org/licenses/by/4.0/


deposition. This correlates also with results from other recent studies showing that both

immune- and stress- responses in fish are up regulated in fish held at high temperatures.

This is a novel and fundamental information that warrants industry and scientific attention,

in consideration of the imminent increase in water temperatures, continuous expansion of

aquaculture operations, resources utilisation in aquafeed and much needed seasonal/

adaptive nutritional strategies.

Introduction

As global sea temperatures rise and market demands grow, aquaculture is increasingly encoun-

tering sub-optimal conditions due to changing environments [1] and/or expansion into areas

outside the ideal range for the species; and this is the case for Atlantic salmon farming along

the Australian coast [2]. A common acclimation of fish to altered temperature is the restructur-

ing of the membrane lipids (homeoviscous adaptation), which is the only structural element of

the cells that can be reshaped as the environmental temperature changes [3]. Therefore, follow-

ing changes in water temperature, the composition of lipid membranes is altered in order to

avoid damage and possibly even death, which could occur if this acclimation does not happen

quickly enough [4–6]. Long chain polyunsaturated fatty acids (LC-PUFA) have unique roles in

controlling and regulating cell membrane fluidity, and participate in a wide range of physiolog-

ical processes including immune and stress response, growth, survival and performance [7, 8].

Hence, LC-PUFA and their derivative compounds are involved in a network of pathways

which are among the most complex in live organisms, including fish [9, 10].

Most marine fish species, which lack the ability to synthesize LC-PUFA from their 18-car-

bon precursor fatty acids such as α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6), require

preformed dietary LC-PUFA, such as docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic

acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), for their normal growth and devel-

opment [11]. On the other hand, it is generally accepted that freshwater fish and anadromous

salmonids can convert C18 PUFA of both the n-6 and n-3 series to their longer chain LC-PUFA

[12], even if the final steps in the synthesis are relatively inefficient and therefore LC-PUFA

requirement cannot be met without some direct dietary supply [13]. It is known that fish sub-

jected to low water temperature increase membrane fluidity by enhancing LC-PUFA levels,

and selected desaturation reactions, particularly those involved in the production of LC-PUFA,

proceed more rapidly in cold than in warmer water [14]. On the other hand, numerous studies

on several teleost species have shown that increase in temperature reduces the accumulation of

LC-PUFA in body lipid depots and cell membranes and enhances the deposition of saturated

fatty acids, SFA [6, 15–18]. Furthermore, several physiological processes are directly affected

by water temperature in fish, from digestive physiology [19–21] to lipid metabolism [14]. For

instance, water temperature exerts a major impact in fatty acid metabolism and use of energy

depots in teleost fish [22], and therefore rises in temperature may change the fish’s require-

ments for optimal performance of dietary lipids and LC-PUFA [3, 5], as well as energy

demand, associated to increases in growth rate. As such, during periods of high growth rate,

fish β-oxidize even essential fatty acid when given in surplus [23]. An association between

water temperature and fatty acid β-oxidation has been shown, but with inconsistent results. A

study of fish held under simulated natural temperature indicated that β-oxidation of SFA in

muscle increase during spring [24], while in vitro studies of hepatocytes suggested that β-oxi-

dation was higher at 5°C compared with 12°C [25]. Studies looking at the swimming rate of
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rainbow trout at different temperatures (5°C vs 15°C) showed that with increases in tempera-

ture the critical swimming speed increases up to 52% and that lipids remain the most impor-

tant fuel in these conditions [26], supporting the concept that lipid are the major energy source

used by fish during aerobic exercise. Studies of fatty acid composition and swimming perfor-

mance in Atlantic salmon held at 8°C suggest that the energy demanded by fish swimming is

mainly provided by β-oxidation of 18-carbon unsaturated fatty acids [27], but this might

change with increases in water temperature. Recent studies on fish acclimation to high temper-

atures, showed that aerobic scope increase together with lipid metabolism as a fish plasticity

response for a better acclimation to high water temperature [28].

Dietary fat has gained much prominence for the role of LC-PUFA in regulating gene expres-

sion of many genes involved in fatty acid and glucose metabolism in mammals [29, 30]. These

FA affect gene expression through various mechanism including changes in membrane com-

position, intracellular calcium level and eicosanoid production [31]. Furthermore, LC-PUFA

and their metabolites are ligands for peroxisome proliferator–activated receptors (ppars)

together with liver X receptor (lxr), partner retinoic X receptor (rxr), and thereby affect the

expression of many lipid metabolism genes [32–34]. As such, studies in rats has shown that

dietary EPA is a responsible for the hypotriglyceridemic effect of fish oil, decreasing availability

of fatty acids for triacylglycerol synthesis by increasing mitochondrial β-oxidation and decreas-

ing triacylglycerol formation caused by inhibition of diacylglycerol acyltransferase [35, 36].

Similar effects of fish oil in FA biosynthesis and β-oxidation have also been found in fish [37,

38]. Further, recent studies in teleost have reported that ARA down-regulates the expression of

genes involved in lipogenesis but also in mitochondrial lipid β-oxidative related genes like car-

nitine acyltransferase I (cpt1), and the transcriptional factor pparα [39]; and accordingly, other

two recent studies showed that the transcription rate of these genes were reduced with increase

of dietary ARA in fish [40, 41]. From a fatty acid bioconversion (anabolic) point of view, die-

tary ARA has been reported to affect the expression of elongase (elovl5a) and desaturase

(Δ4fad) genes in male broodstock fish, particularly during the reproductive season [42]. In

mammals, in vitro studies performed in mouse lymphoma showed that ARA regulates unsatu-

rated fatty acid biosynthesis, by inhibiting steraoyl-CoA 9-desaturase (Δ9fad) gene expression

[43]. In suckling pigs, it has been shown that low ARA levels in the diet up-regulate Δ6fad

expression during earlier development, indicating an effect of dietary ARA in modulating

PUFA biosynthesis, which in turn should be regulated by physiological requirements, includ-

ing the synthesis of eicosanoids [44].

In modern salmonid aquaculture, shortages in marine-derived oils have forced the feed

industry to include elevated concentrations of alternative terrestrial oils, resulting in a concom-

itant reduction of LC-PUFA and bioactive lipids like ARA, EPA and DHA. Therefore, several

studies have focused on the biological effects of n-3 LC-PUFA, primarily how EPA and DHA

function in a range of marine and freshwater fish species and also on the optimal dietary levels

to support growth of fish fed diets with fish oil replaced by vegetable oils [45–48]. In fish, ARA

is mainly stored in polar lipids and is a minor component of cell membranes compared to EPA

[49, 50]. Nevertheless, it is the most prominent n-6 LC-PUFA from a functional standpoint

associated with membrane phospholipids, being released by the action of cytosolic phospholi-

pase (cpla2), and then metabolized by cyclooxygenase (cox-2) and lipoxygenase (5-lox) into

highly bioactive eicosanoids, which are involved in tissue homeostasis, inflammation and car-

diovascular responses [51, 52]. However, although ARA is considered one of the most biologi-

cally relevant LC-PUFA in mammals, studies focusing on n-6 fatty acids (FA), including ARA,

in fish nutrition have been somewhat neglected due to the n-3 LC-PUFA-centred research

effort. More recently, some studies have focused on evaluating the importance of ARA in fish

nutrition, with gradual elucidation of the physiological functions of their bioactive eicosanoid
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derivatives, and effects on fish performance and fatty acid digestibility [19, 40, 53]. In addition

to defining optimal dietary requirements for ARA and the resultant effects on fish perfor-

mance, such studies have shown that ARA and its metabolites exert complex control over

many biological systems, including cardiovascular, endocrine and immune systems [54–57].

However, studies on the effects of dietary EPA and ARA are often complicated by the fact that

both not only compete for incorporation into membrane phospholipids but also for biosynthe-

sis from their respective n-3 and n-6 fatty precursors, and share the same enzyme in their meta-

bolisation and eicosanoid production [31, 58].

These observations suggest that given the influence and competition of ARA and EPA over

several metabolic systems, their dietary provision likely plays an important role in fish plastic-

ity when adapting to sub-optimal high water temperatures. Cultured fish are fed high fat diets

containing finite marine sources of LC-PUFA and, resulting from seasonal variations, are often

subjected to gradual modification of water temperature that might modulate their dietary

requirements. Therefore, a better understanding of ARA and EPA interactions and influence

over lipid metabolism is required in order optimize the essential FA that can be provided by

diets and maximize the energy that can be supplied by dietary lipids under these conditions. As

such, the present study aimed at investigating the effect of high water temperature on the regu-

lation of fatty acid metabolism in juvenile Atlantic salmon (Salmo salar) fed different dietary

ARA/EPA ratios, with a particular focus on apparent in vivo anabolic and catabolic enzyme

activities and expression of genes involved in lipid metabolism, more specifically in LC-PUFA

biosynthesis (fatty acyl elongases and desaturases), lipogenesis (fatty acid synthase-fas), β-

oxidation (carnitine palmitoyl transferase 1-cpt1 and acyl-CoA oxidase-aco) and LC-PUFA

mobilization from biomembranes (cpla2), as well as their regulation (several peroxisome pro-

liferator-activated receptor-ppar and sterol regulatory element binding protein 1-srebp1).

Materials and Methods

Ethics Statement

All animals and procedures used in this experimentation were approved by the Deakin Univer-

sity Animal Welfare Committee (Number B06-2013). All possible steps towards minimising

animal suffering were taken.

Experimental diets

The present study reports a set of new data originating from an in vivo trial that was object of

previously published studies and detailed methodological information can also be found in

Trullàs et al. (2015) and Norambuena et al. (2016). The latter studies focused on the effects of

altered dietary n-3/n-6 LC-PUFA ratio on nutrients and FA digestibility, and on the effects on

fish performance and tissues’ fatty acid composition, respectively. The present study reports on

dietary ARA/EPA metabolism of juvenile Atlantic salmon, focusing on anabolic and catabolic

enzyme activities and mRNA levels of lipid metabolism genes during the second part of the in

vivo trial, when fish were housed at two different water temperatures.

Briefly, three iso-proteic, iso-lipidic and iso-energetic diets were specifically formulated and

manufactured, varying only in their fatty acid composition in terms of ARA/EPA ratio, via

modification of the added dietary lipid sources. Therefore, three specifically formulated oil

blends were developed, using four readily available plant based oils (canola/rapeseed, linseed,

sunflower and palm oil) and three specialty (refined/concentrated) oils, each with a high con-

tent of DHA, EPA and ARA, respectively. The blends of these oils were specifically designed

towards achieving three final experimental diets characterised by having: i) the same total con-

tent of saturated fatty acid (SFA), total monosaturated fatty acid (MUFA), polyunsaturated
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fatty acid (PUFA), LC-PUFA, n-3 C18PUFA, n-6 C18PUFA and DHA; ii) the same total con-

tent of EPA + ARA; and iii) three different EPA/ARA ratios. The experimental diets were

accordingly named D-ARA (ARA/EPA ratio = 2.4), D-ARA/EPA (ARA/EPA ratio = 0.7) and

D-EPA (ARA/EPA ratio = 0.1). The fatty acid composition of the three experimental diets is

reported in Table 1. The manufacturing methods of the experimental diets have been described

previously in detail in Trullàs et al. (2015) and Norambuena et al. (2016).

Fish husbandry

Juvenile Atlantic salmon (~55 g) were sourced from a private aquaculture farm (Mountain

Fresh Trout and Salmon Farm, Harrietville, Australia). After transportation to the Deakin

Table 1. Total fatty acid (FA) and fatty acid composition (mg/g lipid) of the three experimental diets.

Experimental diets 1

D-ARA D-ARA/EPA D-EPA

FA2 (mg/g lipid)

Total FA 746.05 737.09 734.29

Total SFA3 159.64 157 155.01

18:1n-9 282.07 276.21 268.78

Total MUFA4 319.24 314.11 308.25

18:2n-6 86.26 84.31 85.02

20:4n-6 49.19 26.92 7.05

22:4n-6 0.41 0.3 0.22

22:5n-6 1.07 0.79 0.66

Total n-6 PUFA5 148.06 121.25 99.52

18:3n-3 74.07 77.46 78.26

20:5n-3 20.87 40.93 62.27

22:5n-3 1.54 1.9 2.37

22:6n-3 17.7 16.53 17.33

Total n-3 PUFA6 119.1 144.74 171.49

Total PUFA7 267.16 265.98 271.02

Total n-6 LC-PUFA8 55.91 31.21 8.81

Total n-3 LC-PUFA9 41.77 60.95 83.83

Total LC PUFA10 97.68 82.16 92.64

FA ratios

ARA/EPA 11 2.36 0.66 0.11

LC-PUFA n-3/n-612 0.75 1.95 9.52

1 Experimental diets abbreviations: details relative to experimental diets formulation and raw materials are

avilable at Trullàs et al. (2015).
2 FA = fatty acids.
3 SFA = saturated fatty acids.
4 MUFA = monounsaturated fatty acids.
5 n-6 PUFA = omega-6 polyunsaturated fatty acids.
6 n-3 PUFA = omega-3 polyunsaturated fatty acids.
7 PUFA = polyunsaturated fatty acids.
8 n-6 LC-PUFA = long chain omega-6 polyunsaturated fatty acids.
9 n-3 LC-PUFA = long chain omega-3 polyunsaturated fatty acids.
10 Total long chain polyunsaturated fatty acid
11ARA/EPA = ratio of 20:4n-6/20:5n-3
12 LC-PUFA n-3/n-6 = ratio of long chain n-3 PUFA/n-6 PUFA.

doi:10.1371/journal.pone.0143622.t001
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University Aquaculture Research Facility (Warrnambool, Victoria, Australia), fish were accli-

matised to the new environmental conditions for a two weeks period, during which they were

fed a commercial diet (Ridley Aquafeed, Narangba, Queensland, Australia). Two identical

fresh water multiple-tank (1,000 L), thermostatically controlled, recirculating aquaculture sys-

tems, equipped with physical and biological filtration and UV sanitation, were used for the in

vivo trial. Both systems were maintained on a 12:12 h light:dark cycle and with a flow rate of

10 L/min per tank; and water quality parameters were maintained at optimal levels for Atlantic

salmon. Five hundred and forty fish were weighed and initially stocked in one system, with

water temperature set at 10°C, and randomly distributed into 9 tanks (60 fish per tank). Tanks

were randomly allocated to one of the three experimental diets in triplicate. Fish were fed twice

daily to apparent satiation at 0900 and 1600 hrs. After 14 weeks, all fish from each tank were

weighed, 6 fish per tank were sampled (3 fish per tank for whole body analyses and 3 fish per

tank for molecular analysis) and the remaining fish were split into two groups of 20 fish each,

of which one was moved to the second system, and the other was returned to their previous

tank. This was considered time zero, and the commencement of the trial in the present study.

After fish transfer, the water temperature of the second system was gradually increased at a

rate of 1.5°C/day, from 10°C to 20°C, whereas the first system was maintained at 10°C. After an

additional 6 weeks from the splitting of the fish into the two systems at different temperatures

(time zero), all fish were weighed and a further 6 fish per tank were sampled (3 fish per tank for

whole body analyses and 3 fish per tank for molecular analyses), representing the end of the

trial.

Chemical analyses and fatty acid metabolism assessment

The chemical composition of the experimental diets and whole body fish were determined via

proximate composition analysis according to standard methods [59]. Lipid content was deter-

mined by dichloromethane:methanol extraction (2:1) technique [60], with the substitution of

chloroform with dichloromethane for safety reasons and the addition of butylated hydroxytol-

uene (BHT) (50 mg L-1) to reduce lipid oxidation during processing. After lipid extraction, an

aliquot was used for fatty acid analysis, which was implemented via trans-methylation and gas

chromatography, following the procedures previously described in detail [61].

Evaluation of the in vivo fatty acid metabolism (apparent in vivo β-oxidation, bioconversion

and deposition) was performed using the whole-body fatty acid balance method, as initially

proposed and described [62], with further development [63]. Data relative to growth perfor-

mance and feed intake, dietary and tissues fatty acid composition, and fatty acid digestibility,

which were previously reported and discussed [19, 64], were used in the computations required

for the implementation of the method. For reference, the initial and final body weights, the

total dietary intake and the fatty acid composition of fish whole bodies resulting from the die-

tary intervention is reported in Table 2, and in this study should be considered as part of the

methodology, rather than results, as this dataset was used for the computation of the fatty acid

metabolism. Final results of the whole-body fatty acid balance method were then reported as

apparent in vivo enzyme activity, expressed as nmol/g/day, and also as metabolic fate of dietary

FA (as β-oxidation, bioconversion or deposition), expressed as % of net intake.

Tissue RNA extraction and quantitative real-time PCR (qPCR)

Expression of 11 selected genes was studied by reverse transcription real time quantitative PCR

(qPCR). One gene related to the release of LC-PUFA from phospholipids, cytolic calcium-

dependent phospholipase A2 (cpla2). Five genes are related to fatty acid biosynthesis pathway,

fatty acid synthase (fas), fatty acyl desaturases (Δ5fad and Δ6fad), and fatty acyl elongases
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Table 2. Initial and final body weights, feed intake, total fatty acids (mg/g lipid) and fatty acid composition (mg/g lipid) of whole body of Atlantic
salmon fed experimental diets with different ARA/EPA ratios and reared at two different water temperatures.

10°C 20°C P value1

D-ARA D-ARA/EPA D-EPA D-ARA D-ARA/EPA D-EPA Diet Temp. Inter.

Initial weight (g) 162.1±4.66 162.5±4.57 161.0±2.15 162.1±4.83 162.6±1.65 163.6±3.74 n.s. n.s. n.s.

Final weight (g) 212.8±5.58b 245.7±8.59ab 242.9±6.29ab 228.0±9.53b 273.1±6.99a 260.1±8.73ab *** *** n.s.

Feed intake (g/day) 1.2±0.08c 1.3±0.02c 1.4±0.08c 1.8±0.08b 2.3±0.09a 2.0±0.03ab *** *** n.s.

TFA (mg/g lipid)2 771.1±8.93 775.3±6.05 773.8±4.72 780.7±14.50 785.6±4.82 777.6±10.27 n.s. n.s. n.s.

Fatty Acids (mg g)

14:0 10.2±0.25ab 10.1±0.17ab 10.6±0.13a 9.5±0.24b 9.8±0.25 9.6±0.14b n.s. *** n.s.

16:0 92.4±1.44c 95.8±0.95abc 99.7±1.07ab 94.3±2.10bc 98.9±1.22 101.1±1.51a *** n.s. n.s.

18:0 37.4±0.64abc 35.9±0.68bc 34.2±0.31c 39.9±1.12a 38.0±0.40b 34.7±0.89c *** ** n.s.

Total SFA3 146.4±2.32 148.5±1.69 150.8±1.51 150.5±3.78 153.7±1.70 151.7±2.62 n.s. n.s n.s.

16:1n-7 19.3±0.50ab 19.4±0.21ab 19.9±0.26a 17.7±0.38c 18.6±0.35ab 18.2±0.36bc n.s. *** n.s.

18:1n-7 16.0±0.21 16.0±0.13 16.4±0.15 15.5±0.29 15.8±0.16 15.8±0.21 n.s. n.s. n.s.

18:1n-9 274.4±3.05 275.8±1.79 272.9±1.88 279.2±4.65 279.8±1.72 272.3±3.19 n.s. n.s. n.s.

20:1n-9 9.5±0.26a 8.5±0.13b 8.3±0.16b 8.7±0.18b 8.4±0.09 7.6±0.07c *** *** n.s.

24:1n-9 1.7±0.05 1.6±0.05 1.6±0.04 1.6±0.05 1.7±0.02b 1.6±0.03 n.s. n.s. n.s.

TOTAL MUFA4 326.2±3.78 326.1±2.08 324.0±2.36 327.9±5.65 329.4±2.18 320.3±3.83 n.s. n.s. n.s.

18:2n-6 80.6±1.00 81.4±0.66 81.0±0.53 83.7±1.42 83.6±0.48 83.2±1.02 n.s. ** n.s.

20:2n-6 5.1±0.13a 3.8±0.61ab 3.9±0.08ab 4.8±0.11ab 4.3±0.13b 3.4±0.57b *** n.s. n.s.

20:3n-6 7.0±0.08a 5.0±0.06b 3.4±0.06c 6.9±0.14a 4.9±0.06ab 3.2±0.06c *** n.s. n.s.

20:4n-6 41.4±0.32b 23.4±0.33b 7.0±0.10d 43.7±0.87a 24.3±0.40c 8.5±0.31e *** n.s. n.s.

22:4n-6 5.1±0.25a 2.7±0.07b 1.0±0.02c 5.5±0.39a 2.8±0.08b 1.1±0.03c *** n.s. n.s.

22:5n-6 5.4±0.14a 3.0±0.12b 1.4±0.08c 5.5±0.19a 3.5±0.07b 1.9±0.19c *** ** n.s.

Total n-6 PUFA5 149.3±1.45a 124.0±0.88b 101.3±0.67c 154.4±2.62a 126.1±0.95 104.0±1.45c *** ** n.s.

18:3n-3 50.2±0.57d 54.7±0.52bc 55.6±0.24b 52.9±0.77cd 57.0±0.73c 58.7±0.78a *** *** n.s.

20:3n-3 0.5±0.06c 3.2±0.76b 4.3±0.10ab 0.5±0.05c 4.8±0.12c 4.4±0.18ab *** n.s. n.s.

20:4n-3 5.2±0.09cd 6.2±0.11ab 6.7±0.07a 4.7±0.11d 5.6±0.11 6.4±0.26a *** *** n.s.

20:5n-3 16.5±0.30c 27.4±0.37b 38.9±0.66a 15.9±0.42c 26.4±0.29ab 37.9±0.37a *** n.s. n.s.

22:5n-3 9.1±0.07c 11.5±0.30b 14.4±0.29a 7.7±0.49c 11.3±0.50 13.8±0.37a *** ** n.s.

22:6n-3 49.1±0.96bc 51.6±0.51ab 54.2±0.38a 47.8±0.93c 50.0±0.98b 54.4±0.98a *** n.s. n.s.

Total n-3 PUFA6 146.1±2.14c 173.0±2.23b 192.9±1.01a 145.3±2.78c 172.7±2.40b 197.0±3.02a *** n.s. n.s.

Total PUFA7 295.4±3.45 297.0±2.56 294.2±1.49 299.7±5.30 298.8±3.16b 301.0±4.41 n.s. n.s. n.s.

Total n-6 LC PUFA8 64.4±0.50a 38.8±0.57b 17.7±0.11c 65.9±1.08a 39.0±0.83b 18.0±0.49c *** n.s. n.s.

Total n-3 LC PUFA9 92.4±1.48c 110.1±1.77b 126.8±0.73a 87.5±1.88c 107.8±1.82b 127.0±2.27a *** n.s. n.s.

Total LC PUFA10 156.7±1.78a 149.0±1.36abc 144.5±0.82c 153.5±2.84ab 146.6±2.33b 145.0±2.65bc *** n.s. n.s.

FA ratios

ARA/EPA ratio11 2.5±0.03b 0.9±0.03c 0.2±0.00d 2.7±0.03a 0.9±0.00b 0.2±0.01d *** *** n.s.

(Continued)
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(elovl5a and elovl2). Two genes are involved in liver fatty acid β-oxidation, including acyl-CoA

oxidase (aco) and carnitine palmitoyl transferase-one (cpt1), for peroxisomal and mitochon-

drial β-oxidation, respectively. The remaining three genes are the transcription factors and

major regulators of lipid metabolism, peroxisome proliferator-activated receptor-alpha

(pparα), beta (pparβ) and gamma (pparγ), which in liver are suggested to be related to the regu-

lation of genes involved in fatty acid homeostasis [65]. All primers used are reported in

Table 3. For RNA extraction, samples were transferred into 2-ml screw-cap tubes containing

1 ml of TRIzol (Ambion, Life Technologies, Australia), with approximately 50 mg of 1 mm

diameter zirconium glass beads, and were homogenized (TissueLyser LT, Quiagen, USA). Sol-

vent extraction was performed following the manufacturer's instructions and RNA quality and

quantity were assessed by gel electrophoresis (Bio-Rad Gel Doc XR Electrophoresis Unit, US)

and spectrophotometry (NanoDrop ND-2000, Thermo Scientific, Wilmington, USA), respec-

tively. Two micrograms of total RNA per sample were reverse transcribed into cDNA using the

High-Capacity cDNA RT kit (Applied Biosystems, Life Technologies, USA), following the

manufacturer's instructions, but using a mixture of random primers (1.5 μl as supplied) and

anchored oligo-dT (0.5 μl at 400 ng/μl, Applied Biosystems, USA). Negative controls (contain-

ing no enzyme) were performed to check for genomic DNA contamination. A similar amount

of cDNA was pooled from all samples and the remaining cDNA was diluted 50-fold with

water. Quantification of the expression of three reference genes (Table 3) (elongation factor

1 alpha (ef1a1), beta actin (bact) and cofilin 2 (cof2), previously validated in studies with

juvenile Atlantic salmon, was performed [37]. Amplifications were carried out in duplicate

(Real-Time PCR Detection System, CFX96 Touch™ Bio-Rad, USA) in a final volume of 20 μl

containing 5 μl (target genes) or 2 μl (reference genes) of diluted (1/50) cDNA, 0.5 μM of each

primer and 10 μl SYBR GREEN qPCR Master Mix (SsoAdvanced™Universal SYBR1 Green

Supermix, Bio-Rad, Australia) and included a systematic negative control (NTC-non template

Table 2. (Continued)

10°C 20°C P value1

D-ARA D-ARA/EPA D-EPA D-ARA D-ARA/EPA D-EPA Diet Temp. Inter.

LC PUFA n-3 /n-612 1.4±0.02c 2.8±0.10b 7.2±0.03a 1.3±0.02c 2.8±0.03c 7.1±0.13a *** n.s. n.s.

Values in the same row with different superscripts are significantly different (P < 0.05) as determined by Student-Newman-Keuls post hoc multiple

comparisons test. P values relative to two-way ANOVA statistical test are reported in the last three columns on the right hand side of the table. Further

details relative to fatty acid digestibility and growth performances are avilable at Trullàs et al. (2015) and Norambuena et al. (2016).
1 n.s. = not significant
2 FA = fatty acids.
3 SFA = saturated fatty acids.
4 MUFA = monounsaturated fatty acids.
5 n-6 PUFA = omega-6 polyunsaturated fatty acids.
6 n-3 PUFA = omega-3 polyunsaturated fatty acids.
7 PUFA = polyunsaturated fatty acids.
8 n-6 LC-PUFA = long chain omega-6 polyunsaturated fatty acids.
9 n-3 LC-PUFA = long chain omega-3 polyunsaturated fatty acids.
10 Total long chain polyunsaturated fatty acid
11ARA/EPA = ratio of 20:4n-6/20:5n-3
12 LC-PUFA n-3/n-6 = ratio of long chain n-3 PUFA/n-6 PUFA.

* P<0.05

** P<0.01 and

*** P<0.001.

doi:10.1371/journal.pone.0143622.t002
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control). The qPCR profiles contained an initial activation step at 95°C for 2 min followed by

35 cycles of: 15 s of denaturation at 95°C, 15 s for annealing at the temperature indicated in

Table 3 and then 15 s at 60 or 72°C for melting and 15 s at 95°C for dissociation. A melt curve

was performed enabling confirmation of the amplification of a single product in each reaction.

Non-occurrence of primer–dimer formation in the NTC was also confirmed. The amplification

efficiency of the primer pairs was assessed by serial dilutions of the cDNA pool (Table 3),

which also allowed conversion of threshold cycle (Cq) values to arbitrary copy numbers.

Expression of the target genes is given as mean normalized values (± SD), corresponding to the

ratio between copy numbers and a normalization factor determined for the average expression

of the 3 reference genes using geNorm with a Stability value, M< 0.45 [66].

Table 3. qPCR primers.

Primer Forward primer 5'-3' Reverse primer 5'-3' Accession no Efficiency

Target genes

Δ5fad1 GTGAATGGGGATCCATAGCA AAACGAACGGACAACCAGA AF478472 16 103

Δ6fad2 CCCCAGACGTTTGTGTCAG CCTGGATTGTTGCTTTGGAT AY458652 16 102

elovl23 CGGGTACAAAATGTGCTGGT TCTGTTTGCCGATAGCCATT TC91192 17 100

elovl5a4 ACAAGACAGGAATCTCTTTCAGATTAA TCTGGGGTTACTGTGCTATAGTGTAC AY170327 16 101

fas5 ACCGCCAAGCTCAGTGTGC CAGGCCCCAAAGGAGTAGC DW551395 16 104

Aco6 AAAGCCTTCACCACATGGAC TAGGACACGATGCCACTCAG TC145297 17 101

cpt17 GTACCAGCCCCGATGCCTTCAT TCTCTGTGCGACCCTCTCGGAA AM230810 16 100

cpla28 GTCGCTGGCTGGAGCTGTGG AGCCCTATGGGCCCTGGTCA NM_001141333 16 102

pparα9 TCCTGGTGGCCTACGGATC CGTTGAATTTCATGGCGAACT DQ294237 16 100

pparβ10 GAGACGGTCAGGGAGCTCAC CCAGCAACCCGTCCTTGTT AJ416953 16 102

pparγ11 CATTGTCAGCCTGTCCAGAC TTGCAGCCCTCACAGACATG AJ416951 16 100

srebp112 TCTGGGGCGTTGGTGAGGTGTTAC CAGGCTGGCAGTGTGAAGATTGAAGG NM 001195819 16 102

Reference genes

elf1α13 CTGCCCCTCCAGGACGTTTACAA CACCGGGCATAGCCGATTCC AF321836 16 100

βactin14 ACATCAAGGAGAAGCTGTGC GACAACGGAACCTCTCGTTA AF012125 16 101

cofilin215 AGCCTATGACCAACCCACTG TGTTCACAGCTCGTTTACCG TC63899 17 100

1Δ-5 fatty acyl desaturase.
2Δ-6 fatty acyl desaturase.
3Fatty acyl elongase 2.
4Fatty acyl elongase 5a.
5Fatty acid synthase.
6Acyl-CoA oxidase.
7Carnitine palmitoyl transferase 1.
8Cytosolic calcium-dependent phospholipase A2.
9Peroxisome proliferator-activated receptor alpha.
10Peroxisome proliferator-activated receptor beta.
11Peroxisome proliferator-activated receptor gamma.
12Sterol regulatory element binding protein 1.
13Elongation factor 1-alpha.
14Beta actin.
15Cofilin-2.
16GenBank (http://www.ncbi.nlm.nih.gov/).
17Atlantic salmon Gene Index (http://compbio.dfci.harvard.edu/tgi/).

doi:10.1371/journal.pone.0143622.t003
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Statistical analysis

All data were reported as mean ± standard error (n = 3, for genes expression n = 6). Dataset

comprised of data originated from the comparison of three dietary treatments and two envi-

ronmental temperatures. The effects of diet, temperature and their interactions were assessed

by two-way analysis of variance (ANOVA, n+36), following confirmation of normality and

homogeneity of variance. The results of the two-way ANOVA and t-test are reported in tables

and/or figures as: n.s. = not significant; � P<0.05; �� P<0.01 and ��� P<0.001. Data were also

subjected to a Student-Newman-Keuls post hoc multiple comparisons test for identifying

homogeneous subsets. Correlation and Person’s correlation coefficient (R2) were calculated to

explore correlations between in vivo fatty acid enzyme activities and their corresponding

mRNA gene expression. All statistical analyses were computed using IBM SPSS statistic 20

(IBM Corporation, New York, USA).

Results

Summary of performance

As previously described the performance data relative to this experimentation have been pub-

lished in separate articles [19, 64]. Briefly, dietary treatments had only minor, almost trivial,

effects on fatty acid and nutrient digestibility, whereas water temperature resulted in altered

digestibility values, with lower nutrient digestibility recorded at lower water temperature [19].

Mortality was minimal during the entire experimentation (<0.3%) and overall all performance

of fish were optimal with food conversion ratio (FCR) varying from 1.0 to 1.1. At the end of the

experimentation, the largest fish (273.1±6.99 g average weight) were those fed D-ARA/EPA

and held at 20°C, and the smaller fish (212.8±5.58 g average weight) were those fed D-ARA

and held at 10°C. One of the most important differences observed between fish held at the two

different temperatures, and independently from dietary treatments, was in their feed intake.

Fish at higher water temperature consumed significantly more (from 1.8 to 2.3 g/day per fish)

feed than those at the lower temperature (from 1.2 to 1.4 g/day per fish) [64].

Apparent in vivo FA β-oxidation

Statistically significant differences were observed in the apparent in vivo fatty acid β-oxidation

(nmol/g/day) in juvenile Atlantic salmon fed the three experimental diets at the two tempera-

tures (Table 4). Specifically, high water temperature led to a significant increase in total fatty

acid β-oxidation (varying amongst dietary treatments from 1,425.8 to 1,645.3 nmol/g/day in

fish held at 20°C and from 321.5 to 814.5 nmol/g/day in fish held at 10°C), and the same trend

was also observed in the β-oxidation of total SFA, MUFA, in n-6 PUFA and n-3 PUFA classes.

At both water temperatures, fish fed diets with higher ARA content showed greater ARA β-oxi-

dation, with a similar pattern for n-6 LC-PUFA (D-ARA> D-ARA/EPA> D-EPA). Similarly,

for D-EPA, a greater level of EPA and n-3 LC-PUFA apparent in vivo β-oxidation was detected

(D-EPA> D-ARA-EPA>D-ARA). Independently of the dietary treatment, the fatty acid sub-

strates more abundantly used for catabolism could be summarized as follow: MUFA> SFA>

n-6 PUFA> n-3 PUFA; whilst the dietary supply of these fatty acid classes was MUFA> SFA

> n-6 PUFA = n-3 PUFA. This clearly suggests that the β-oxidation of FA is directly propor-

tional to their availability, but not for n-6 PUFA and n-3 PUFA, where n-6 PUFA appeared to

be preferentially utilised over n-3 PUFA for catabolic processes. Observing the effects of the

dietary treatments, it was shown that in fish held at both temperatures, the apparent in vivo β-

oxidation of SFA and MUFA was lower in the group with highest dietary EPA (D-EPA) supply.
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The apparent in vivo β-oxidation of PUFA was lower in fish fed the diet containing both EPA

and ARA (D-ARA/EPA), compared to the other two treatments.

Apparent in vivo fatty acid bioconversion

Statistically significant differences were observed in the apparent in vivo fatty acid bioconver-

sion in juvenile Atlantic salmon fed the three experimental diets at the two temperatures

(Table 5). Specifically, high water temperature (20°C) caused a significant reduction in Δ6fad

and elovl2, whereas elovl5a apparent in vivo activity was not affected by water temperature.

Diets with higher ARA content showed greater bioconversion of ARA into longer and more

Table 4. Apparent in vivo fatty acid β-oxidation (nmol/g/day; deduced by the whole body fatty acid balancemethod) in Atlantic salmon fed experi-
mental diets with different ARA/EPA ratios and reared at two different water temperatures.

FA (nmol/g/day)1 10°C 20°C P values2

ARA ARA/EPA EPA ARA ARA/EPA EPA Diet Temp. Inter.

14:0 1.3±0.8 11.4±6.0 n.d.8 19.5±1.4 19.5±8.8 19.8±1.8 n.s. *** n.s.

16:0 105.0±27.2ab 40.0±15.8b 13.6±6.8b 229.3±11.9a 223.8±51.4a 226.4±31.8a n.s. *** n.s.

18:0 44.7±12.5ab 30.5±21.7ab 15±3.1b 82.6±1.3a 57.3±16.0ab 37.6±15.8ab ** * n.s.

20:0 6.3±0.7 4.3±2.2 0.5±0.5 7.0±3.8 2.5±1.5 1.9±0.9 * n.s. n.s.

22:0 9.5±0.9ab 7.9±0.4b 4.3±0.9b 15.8±0.3a 9.7±2.2ab 5.4±2.1b *** * n.s.

24:0 3.6±0.3ab 2.3±0.8ab 1.6±0.2b 6.2±0.2a 3.5±0.4ab 1.7±0.4ab *** *** *

Total SFA3 170.3±41.2abc 96.5±33.3bc 19.9±6.3c 360.4±11.2a 316.3±73.2a 292.9±51.4ab n.s. *** n.s.

14:1n-5 1.7±0.1c 2.2±0.2bc 2.0±0.3c 3.3±0.2ab 3.7±0.4a 3.8±0.2a n.s. *** n.s.

16:1n-7 4.5±1.6ab 20.1±10.2ab 0.0±0.0b 36.1±3.5a 30.6±13.5ab 33.7±3.4ab n.s. *** n.s.

18:1n-7 9.1±4.1ab 13.3±8.1ab 3.5±2.0b 29.3±2.3a 27.8±8.0ab 26.7±2.1ab n.s. *** n.s.

18:1n-9 329.9±94.7a 326.8±174.4ab 56.7±28.3b 655.2±50.2a 600.4±134.6a 541.3±58.6b **. *** n.s.

20:1n-9 0.2±0.2 2.4±2.4 n.d. n.d. 0.2±0.2 n.d. n.c.9 n.c. n.c.

20:1n-11 1.6±0.0ab 1.5±0.1ab 0.4±0.2 2.5±0.0a 1.9±0.0b 1.3±0.0 *** *** n.s.

22:1n-11 1.6±0.4 1.6±0.7 n.d. 2.5±0.2 1.2±0.5 1.3±0.4 n.s. n.s. n.s.

22:1n-13 0.8±0.0e 1.7±0.2c 2.5±0.0b 1.1±0.0d 2.2±0.0b 3.7±0.0a *** *** ***

Total MUFA4 349.4±99.6ab 369.6±191.2ab 57.3±10.7b 730.8±56.1a 676.0±156.3a 611.8±58.2a n.s. *** n.s.

18:2n-6 113.9±21.7abc 39.6±8.6c 81.5±3.3bc 200.0±10.4a 178.5±34.9a 169.4±18.1ab n.s. *** n.s.

20:4n-6 63.5±15.9b 4.8±0.4c 1.4±0.7c 103.7±7.6a 48.4±1.7b 1.8±0.5c *** *** n.s.

Total n-6 PUFA5 180.7±40.7bc 48.2±8.8d 83.7±4.5cd 308.4±18.5a 228.7±34.9ab 178.2±18.3bc *** *** n.s.

18:3n-3 114.1±13.5bc 46.1±11.2c 127.1±4.0b 227.7±7.4a 200.5±22.6a 204.3±19.5a ** *** n.s.

20:5n-3 n.d. 46.7±1.7bc 50.4±1.3bc 17.9±3.3c 88.3±10.6b 138.6±9.5a *** *** **

22:6n-3 n.d. n.d. n.d. n.d. n.d. n.d. n.c. n.c n.c

Total n-3 PUFA6 114.1±13.5d 77.2±10.8d 160.5±13.8cd 245.6±7.5bc 288.7±32.5ab 342.9±27.9a n.s. *** n.s.

Total PUFA7 294.9±49.9b 125.4±14.0b 244.2±15.7b 554.1±25.5a 517.4±66.8a 521.1±46.1a *** *** n.s.

Total Oxidation 814.5±189.0b 591.5±225.3b 321.5±11.6b 1,645.3±90.0a 1,509.7±296.0a 1,425.8±155.4ab n.s. *** n.s.

1 apparent in vivo fatty acid β-oxidation (nmol/g/day).
2 FA = fatty acids.
3 SFA = saturated fatty acids.
4 MUFA = monounsaturated fatty acids.
5 n-6 PUFA = omega-6 polyunsaturated fatty acids.
6 n-3 PUFA = omega-3 polyunsaturated fatty acids.
7 PUFA = polyunsaturated fatty acids.
8 not detected.
9 not computed.

doi:10.1371/journal.pone.0143622.t004
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unsaturated n-6 LC PUFA at both temperatures (10°C and 20°C). Similarly, for EPA, a greater

level of EPA bioconversion toward longer and more unsaturated n-3 LC-PUFA was found

with increasing dietary supply. However, no differences in the final DHA biosynthesis (elonga-

tion of 22:5n-3 to 24:5n-3, Δ6-desaturation of 24:5n-3 to 24:6n-3 and peroxisomal chain short-

ening of 24:6n-3 to 22:6n-3) were observed, in response to dietary treatment or water

temperature. Interestingly, the only group with detectable ARA-biosynthesis from its precursor

20:3n-6 was the D-EPA (low in ARA) treatment for fish held at 20°C. Inversely, the only two

groups with detectable EPA-biosynthesis from its precursor 20:4n-3, were the D-ARA and

D-ARA/EPA treatments for fish held at 10°C. In fish held at lower temperature (10°C), ARA-

biosynthesis was not detected, and in fish held at higher temperatures (20°C), EPA-biosynthe-

sis was not detected.

ARA and EPA metabolic fate

The metabolic fate (expressed as % of the net intake) of ARA and EPA towards β-oxidation,

bioconversion or direct deposition in Atlantic salmon was significantly affected by water tem-

peratures (10°C and 20°C) and by the dietary treatments (dietary ARA/EPA) (Fig 1).

As for ARA, the main metabolic fate was deposition, which was significantly higher in

D-EPA group (up to 84%) compared to the other two dietary treatments, and was also affected

by temperature (higher deposition at lower temperature). The second quantitatively most

abundant fate of dietary ARA was β-oxidation, which was significantly affected by diet and also

temperature, with higher β-oxidation in fish receiving higher dietary supply of ARA, and, for

the same dietary supply, higher β-oxidation in fish held at higher temperature. ARA-biocon-

version to longer and more unsaturated FA was not affected by either temperature or diet,

being about 10% of net dietary intake.

Rather different trends were observed for the metabolic fate of dietary EPA. Overall, the

main metabolic fate was bioconversion towards longer and more unsaturated FA, followed by

deposition and then β-oxidation. In fish held at the higher water temperature (20°C) the meta-

bolic fate of dietary EPA was practically equally split across the three possible pathways (about

30% each) and was not affected by the dietary supply of EPA. On the contrary, in fish at 10°C,

marked effects of the dietary treatment were observed, with bioconversion being highest in fish

receiving limited dietary EPA (D-ARA), and being reduced with the increase of dietary EPA

availability, whilst deposition and β-oxidation increased proportionally with the increase of

dietary EPA availability (Fig 1).

Genes expression levels

Statistically significant differences were found in the expression of several key genes for meta-

bolic pathways relative to fatty acid (and their derivatives) biosynthesis, β-oxidation and their

regulation in juvenile Atlantic salmon fed different experimental diets at two water tempera-

tures (Figs 2 and 3). The expression of genes related to fatty acid biosynthesis, in particular, de

novo synthesis (fas), phospholipids’ fatty acid release (cpla2) and fatty acyl desaturation (Δ5fad

and Δ6fad) and elongation (elovl2) were significantly reduced with increase in temperature,

whilst the opposite was observed for elovl5a expression (Fig 2).

Regarding the effects of diets, mRNA levels of Δ5fad were significantly increased in D-EPA

at the higher temperature, whereas at the lower temperature Δ5fad expression was increased in

D-ARA. A similar trend was also observed for the expression of Δ6fad, even if not statistically

significant for those fish at the higher water temperature. In fish at higher water temperature, a

dietary effect was also observed on elovl5a transcription, being up-regulated in D-EPA com-

pared to D-ARA.
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In the case of genes related to fatty acid β-oxidation and of transcription factors involved in

the regulation of lipid metabolism, a significant effect of temperature, but not diet, was

Table 5. Apparent in vivo activity (nmol/g/day) of the key enzymes in fatty acid biosynthetic pathways (deduced by the whole body fatty acid bal-
ancemethod) in Atlantic salmon fed experimental diets with different ARA/EPA ratios and reared at two different water temperatures.

FA (nmol/g/day)2 10°C 20°C P values

ARA ARA/EPA EPA ARA ARA/EPA EPA Diet Temp. Inter.

Neogenesis

12:0 5.6±2.6 4.1±2.8 4.3±2.3 2.0±0.1 2.6±0.6 3.3±0.7 n.s. n.s. n.s.

D9fad n.d. 0.6±0.1b 4.9±0.6a n.d. n.d. n.d. *** n.c. n.c.

16:0 to 16:1n-7 n.d. 0.6±0.1b 4.6±0.2a n.d. n.d. n.d. *** n.c. n.c.

18:0 to 18:1n-9 n.d. n.d. n.d. n.d. n.d. n.d. n.c. n.c. n.c.

D6fad 144.6±3.8 134.5±33.6 110.9±2.4 86.6±8.4 87.8±19.6 115.0±8.5 ** ** n.s.

18:2n-6 to 18:3n-6 3.5±1.0bc 8.4±0.4bc 11.7±0.8ab 0.0±0.0c 3.0±1.1c 18.8±4.0a *** n.s. n.s.

24:4n-6 to 24:5n-6 11.5±1.5a 5.5±0.9ab 1.9±0.6b 13.0±1.6a 10.3±1.6a 5.3±2.2ab *** * n.s.

18:3n-3 to 18:4n-3 71.3±4.7a 45.1±17.7ab 24.5±1.1b 32.3±2.6ab 19.8±8.2b 19.7±1.8b * ** n.s.

24:5n-3 to 24:6n-3 58.3±4.8 75.5±14.7 72.2±3.4 41.3±7.1 54.8±13.5 71.2±12.3 n.s. n.s. n.s.

D5fad 31.3±5.7 22.4±2.3 n.d. n.d. n.d. 12.1±1.5 n.c. n.c. n.c.

20:3n-6 to 20:4n-6 n.d. n.d. n.d. n.d. n.d. 12.1±1.5 n.c. n.c. n.c.

20:4n-3 to 20:5n-3 31.3±5.7 22.4±2.3 n.d. n.d. n.d. n.d. n.c. n.c. n.c.

Elovl5 & Elovl2 254.0±18.5ab 284.5±49.2ab 301.1±18.9ab 155.7±23.0b 247.2±59.3ab 341.8±13.1a ** n.s. n.s.

12:0 to 14:0 0.1±0.1 2.0±2.0 5.3±2.4 n.d. n.d. n.d. n.s. n.s. n.s.

14:0 to 16:0 n.d. n.d. n.d. n.d. n.d. n.d. n.c. n.c. n.c.

16:0 to 18:0 n.d. 3.2±3.2 7.5±0.9 n.d. n.d. n.d. n.s. n.c. n.c

18:1n-9 to 20:1n-9 n.d. n.d. n.d. n.d. n.d. n.d. n.c. n.c. n.c.

18:2n-6 to 20:2n-6 13.5±1.5 8.4±4.2 10.4±1.0 12.3±1.9 12.8±1.5 11.2±4.7 n.s. n.s. n.s.

18:3n-6 to 20:3n-6 7.4±0.3ab 4.7±2.2ab 8.5±1.3ab 1.0±0.5b 3.6±1.2ab 12.3±4.3a * n.s. n.s.

20:4n-6 to 22:4n-6 20.4±2.8a 10.2±2.4ab 1.8±0.8b 20.6±2.6a 14.7±2.0a 2.7±0.5b *** n.s. n.s.

22:4n-6 to 24:4n-6 11.5±1.5a 5.5±0.9ab 1.9±0.6b 13.0±1.6a 10.3±1.6a 5.3±2.2ab *** * n.s.

18:3n-3 to 20:3n-3 2.6±0.6b 6.4±3.0b 18.6±0.6a 1.5±0.8b 25.1±2.6a 27.0±1.9a *** ** **

20:3n-3 to 22:3n-3 3.7±0.5c 5.7±0.5bc 7.6±0.5b 4.0±0.3c 6.7±0.4b 9.7±0.4a *** ** n.s.

18:4n-3 to 20:4n-3 37.2±6.3a 33.9±13.3ab 8.9±0.9ab 4.2±1.0b 8.1±2.4ab 10.2±1.1ab n.s. ** n.s.

20:5n-3 to 22:5n-3 73.2±3.8ab 108.3±5.8ab 129.4±20.6a 44.6±14.9b 84.5±26.3ab 144.1±5.2a ** n.s. n.s.

22:5n-3 to 24:5n-3 60.8±5.2 76.4±15.2 73.6±4.2 41.8±9.8 64.4±22.8 94.2±11.4 n.s. n.s. n.s.

Elovl5a 33.3±5.9 30.6±2.8 35.0±5.0 31.1±2.9 51.9±12.2 66.8±5.5 n.s. n.s. n.s.

Elovl2 94.8±2.6a 99.2±20.1a 100.4±6.2a 59.0±14.9b 60.1±8.8b 90.5±0.5a * * n.s.

Peroxisomal chains shortening

55.9±1.5 67.8±10.4 64.3±4.5 43.7±6.5 62.2±20.1 83.4±14.4 n.s. n.s. n.s.

1Δ-5 fatty acyl desaturase.
2Δ-6 fatty acyl desaturase.
3 Stearoyl-CoA 9-desaturase.
4 Δ6 desaturase.
5 Δ5 desaturase.
6 Sum of elongase 5 and 2.
7 elongase 5a.
8 elongase 2.
9Peroxisome proliferator-activated receptor alpha.
10Peroxisome proliferator-activated receptor beta.

doi:10.1371/journal.pone.0143622.t005
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apparent in cpt1 and pparα, which had decreased mRNA levels in the groups of fish held at low

temperature (10°C). On the other hand, aco, pparβ and pparγ were regulated neither by dietary

treatments nor temperature (Fig 3).

Significant linear relationships were found between the mRNA levels and the apparent in

vivo enzyme activity of desaturases and elongases (Fig 4). The Person’s correlation coefficients

(R2) for Δ6fad, Δ5fad, elov5a and elov2 were 0.86, 0.82, 0.92 and 0.72 respectively.

Discussion

This study reports a series of novel findings relative to the roles of dietary ARA and EPA and

how their metabolic utilisation, and likely also their dietary requirements for optimal perfor-

mance, can be affected by changes in their relative levels and by water temperature in Atlantic

salmon.

A first and clear finding of this study was that the water temperature, independently of die-

tary treatment, had a significant effect on the β-oxidation of a wide range of FA, as indicated by

the increased apparent in vivo enzyme activity and expression of cpt1 and pparα in fish held at

the higher water temperature. In addition to the normal, and expected, increase in basal metab-

olism resulting from the higher body temperature, it has been suggested that with an increase

in environmental temperature fish increase swimming activity [26], which in turn should

directly increase energy consumption. A more recent study on the fish’s capacity to adapt to

high water temperatures showed the up regulation of several genes involved in a variety of met-

abolic processes, suggesting a shift in energy production for maintaining performance at ele-

vated temperatures, which is envisaged as critical for improved aerobic scope and fish

resilience [28]. Additionally, a study on the energy used by rainbow trout (Onchorynchus

mykiss) during swimming at high temperatures, suggested that when fish are expose to higher

temperature (from 5°C to 15°C), lipid remained the most important fuel source contributing

Fig 1. Metabolic fate of dietary ARA and EPA (β-oxidation, bioconversion and deposition, expressed as% of net intake) in juvenile Atlantic salmon
fed experimental diets with different ARA/EPA ratios and reared at two different water temperatures. For ARA and EPA fate, from left to right, values
in the same row, and for the same category (β-oxi., Bio. and Dep.), with different superscripts are significantly different (P < 0.05) and P values relative to the
two-way ANOVA are reported on the right (n.s. = not significant; * P<0.05; ** P<0.01 and *** P<0.001). Statistical results (P-values) of the T- Student test is
reported at the bottom of each column, comparing EPA and ARA for each dietary treatment and for the same category (β-oxi., Bio. and Dep.). Legend: i)
Experimental diets abbreviations: D-ARA (EPA/ARA ratio = 0.5), D-ARA/EPA (EPA/ARA ratio = 1.5) and D-EPA (EPA/ARA ratio = 9); ii) 10°C and 20°C refer
to the water temperature in which juvenile salmon were reared on; iii) β-oxi. = β-oxidation; Bio. = Bioconversion; and Dep. = Deposition.

doi:10.1371/journal.pone.0143622.g001
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up to 55% of total energy, with an increase also in the relative energy contribution from carbo-

hydrate (from 15% to 25%) [26]. Furthermore, several studies showed that an increase in water

temperature induced an increased lipid β-oxidation primarily in red muscle, but also in white

muscle of teleost fish [24, 67, 68].

On the contrary, other studies showed that the increase in water temperature was responsi-

ble for reduced β-oxidation in hepatocytes and intestinal enterocytes in teleost fish [25, 69]. It

is important at this point to draw attention to the tissues analysed in these studies: liver and

intestine showed a reduction of fatty acid β-oxidation with increased temperature, whilst mus-

cle showed an increase of fatty acid β-oxidation with increased temperature. Independently of

the catabolic activity of each tissue, given the contribution of muscle to the overall animal body

weight, it appears evident that the total fatty acid β-oxidation activity of a fish will be primarily

determined by the muscle [70], which is in agreement with the findings of the present study,

utilising a whole body approach. Additionally, in liver the peroxisomal β-oxidation is the pri-

mary route for fatty acid catabolism, whilst in muscle β-oxidation occurs principally in the

mitochondria [70]. Concurrently, this effect of water temperature on β-oxidation was also

reflected in the gene expression results. With regard to mitochondrial β-oxidation, the expres-

sion of pparα, a transcription factor regulating the expression of several lipid metabolism,

including β-oxidation, genes [33, 71] and that of cpt1, a key enzyme responsible for the move-

ment of long-chain FA from the cytosol into the mitochondria for β-oxidation, were both

increased at the higher water temperature. On the other hand, hepatic mRNA levels of aco, a

rate-limiting enzyme in the peroxisomal β-oxidation, were not modulated by water tempera-

ture. Therefore, these findings suggest that high water temperatures in juvenile Atlantic salmon

increased fatty acid β-oxidation in the mitochondria, rather than in peroxisomes, and that the

whole body increase in β-oxidation probably reflects changes occurring more in muscle than in

liver tissues [71, 72]. Similarly, a previous study in Atlantic salmon also suggested that water

temperature mainly regulates mitochondrial β-oxidation [25], which can be up to 6-fold higher

than peroxisomal oxidation [67], hence determining whole-body total fatty acid catabolic pro-

cesses. Eventually, most of the energy produced by β-oxidation should promote growth, which

is in agreement with, and reflected by, the greater performance of fish held at higher water tem-

perature, as previously reported by Norambuena et al. (2016). In line with this, the mRNA

level of genes involved in pathways associated to fish growth and tissue development has been

suggested as a good indicator of a fish’s capacity to adapt to sup-optimal temperatures [28].

Therefore, a practical application of these results is that it appears advisable to formulate and

utilise diets with higher energy content for fish reared at elevated water temperatures.

It has been documented that an increase in fish growth rate boosts the catabolism of

LC-PUFA, when these are provided in surplus [23]. Observing the in vivometabolic fate of die-

tary EPA and ARA recorded in the present study, it was evident that LC-PUFA β-oxidation

was mediated by water temperature and growth, but also by their dietary content, particularly

for EPA. In this case, EPA was more catabolised when fish were fed the EPA and ARA/EPA

diets, and there was also a significantly increased β-oxidation in fish held at 20°C. This may

suggest that EPA overall requirements are reduced at elevated temperatures. A previous study

on the effects of water temperature on fatty acid metabolism in freshwater fish (Cyprinus car-

pio) showed that the deposition of radio-labelled EPA was affected by temperature, with a

Fig 2. Hepatic expression of genes related to fatty acid biosynthesis andmetabolism in juvenile Atlantic salmon fed diets containing different
ARA/EPA levels and reared at two different temperatures.Results are normalized expression values of (A) fatty acid synthase (fas), (B) cytosolic
calcium-dependent phospholipase A2 (cpla2), (C) Δ6 fatty acyl desaturase (Δ6fad), (d) Δ5 fatty acyl desaturase (Δ5fad), (e) fatty acyl elongase 5a (elovl5a)
and (f) fatty acyl elongase 2 (elovl2). Normalized values are treatment means of n = 6, with standard errors represented by vertical bars. Mean values with
unlike letters are statistically different between treatments (P<0.05, ANOVA).

doi:10.1371/journal.pone.0143622.g002
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strong reduction of its deposition and retention in tissues of fish held at high temperature

(25°C) suggesting a modification on membrane cell an increased β-oxidation of this fatty acid

[14, 22]. Accordingly, this increased catabolism of EPA may advocate that dietary EPA require-

ment for optimal performance could be somewhat reduced in fish held at elevated water tem-

perature, as also previously suggested [64]. Observing the metabolic fate of dietary EPA (as %

of net intake towards deposition, β-oxidation or bioconversion) at higher water temperature,

there was no effect of the dietary treatment despite the large differences in its dietary supply.

Fig 3. Hepatic expression of genes related to fatty acid β-oxidation and regulation of lipid metabolism in juvenile Atlantic salmon fed diets
containing different ARA/EPA levels and reared at two different temperatures. Results are normalized expression values of (a) carnitine palmitoyl
transferase-1 (cpt1), (b) acyl-CoA oxidase (aco) and (c) peroxisome proliferator-activated receptor alpha (pparα), (d), peroxisome proliferator-activated
receptor beta (pparβ) and (e), peroxisome proliferator-activated receptor gamma (pparγ). Normalized values are treatment means of n = 6, with standard
errors represented by vertical bars. Mean values with unlike letters are statistically different between treatments (P<0.05, ANOVA).

doi:10.1371/journal.pone.0143622.g003

Fig 4. Correlation and linear regression betweenmRNA levels (X) and apparent in vivo enzyme activity (Y) for (a)Δ6 fatty acyl desaturase (Δ6fad),
(b) Δ5 fatty acyl desaturase (Δ5fad), (c) fatty acyl elongase 5a (elovl5a), and (d) fatty acyl elongase 2 (elovl2) (R2 = Person’s correlation coefficient).

doi:10.1371/journal.pone.0143622.g004
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Therefore, this may suggest that dietary EPA is somewhat of little importance at higher water

temperature and that as little as the amount provided by D-ARA diet is sufficient to fulfil basic

requirements, given that there was no metabolic attempt to preserve it from catabolism.

Alternatively, observing the metabolic fate of dietary ARA, it appeared that ARA was pri-

marily deposited, independently of water temperature, and clear effects of dietary treatments

were also evident, with increased ARA deposition (as % of net intake) when ARA availability

was reduced. This suggests the existence of a metabolic attempt towards preserving ARA at

both studied water temperatures. In a previous study it was reported that ARA accumulation

in juvenile Atlantic salmon occurred primarily in the liver and that it increased significantly

over time [64]. A study on broodstock Senegalese sole (Solea senegalensis) showed that fish can

modulate their ARA required relative to water temperature and if dietary ARA is not provided

in adequate supply, male fish quite efficiently biosynthesise it from its precursor [42]. However

these activities can be specie- and sex- dependent conditioned by several factors including

water temperature and fish ontogeny.

Competition between ARA and EPA occurs at several points in their metabolism. Firstly,

their synthesis from their respective n-6/n-3 precursors occurs through the same enzymatic

pathway; secondly, ARA and EPA compete for the same enzymes catalysing their incorpo-

ration in membrane phospholipids; and thirdly both FA are metabolized by the same enzymes

in the eicosanoid production pathway [32], which could be a crucial aspect of the fish’s physio-

logical acclimation capacity to sub-optimal water temperatures [28, 33]. Previous studies have

shown that low-activity anti-inflammatory eicosanoids produced by EPA enzymatic oxidation

can be drastically reduced with low dietary EPA intake [7, 55, 58]. Similarly, high levels of EPA

reduce the secretion of high activity pro-inflammatory eicosanoids produced by ARA-enzy-

matic oxidation, which are necessary for an appropriate inflammatory response [73]. It is well

know that the inflammatory response is regulated by eicosanoids, and contrary to modern-,

western societies-, human diets containing high levels of ARA and low level of EPA and being

considered excessively pro-inflammatory [74], the level of EPA in fish could be too high, rela-

tive to dietary ARA availability, with a possible detrimental effects on the fish’s resilience and

adaptability to sub-optimal environmental conditions, where a “healthy” and adequate inflam-

matory response is needed. Eicosanoid regulation at high water temperature has not been con-

sidered here and should be elucidated in further studies.

From an anabolic point of view, the results obtained in this study showed that at lower

water temperature there was an up regulation of hepatic mRNA’s coding for genes involved in

fatty acid de novo formation (fas), as well as of those involved in EPA and ARA membrane

mobilization and bioconversion (cpla2), and fatty acyl desaturation (Δ6fad and Δ5fad) and

elongation (elovl2). These results are consistent with a well-documented notion that fatty acid

bioconversion toward longer and more unsaturated LC-PUFA is promoted in fish held at low

water temperatures [69, 75–77]. However, an opposite trend was observed for elovl5a, which is

much less responsive to changes in dietary LC-PUFA levels than other enzymes (desaturases

and elovl2) of the LC-PUFA biosynthesis pathway [78]. Furthermore, fatty acyl elongates inter-

act with reductases and dehydratase and it can also act on different pathways [79] and therefore

this mRNA response might reflect these interaction or changes in other pathways, rather than

in LC-PUFA biosynthesis.

A highly interesting trend was observed in mRNA levels of Δ5fad with respect to dietary

treatments, which was also directly and linearly correlated with the apparent in vivo enzyme

activity recorded. At lower temperature, the highest Δ5fad expression was recorded in fish with

limited dietary EPA and abundant ARA supply (D-ARA), whilst at higher temperature, the

highest mRNA level was recorded in fish with abundant dietary EPA and limited ARA supply

(D-EPA). Furthermore, a similar trend was also observed for Δ6fad activity and gene
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expression. To understand the possible physiological explanation for this trend, it is important

to keep in mind the dietary supply of EPA and ARA, and that these enzymes are those respon-

sible for the actual biosynthesis of EPA and ARA. Thus, at lower temperature, increased tran-

scription and activity of the enzymes is triggered by low dietary EPA, suggesting that fish

metabolism is attempting to increase total EPA availability as a possible cellular homeostatic

response [14]. At higher temperature, on the other hand, increased transcription and activity

of these enzymes is triggered by low dietary ARA, therefore suggesting that fish metabolism is

attempting to increase total ARA availability. These observations, coupled with those reported

above relative to EPA β-oxidation, clearly suggest that at higher water temperature fish might

lower their apparent requirements for optimal performance of EPA and, conversely, require

more ARA.

Considering that evolution and adaptation might have potentially similar effects in inducing

metabolic changes, in agreement with the finding of this study, warm water finfish species have

been suggested to display higher elongase and desaturase activities toward the biosynthesis of

n-6 LC-PUFA compared to the cooler water species [80]. In addition, a study with wild caught

fish showed elevated levels of ARA in tissues of fish living in warmer waters [81]. A recent

study investigating the fish capacity to acclimatise to warmer temperatures, showed that both

immune- and stress- responsive genes were up-regulated in fish held at high temperatures,

indicating a clear basal inflammatory response, modulated by high water temperatures, allow-

ing fish to better cope with this sub optimal environmental conditions [28]. ARA is a precursor

of highly bioactive pro-inflammatory eicosanoids, which are involved not just in immune

responses, but also in cardiovascular physiology by mediating different biological processes,

including blood flow and vasodilatation [51, 52]. Cardiovascular failures have been reported

when fish are held at high water temperatures, [82, 83] and are fed commercial diets which typ-

ically contain limited levels of ARA. These results and evidences clearly point toward the fact

that ARA plays a very important role in fish held at sub-optimal elevated water temperatures.

In conclusion, the present study clearly supports the hypothesis that dietary ARA/EPA

requirements for optimal performance in Atlantic salmon are affected by water temperature,

which in turn might be adjusted by fish’s acclimation and physiological response in sub-opti-

mal water temperature. In practical terms, results presented here suggest that diets for Atlantic

salmon maintained at sub-optimal high water temperatures should have higher energetic con-

tent, and relatively lower content of EPA and, conversely, a higher ARA content, for “priming”

and maintaining a basal pro-inflammatory response.

This is a novel and fundamental information that warrants industry and scientific attention,

in consideration of the imminent increase in water temperatures, continuous expansion of

aquaculture operations, resources utilisation in aquafeed and much needed seasonal/adaptive

nutritional strategies towards achieving increased economic and environmental sustainability

of the aquaculture sector.
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