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Abstract

Background: Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey.
Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere
solely by dry (solid-solid) intermolecular interactions. Indeed, the consensus in the literature is that spiders and their
smooth-padded relatives, the solifugids, adhere without the aid of a secretion.

Methodology and Principal Findings: We investigated the adhesive contact zone of living spiders, solifugids and mites
using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we
studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48–1.50; contact angle: 3.7–11.2u). Fluid
was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the
attachment forces of single adhesive setae from tarantulas (Grammostola rosea) by attaching them to a bending beam with
a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest
(26%62.8 SE of the peak friction) than single gecko setae (Thecadactylus rapicauda; 96%61.7 SE). This may be explained by
the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone.

Significance: This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive
pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance,
improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the
only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic
adhesives should consider whether model species with fluid secretions are appropriate to their design goals.
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Introduction

Climbing animals use a vast array of attachment strategies to

scale vertical and inverted surfaces [1]. Adhesive footpads, found

among arthropods, amphibians, reptiles and mammals, allow

strong, repeatable attachment to both smooth and rough, hard

and soft substrates [2]. Geckos and anoles adhere by dry,

intermolecular adhesion [3,4], but other organisms secrete a fluid

over their adhesive pads, including insects [5–9], frogs [10] and

bats [11]. Pad secretions are thought to enhance attachment forces

by contributing capillary and viscous adhesion, and increasing

overall contact on rough substrates [6,12]. Although fluids are

frequently used in industry to lubricate solid-solid interfaces,

wetted insect adhesive pads can resist significant shear forces

during climbing [5,6,13].

Arachnids have attracted little attention from researchers in

the field of biological adhesion, despite representing a wide

diversity of adhesive morphologies. Some mites have hairy, or

‘‘fibrillar’’, adhesive pads [14] while others have smooth ones

[15]. Amblypygids, pseudoscorpions and solifugids are all

known to bear smooth pads on their feet and pedipalps [16–

18]. Spider adhesive pads most closely resemble the fibrillar

pads of geckos, with large arrays of branched hairs (‘‘setae’’)

terminating in flattened tips, called ‘‘spatulae’’ (Fig. 1a; [19–

21]). We would predict that the very small size of the spiders’

spatulae (200–300 nm wide; [22]) allows them to make close

contact with the substrate, attaching without the aid of a fluid as

the gecko does [3,4,23]. Indeed, this has been the consensus

among researchers who have studied spider adhesion [19–

21,24,25].

Here we investigate the adhesive feet of selected arachnids

(spiders, mites and solifugids) for the presence of fluid secretions.

We used two independent approaches. First, we imaged the

footpad-substrate interface directly with interference reflection

microscopy (IRM). This technique allows the visualization and

characterization of very thin fluid films through transparent

substrates such as glass [26]. Second, to investigate the functional

effects of a fluid in the contact zone, we compared the adhesive

performance of spider setae with that of gecko setae, which are

known dry adhesives.
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Results

We found clear evidence of footpad secretions in every species

we studied: the spiders Grammostola rosea (Theraphosidae, Fig. 1a,b),

Salticus scenicus (Salticidae, Fig. 1d), and Cupiennius salei (Ctenidae,

Video S1), the mites Gromphadorholaelaps schaeferi (Fig. 1c) and

Balaustium murorum, and the solifugid Gluvia dorsalis (Fig. 1e,f).

Detailed characterization of the fluid deposited on glass showed

that arachnids left persistent, hydrophobic footprints much like

those of insects [5–9].

Fluid Characterization
We measured the refractive indices and contact angles of

deposited fluid footprints in four of the study species (Table 1). For

all of them, the refractive index of the fluid was close to 1.5, similar

to previous measurements of hydrophobic insect footprints [5].

Both spider species as well as the mite secreted fluids with contact

angles on glass near 10u, while the solifugid fluid had a significantly

lower contact angle (4.0u60.46 SE). Visible fluid footprints and

trails were composed of extremely small droplets, ranging from less

than one-thousandth of a femtoliter to several femtoliters in

volume. Aggregate droplets imaged for analysis had a volume of at

most 100 femtoliters (Fig. 2a).

The fluid was very stable and remained on the glass for at least

48 hours without any apparent change in properties. The fact

that the secretion remained liquid over multiple days rules out the

possibility that we were observing haemolymph from a damaged

pad. Exposing the coverslip to water droplets failed to dissolve the

fluid, indicating its hydrophobic nature (Video S2).

IRM images of the Gromphadorholaelaps mite further showed large

hydrophilic droplets trapped between the smooth pad and the

glass (Fig. 2b; Video S3), closely resembling the volatile

hydrophilic fluid components seen in ants [5] and stick insects

[6,13].

As the spider Grammostola clung inverted to a glass cover slip,

fluid first appeared at individual spatulae, bridging the gaps

between them, until a continuous layer of fluid formed underneath

each seta, finally bridging the gaps between setae (Fig. 3; Video

S4). We noted that Grammostola setae continued to release fluid

even after they were isolated from the animal.

Single seta force measurements
Fluid had a significant effect on the attachment performance of

fibrillar adhesives. Individual setae from the tarantula (Grammos-

tola rosea) generated on average a higher shear force (290 mN630

SE) than setae from the gecko (Thecadactylus rapicauda;

41 mN66.0). Spider setae had more and larger spatulae

(1100657 SE spatulae; approx. area 0.03–0.05 mm2) than geckos

(480623 SE spatulae; approx. area 0.02–0.03 mm2), but even

when normalized by potential contact area (number of spatulae *

spatula area), the tarantula setae generated approximately twice

as much force.

A one-second pause in the shearing motion did not elicit a

significant decrease in force for Thecadactylus setae (Table 2),

whereas shear force immediately and sharply decreased in

Grammostola setae after the dragging motion ended, and continued

to decrease even further if the pause was extended beyond one

second. We observed that dragging an immobilized Cupiennius salei

Figure 1. Arachnids investigated for this study. (A) Tarantula (Grammostola rosea) setae. (B) Fluid trail left behind by a Grammostola tarsus. (C)
Mite (Gromphadorholaelaps schaeferi) clinging upside down to a polystyrene-coated glass coverslip, showing two adhesive pads in contact.
Footprints are indicated by arrowheads. A trail of fluid is also visible, lower left. (D) Jumping spider (Salticus scenicus) fluid trail from one tarsus. (E)
Solifugid (Gluvia dorsalis) tarsus, arolium situated distally, at base of claws. (F) Fluid footprint left by one Gluvia arolium.
doi:10.1371/journal.pone.0020485.g001
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spider foot across glass at different rates caused it to release more

fluid at higher velocities (Video S3).

Discussion

We report here the discovery of fluid secretions associated with

arachnid adhesive footpads, from diverse arachnid species varying

many orders of magnitude in mass. We can only speculate as to

why arachnid fluid secretions went unnoticed for so long, but some

combination of the following reasons was likely at work:

researchers do not expect to see them; the droplets are very small;

their refractive index is close to that of glass; and fluids are not

continuously secreted. The only previous suggestion in the

literature of footprints associated with arachnid adhesive pads

was in the mite Tetranychus urticae [27], but no evidence was

Figure 2. Interference reflection microscopy of footprint
secretions. (A) Persistent, hydrophobic tarsal fluid from the tarantula
(Grammostola rosea) after aggregation of footprint for analysis, as
viewed under green light (546 nm). (B) Volatile, hydrophilic droplets
trapped under the foot of a mite (Gromphadorholaelaps schaeferi)
appear lighter than the surrounding pad.
doi:10.1371/journal.pone.0020485.g002

Figure 3. Grammostola setae at various stages of wetting. (A)
Little or no fluid has accumulated underneath setae, and individual
spatulae are still visible. (B) Small fluid droplets, appearing here as dark
areas, bridge the gaps between spatulae. (C) A continuous fluid layer
forms underneath each seta. (D) Fluid accumulates, bridging gaps
between setae. See Video S4 for complete footage.
doi:10.1371/journal.pone.0020485.g003

Table 1. Properties of arachnid footprint fluids from four species (mean 6 SE).

Contact Angle (6) Refractive Index

fresh 48 h later fresh 48 h later

Araneae

Salticus scenicus (n = 3) 10.3u60.55 10.1u60.43 1.4960.001 1.5060.002

Grammostola rosea (n = 3) 10.3u60.43 10.5u60.84 1.5060.001 1.5060.001

Acari

Gromphadorholaelaps schaeferi (n = 3) 11.2u60.42 10.2u60.39 1.4960.001 1.4860.001

Solifugae

Gluvia dorsalis (n = 3) 4.0u60.46 3.7u60.25 1.5060.001 1.5060.001

doi:10.1371/journal.pone.0020485.t001
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presented for the liquid nature of the footprint, its source or

function.

Properties of Arachnid Tarsal Secretions
The properties of arachnid fluid secretions parallel those of

insect footpad secretions, where a persistent hydrophobic fluid is

left behind on glass [7,28–30]. There is no existing histological

evidence for glands or ducts to synthesize and transport fluid to

arachnid adhesive pads [19–21,24,31], but this was initially the

case for insects as well. The positive identification of pores for

secretion delivery in insects has only been achieved using

transmission electron microscopy, in targeted studies [8,29]. The

exact source of those secretions remains unclear, and multiple

glands may be involved [29,32]. Grammostola setae are hollow (pers.

obs.) and we observed that they continued to release fluid even

after being isolated from the animal. In this species, fluid may flow

through the setal stalk, but more work is needed to establish how

the fluid ultimately wets individual spatulae.

Volatile hydrophilic droplets appeared trapped between the

smooth pad of the Gromphadorholaelaps mite and the glass cover slip

substrate (Fig. 2b; Video S2), suggesting that the biphasic foot

secretions seen in ants and stick insects [5,13] are present in at

least one arachnid, and likely others. The stable hydrophobic

components of insect fluid are similar to cuticular lipids [7,28], but

we understand little about the nature of the hydrophilic

components.

Adhesive Performance in Wet vs. Dry Systems
Comparative measurements of adhesive forces from fluid-

secreting spider setae and dry gecko setae demonstrate that there

are consequences for attachment performance when a fluid is

introduced into the footpad-substrate interface. We found that

individual Grammostola (spider) setae generated more shear and

adhesive force per potential contact area than Thecadactylus (gecko)

setae, and that individual gecko setae maintained higher levels of

static friction, whereas spider setae slid relatively easily.

However, this work is preliminary and future investigations

need to take into account several additional important factors.

First, the calculation of attachment force normalized by contact

area assumes that all spatulae make contact, which is not

necessarily true. Second, since the spider setae secreted fluid onto

the experimental substrate and were then dragged repeatedly

across the substrate during each trial, it is likely that those setae

were adhering in the presence of accumulated fluid. Accumulation

of fluid reduces attachment forces in stick insects [6], and this

effect almost certainly accounts for the low static force seen in

spiders. The ability to generate static friction has important

implications for locomotor control and maneuverability. Without

it, the animal would slip frequently, incurring high energetic costs

to maintain its position or trajectory. Video footage of a

Grammostola foot adhering to glass showed a significant amount

of fluid developing over time as the animal attempts to remain

attached, upside-down, to the cover slip substrate (Fig. 3; Video

S4). It is unlikely that, in natural conditions, spiders routinely

experience fluid accumulation to the degree we observed, and our

shear and adhesive force values for Grammostola may in fact

represent a lower bound on their performance capability.

Finally, our observations suggest that spiders may control fluid

release, either actively or passively, limiting the application of their

secretion to high-velocity situations (Video S1). If spiders are more

likely than geckos to experience low static forces due to

accumulation of fluid, it would be advantageous for them to

avoid secreting fluid during slow movements and instead adhere

via dry intermolecular forces as the gecko does. Similarities in their

morphology suggest that this is possible [22], and we plan to

investigate this hypothesis with future studies.

Theraphosid Tarsal Silk
Previous investigators observed a silk-like material secreted from

the tarsi of the theraphosid Aphonopelma seemanni [25], and this

observation was later questioned [33]. We can confirm that

occasional strands of a silk-like substance were exuded from the

feet of Grammostola rosea, another theraphosid (Fig. 4; Video S5).

We did not observe tarsal silk or the associated silk-producing setae

in the jumping spider. Silk-producing setae on Grammostola tarsi

were substantially outnumbered by adhesive setae (ca. 50 adhesive

setae per silk-producing seta), and the silk did not appear to sustain

a tensile load (strands were not always stretched taut, and often

broke). We consider it unlikely that these silk-like secretions

contribute significantly to attachment force. It remains an open

and interesting question how the evolution and development of

these setae might be related to abdominal spinnerets.

Table 2. Direct comparison of single seta force in a gecko
and a spider (mean 6 SE).

Gecko

Thecadactylus rapicauda
n=18 setae

3 individuals

Spider

Grammostola rosea
n=18 setae

4 individuals

Shear force 41 mN66.0 290 mN630

Adhesive force 12 mN62.0 33 mN65.1

Remaining friction 96%61.7 26%62.8

Remaining adhesion 95%63.0 12%65.0

Spatulae per seta 480 spatulae623* 1100 spatulae657**

*n = 16 setae from the same experiment.
**n = 25 setae from an independent sample.
doi:10.1371/journal.pone.0020485.t002

Figure 4. Evidence for tarsal silk in the tarantula Grammostola
rosea. Silk strands are indicated with arrows. Adhesive setae (as; lower
right) far outnumber silk-producing setae (ss) on the tarsus. Dark areas
indicate fluid or silk secretion; bright areas indicate thin layers of air
between the setae and the glass surface. See Video S5 for complete
time-lapse video footage of silk being secreted.
doi:10.1371/journal.pone.0020485.g004
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Conclusions
Arachnids remain a large, and largely understudied, group of

organisms from which we can draw biological and technical

insights into the general principles of adhesion. From an

evolutionary standpoint it is clear that tarsal secretions are

widespread among arthropods; such secretions can have important

ecological consequences, for instance in chemical communication

[34]. Spiders represent the compelling possibility of a hybrid

fibrillar adhesive that takes advantage of both wet and dry

adhesive mechanisms. Whereas previous studies assumed a dry

adhesive system and interpreted the results as such, future

investigators will be able to take a more comprehensive approach

toward arachnid adhesive function.

Materials and Methods

Study organisms
Grammostola rosea spiders were obtained from a pet supplier

(Coast to Coast Exotics, Darlington, UK). Salticus scenicus spiders
and Balaustium murorum mites were collected in Cambridge, UK.

Gromphadorholaelaps schaeferi mites were collected from live Mada-

gascar hissing roaches kept in our laboratory in the Dept. of

Zoology, University of Cambridge, UK. Gluvia dorsalis solifugids
were collected in Évora, Portugal. Cupiennius salei spiders were

provided by Dr. Friedrich Barth from his laboratory colony in the

Dept. of Neurobiology, University of Vienna, Austria. All spiders

and solifugids were individually housed and fed on a diet of

crickets and water. Mites were re-released after the experiments

ended.

Thecadactylus rapicauda geckos were obtained from California

Zoological Supply (Santa Ana, CA, USA) and cared for by the

Office of Laboratory Animal Care at the University of California,

Berkeley, where they were fed on a diet of crickets and water.

Ethics statement
All experiments involving arachnids were performed in the

Zoology Dept. at the University of Cambridge, in accordance with

the Animals (Scientific Procedures) Act of 1986. Experiments

involving Thecadactylus were conducted in the Dept. of Integrative

Biology at the University of California Berkeley, in accordance

with Animal Use Protocol R137 (as approved by the Animal Care

and Use Committee).

Fluid Characterization
We viewed three live specimens each from two species of spider

(Theraphosidae: Grammostola rosea, Salticidae: Salticus scenicus), one
mite (Laelapidae: Gromphadorholaelaps schaeferi), and one solifugid

(Daesiidae: Gluvia dorsalis) attaching to the underside of a glass

cover slip with an upright microscope. We filmed movies of the

contact using a high-speed HotShot PCI 1280 B/W digital video

camera (NAC Image Technology, Simi Valley, CA, USA), and a

10-bit B/W QICAM digital camera (QImaging, Surrey, BC,

Canada). In the event that animals were not able or motivated to

remain attached while inverted to the coverslip for the duration of

imaging, we allowed them to climb across an inclined coverslip for

a sustained period of time before imaging the fluid left behind.

Interference reflection microscopy (IRM) allowed us to measure

the refractive index, contact angle and volume of fluid left behind

on the glass. Fluid droplets as deposited by the animals were too

small to conduct IRM measurements, so we aggregated multiple

droplets from each footprint by dragging a fine glass rod with

spherical tip across the surface (Fig. 2a). Images of ten droplets per

individual (three individuals per species) were taken with green

(546 nm) epi-illumination using a Leica DRM HC series

microscope (Leica Microsystems, Wetzlar, Germany) and the 10-

bit B/W QICAM camera. We then used intensity line-plots to

measure the relative contrast of adjacent interference extremes. To

calculate the refractive indices of the deposited droplets, the

contrasts of the interference fringes [(Imax2Imin)/(Imax+Imin)] were

compared with the contrasts from similar-sized droplets of

calibration fluids (water-glycerol mixtures and immersion oil) with

known refractive indices. As the interference patterns of water-

glycerol droplets with steeper gradients are damped by the optical

resolution of the microscope [26], only droplet sections with

contact angles comparable to those of footprint droplets were used

for analyzing fringe contrasts. Contact angles of footprint droplets

were also measured from the intensity line-plots. A discussion of

the technique as applied to insect adhesion can be found in [5].

This process was repeated after 48 hours to confirm that the

droplets were still fluid and to discover if their properties or

volume changed over long timescales.

To determine whether the footprint secretions were hydropho-

bic or hydrophilic, we deposited small water droplets (5–30 mm in

diameter) onto the glass cover slip using an ultrasonic humidifier

(Honeywell, BH-860 E) and observed whether the footprint

droplets dissolved into them.

Single seta force measurements
Individual setae from the claw tufts and tarsi of Grammostola

rosea (N = 18 setae; 4 individuals) were harvested from living

animals and mounted to insect pins using 5-minute epoxy

(Bondloc UK Ltd, Bewdley, UK). Each pin was clamped into a

pin vice and fixed to a three-dimensional DC motor stage (M-

126PD, Physik Instrumente, Karlsruhe, Germany), which drove

the seta through pre-programmed shearing motions 0.5–2 mm in

amplitude, at set velocities (0.5–4 mm/s). Setae were dragged

across a smooth glass substrate glued to the tip of a 58.9 mm

length of tungsten wire with a 0.1 mm radius. The spring

constant of this bending beam was determined to be 0.46 N/m.

The movement of the beam was captured using a Redlake PCI

1000 B/W high-speed video camera (Redlake, Tallahassee, FL,

USA), and digitized using ProAnalyst Lite (Xcitex Inc, Cam-

bridge, MA, USA) to yield peak shear and adhesive force,

remaining shear and adhesive force after a one-second pause, and

the velocity of the seta.

An analogous method was used to measure single seta forces in

the gecko Thecadactylus rapicauda, using a smooth silicon substrate

fixed to a 46 mm steel wire with radius 0.06 mm and spring

constant of 0.079 N/m, at velocities between 0.4–2.8 mm/s (0.5–

2 mm sliding distance). Details can be found in [35].

Supporting Information

Video S1 Cupiennius salei seta sliding across glass. As

the seta is dragged across glass, it deposits fluid. More fluid appears

to be deposited during fast movements than during slow ones.

(MOV)

Video S2 Grammostola rosea fluid before and after

exposure to water vapor. The secretion does not dissolve in

water, indicating its hydrophobic nature.

(MOV)

Video S3 Evidence for a biphasic fluid in arachnids.

Hydrophilic droplets underneath the foot of the mite Grompha-

dorholaelaps schaeferi evaporate quickly once they reach the edge of

the pad, much like the volatile hydrophilic component of biphasic

adhesive secretions seen in insects.

(MOV)

Arachnid Adhesive Fluids
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Video S4 Grammostola setae at various stages of

wetting. Close up of Grammostola rosea setae as the animal clings

to the underside of the glass. Dark areas are continuous layers of

trapped fluid. Camera initially shows distal setae completely

covered in fluid, then scans proximally along claw tuft to show

setae where less fluid has accumulated and individual spatulae are

still visible.

(MOV)

Video S5 Time lapse video of a Grammostola rosea foot

sliding across glass. Adhesive setae leave behind clusters of

minute fluid droplets, while other setae secrete silk.

(MOV)
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26. Rädler J, Sackmann E (1993) Imaging optical thicknesses and separation
distances of phospholipid vesicles at solid surfaces. J Phys II France 3: 727–748.

(doi: 10.1051/jp2:1993163).

27. Mizutani K, Egashira K, Toukai T, Ogushi J (2006) Adhesive force of a spider
mite, Tetranychus urticae, to a flat smooth surface. JSME Int J C 49: 539–544. (doi:

10.1299/jsmec.49.539).
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