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Abstract

Background: Elucidating gene regulatory networks is crucial for understanding normal cell
physiology and complex pathologic phenotypes. Existing computational methods for the genome-
wide "reverse engineering” of such networks have been successful only for lower eukaryotes with
simple genomes. Here we present ARACNE, a novel algorithm, using microarray expression profiles,
specifically designed to scale up to the complexity of regulatory networks in mammalian cells, yet
general enough to address a wider range of network deconvolution problems. This method uses
an information theoretic approach to eliminate the majority of indirect interactions inferred by co-
expression methods.

Results: We prove that ARACNE reconstructs the network exactly (asymptotically) if the effect
of loops in the network topology is negligible, and we show that the algorithm works well in
practice, even in the presence of numerous loops and complex topologies. We assess ARACNE's
ability to reconstruct transcriptional regulatory networks using both a realistic synthetic dataset
and a microarray dataset from human B cells. On synthetic datasets ARACNE achieves very low
error rates and outperforms established methods, such as Relevance Networks and Bayesian
Networks. Application to the deconvolution of genetic networks in human B cells demonstrates
ARACNE's ability to infer validated transcriptional targets of the cMYC proto-oncogene. We also
study the effects of misestimation of mutual information on network reconstruction, and show that
algorithms based on mutual information ranking are more resilient to estimation errors.

Conclusion: ARACNE shows promise in identifying direct transcriptional interactions in
mammalian cellular networks, a problem that has challenged existing reverse engineering
algorithms. This approach should enhance our ability to use microarray data to elucidate functional
mechanisms that underlie cellular processes and to identify molecular targets of pharmacological
compounds in mammalian cellular networks.
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Background

Cellular phenotypes are determined by the dynamical
activity of large networks of co-regulated genes. Thus dis-
secting the mechanisms of phenotypic selection requires
elucidating the functions of the individual genes in the
context of the networks in which they operate. Because
gene expression is regulated by proteins, which are them-
selves gene products, statistical associations between gene
mRNA abundance levels, while not directly proportional
to activated protein concentrations, should provide clues
towards uncovering gene regulatory mechanisms. Conse-
quently, the advent of high throughput microarray tech-
nologies to simultaneously measure mRNA abundance
levels across an entire genome has spawned much
research aimed at using these data to construct conceptual
"gene network" models to concisely describe the regula-
tory influences that genes exert on each other.

Genome-wide clustering of gene expression profiles [1]
provides an important first step towards this goal by
grouping together genes that exhibit similar transcrip-
tional responses to various cellular conditions, and are
therefore likely to be involved in similar cellular proc-
esses. However, the organization of genes into co-regu-
lated clusters provides a very coarse representation of the
cellular network. In particular, it cannot separate statisti-
cal interactions that are irreducible (i.e., direct) from
those arising from cascades of transcriptional interactions
that correlate the expression of many noninteracting
genes. More generally, as appreciated in statistical physics,
long range order (i.e., high correlation among non-
directly interacting variables) can easily result from short
range interactions [2]. Thus correlations, or any other local
dependency measure, cannot be used as the only tool for
the reconstruction of interaction networks without addi-
tional assumptions.

Within the last few years a number of sophisticated
approaches for the reverse engineering of cellular net-
works (also called deconvolution) from gene expression
data have emerged (reviewed in [3]). Their goal is to pro-
duce a high-fidelity representation of the cellular network
topology as a graph, where genes are represented as verti-
ces and are connected by edges representing direct regula-
tory interactions. The criteria for defining an edge, as well
as its biological interpretation, remain imprecise and vary
between applications. For example, graphical modeling
[4] defines edges as parent-child relationships between
mRNA abundance levels that are most likely to explain the
data, integrative methods [5] use independent experimen-
tal clues to define edges as those showing evidence of
physical interactions, and other statistical/information
theoretical methods [6] identify edges with the strongest
statistical associations between mRNA abundance levels.
All available approaches suffer to various degrees from

problems such as overfitting, high computational com-
plexity, reliance on non-realistic network models, or a crit-
ical dependency on supplementary data that is only
available for simple organisms. These limitations have rel-
egated the successful large-scale application of most meth-
ods to relatively simple organisms, such as the yeast
Saccharomyces cerevisiae, and the genome-wide deconvolu-
tion of a mammalian network is yet to be reported.

Here we introduce ARACNE (Algorithm for the Recon-
struction of Accurate Cellular Networks), a novel informa-
tion-theoretic algorithm for the reverse engineering of
transcriptional networks from microarray data that over-
comes some of these limitations. ARACNE defines an
edge as an irreducible statistical dependency between
gene expression profiles that cannot be explained as an
artifact of other statistical dependencies in the network.
We suggest that the presence of such irreducible statistical
dependencies is likely to identify direct regulatory interac-
tions mediated by a transcription factor binding to a target
gene's promoter region, although other types of interac-
tions may also be identified (see Discussion). In this study
we focus on the former type of interaction for validation
purposes. We demonstrate that ARACNE compares favo-
rably with existing methods and achieves extremely low
error rates in identifying transcriptional interactions in a
synthetic dataset modeled using realistic Hill kinetics. In a
biological context, we show that the algorithm infers
bona-fide transcriptional targets in a mammalian gene
network. We also study the effects of misestimation of
mutual information (MI) on network reconstruction, and
show that algorithms based on MI ranking are resilient to
estimation errors. The algorithm is general enough to deal
with a variety of other network reconstruction problems
in biological, social, and engineering fields.

Theoretical Background

Several factors have impeded the reliable reconstruction
of genome-wide mammalian networks. First, temporal
gene expression data is difficult to obtain for higher
eukaryotes, and cellular populations harvested from dif-
ferent individuals generally capture random steady states
of the underlying biochemical dynamics. This precludes
the use of methods that infer temporal associations and
thus plausible causal relationships (reviewed in [7]). Only
steady state statistical dependences can be studied, which
are not obviously linked to the underlying physical
dependency model. Compounding this constraint, there
is no universally accepted definition of statistical depend-
encies in the multivariate setting [8,9]. In this work we
adopt the definition of [9], which builds on ideas from
the Markov networks literature [10]. Briefly, we write the
joint probability distribution (JPD) of the stationary
expressions of all genes, P({g;}), i=1,..., N, as:
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P({gi}):
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i ij ij,

e-H({xx}) (1)

where N is the number of genes, Z is the normalization
factor, also called the partition function, ¢... are potentials,
and H({g;}) is the Hamiltonian that defines the system's
statistics. Within such a model, we assert that a set of var-
iables interacts if and only if (iff) the single potential that
depends exclusively on these variables is nonzero.
ARACNE aims precisely at identifying which of these
potentials are nonzero, and eliminating the others even
though their corresponding marginal JPDs may not fac-
torize. While this representation is not directly used by the
algorithm, it helps precisely formalize our definition of
interaction and the class of irreducible dependencies that
it will help elucidate.

Note that Eq. (1) does not define the potentials uniquely,
and additional constraints are needed to avoid the ambi-
guity (see Appendix B). A reasonable approach is to spec-
ify ¢... using maximum entropy approximations [9,11] to
P(gy,.... ) consistent with known marginals, so that con-
straining an n-way marginal defines its corresponding
potential. We refer the reader to [9] for details.

Approximations of the interaction structure

Since typical microarray sample sizes are relatively small,
inferring the exponential number of potential n-way inter-
actions of Eq. (1) is infeasible and a set of simplifying
assumptions must be made about the dependency struc-
ture. Eq. (1) provides a principled and controlled way to
introduce such approximations. The simplest model is
one where genes independent, i.e.,
H({g;}) = 2¢(g;), such that first-order potentials can be
evaluated from the marginal probabilities, P(g;), which

are assumed

are estimated from experimental observations. As more
data become available we should be able to reliably esti-
mate higher order marginals and incorporate the corre-
sponding potentials progressively, such that for M — o
(where M is sample set size) the complete form of the JPD
is restored. In fact, M > 100 is generally sufficient to esti-
mate 2-way marginals in genomics problems, while
P(g; 8 &) requires about an order of magnitude more
samples. Thus the current version of ARACNE truncates
Eq. (1) at the pairwise interactions level,

H({&‘}FZ%(&' )+Z¢%j(3i'gj)'

Within this approximation, all genes for which ¢; = 0 are
declared mutually non-interacting. This includes genes

that are statistically independent (i-e.

P(gi &) ~ P(8)P(g;)), as well as genes that do not interact
directly but are statistically dependent due to their interac-
tion via other genes (i.e. P(g; &) # P(8;)P(g;), but ¢;=0).
We note that P(g; g;) = P(g;)P(g;) is not a sufficient condi-

tion for ¢; = 0. We discuss this below.

Since the number of potential pairwise interactions is
quadratic in N, identification of indirect statistical interac-
tions is a formidable challenge for all network reconstruc-
tion algorithms that rely on statistical associations.
However, under certain biologically realistic assumptions
about the network topology, the ARACNE algorithm pro-
vides a framework to reconstruct two-way interaction net-
works reliably from a finite number of samples in a
computationally feasible time.

Algorithm

Within the assumption of a two-way network, all statisti-
cal dependencies can be inferred from pairwise marginals,
and no higher order analysis is needed. While not imply-
ing that this is always the case for biological networks, it
is important to understand whether this assumption may
allow the inference of a subset of the true interactions with
fewer false positives. Thus we identify candidate interac-
tions by estimating pairwise gene expression profile
mutual information, I(g; g;) = I, an information-theoretic
measure of relatedness that is zero iff P(g; g;) = P(8;)P(g;)-
We then filter MIs using an appropriate threshold, I,
computed for a specific p-value, p,, in the null-hypothesis
of two independent genes. This step is basically equivalent
to the Relevance Networks method [6] and suffers from
the same significant limitations; namely, genes separated
by one or more intermediaries (indirect relationships)
may be highly co-regulated without implying an irreduci-
ble interaction, resulting in numerous false positives.

Thus in its second step, ARACNE removes the vast major-
ity of indirect candidate interactions (¢; = 0) using a well-
known information theoretic property, the data process-
ing inequality (DPI, discussed in detail later), that has not
been previously applied to the reverse engineering of
genetic networks.

Mutual Information

Mutual information for a pair of random variables, x and y,
is defined as I(x, y) = S(x) + S(¥) - S(x, y), where S(t) is the
entropy of an arbitrary variable t. For a discrete variable,

the entropy is S(t)=—<logp(ti)>=—Zp(ti)logp(t,~)

where p(t;) = Prob(t = t;) is the probability of each discrete
state (value) of the variable (in this work, logarithms are
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natural). For continuous variables the entropy is infinite
but the MI remains well defined and can be computed by
replacing S(x) with the differential entropy, which averages
the log-probability density rather than the log-mass. Like
the more familiar Pearson correlation, MI measures the
degree of statistical dependency between two variables.
However, while correlation coefficients are not invariant
under reparameterizations and may be zero even for man-
ifestly dependent variables, MI is reparameterization
invariant and is nonzero iff any kind of statistical depend-
ence exists.

MI Estimation

We estimate MI using a computationally efficient Gaus-
sian Kernel estimator [12]. Given a set of two-dimen-
sional measurements, z; = {x; y;},i=1 .. M, the JPD is

approximated as  f(Z) =1/Mzih_2G(h_1|Z—2i|),

where G(...) is the bivariate standard normal density. With
f(x) and f(y) being the marginals of f (Z ), the Ml is:

() {n}) = L Stog L8 ) (2)

f(xi)f(vi)

Since MI is reparameterization invariant, we copula-trans-
form (i.e., rank-order) [8] x and y for MI estimation; the
range of these transformed variables is thus between 0 and
1, and their marginal probability distributions are mani-
festly uniform. This decreases the influence of arbitrary
transformations involved in microarray data preprocess-
ing and removes the need to consider position-dependent
kernel widths, h, which might be preferable for non-uni-
formly distributed data.

For a spatially uniform h, the Gaussian kernel MI estima-
tor is asymptotically unbiased for M — o, as long as
h(M) — 0 and [h(M)]2M — . However, for finite M, the
bias strongly depends on h(M) and the correct choice is
not universal. Fortunately, ARACNE's performance does
not depend directly on the accuracy of the MI estimate, I,
but rather on the accuracy of the estimation of MI ranks.
For instance, determining if MI is statistically significant
requires testing whether I; > I, where I, is the statistical
significance threshold. Similarly, the DPI (see below) only
requires ranking the Mls.

Producing reliable estimates of the MI ranks is an easier
task. From the work on estimation of MI for discrete vari-
ables [13], we expect that, for well-sampled marginals and
an undersampled joint, the bias is b = b(Z h) (where the
bar denotes the true MI). Such biases almost cancel out for
similar MI values; the ordering of MI estimates only
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MI and MI rank estimation errors for varying Gaus-
sian kernel widths. The mean absolute percent error in
estimating mutual information for bivariate normal densities
is compared to the percent of errors in ranking the relative
mutual information values for randomly sampled pairs for
which the distribution with the lower true Ml value is
between 70% and 99% of the distribution with the higher
value. Ml estimation error (dashed blue line) is highly sensi-
tive to the choice of Gaussian kernel width used by the esti-
mator and grows rapidly for non-optimal parameter choices.
However, due to similar bias for distributions with close Ml
values, the error in ranking pairs of Mls (solid red line) is
much less sensitive to the choice of this parameter. These
averages were produced using samples from 1,000 bivariate
normal densities with a random uniformly distributed corre-
lation coefficient p € [0.1, 0.9], such that

I= —%log(l -p? ) This results in a distribution of Ml

values that closely resembles that of the real microarray data.

weakly depends on the choice of h and is stable even when
MI itself is uncertain (Figure 1). Thus a single "ensemble
best" value of h can be used rather than optimizing the
kernel width for each estimate (a computationally inten-
sive operation). This result is general and should apply to
any MI rank-based method. However, we emphasize that,
since this result is largely empirical, the dependence of MI
rank on the strength of smoothing should be reassessed
for data sets with substantially different statistical proper-
ties before relying on this conclusion.

Statistical Threshold for Mutual Information

Since MI is always non-negative, its evaluation from ran-
dom samples gives a positive value even for variables that
are, in fact, mutually independent. Therefore, we elimi-
nate all edges for which the null hypothesis of mutually

Page 4 of 15

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:S7

independent genes cannot be ruled out. To this extent, we
randomly shuffle the expression of genes across the vari-
ous microarray profiles, similar to [6], and evaluate the MI
for such manifestly independent genes and assign a p-
value, p, to an MI threshold, I,, by empirically estimating

the fraction of the estimates below I,. This is done for dif-

ferent sample sizes M and for 105 gene pairs so that relia-
ble estimates of I)(p) are produced up to p = 104

Extrapolation to smaller p-values is done using

pI=1y |1 =0)e< e *Mlo where the parameter « is fitted

from the data. This formula is based on the intuition of
the large deviation theory [14], which for discrete data

and unbiased estimators suggests

p(I=1y|T=0)o ¢ Mo As MI in the continuous case

can be estimated by finely discretizing the variables, a sim-
ilar result should hold, and « accounts for possible biases
of the estimator at fixed h. This produces an excellent
agreement with numerical experiments (see additional
file 1: Determination of mutual information statistical sig-
nificance).

Data Processing Inequality

The DPI (Figure 2) [14] states that if genes g, and g; inter-
act only through a third gene, g,, (i.e., if the interaction
network is g, > ... <> g, <> ... &> g; and no alternative path
exists between g, and g;), then

1(81, 83) <min [I(gy, &) (82 &) (3)

Thus the least of the three MIs can come from indirect
interactions only, and checking against the DPI may iden-
tify those gene pairs for which ¢; = 0 even though
P(g; &) # P(8)P(g;). Correspondingly, ARACNE  starts
with a network graph where each I;;> I is represented by
an edge (ij). The algorithm then examines each gene tri-
plet for which all three MIs are greater than I,and removes
the edge with the smallest value. Each triplet is analyzed
irrespectively of whether its edges have been marked for
removal by prior DPI applications to different triplets.
Thus the network reconstructed by the algorithm is inde-
pendent of the order in which the triplets are examined.

Since this approach focuses only on the reconstruction of
pairwise interaction networks, a pair of mutually inde-
pendent genes, I;;<I,, will never be connected by an edge.
Therefore, interactions represented by higher-order poten-
tials for which the corresponding pairwise potentials are
zero will not be recovered (see discussion). Additionally,
even for a second order interaction network, one may
imagine a situation where the effect of a direct interaction
is exactly cancelled out by indirect interactions through

other node(s), resulting in ¢;# 0 and P(g; &) ~ P(8;)P(g;)-
This situation will not be identified by ARACNE. How-
ever, we believe that such precise cancellation is biologi-
cally unrealistic and the following theorems specify
conditions under which ARACNE will reconstruct the net-
work exactly. Proofs of all theorems can be found in the
Appendix A.

Theorem |

If MIs can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly,
provided this network is a tree and has only pairwise inter-
actions.

However, unlike standard tree reconstruction methods
(e.g. Chow and Liu [15]), ARACNE is not limited to trees
and can produce complicated structures containing many
loops. In fact, because of the following two theorems,
ARACNE can be viewed as a natural generalization of the
Chow-Liu algorithm which overcomes the biologically-
unrealistic tree assumption of the latter.

Theorem 2
The Chow-Liu (CL) maximum mutual information tree is
a subnetwork of the network reconstructed by ARACNE.

Theorem 3

Let 7, be the set of nodes forming the shortest path in the
network between nodes i and k. Then, if MIs can be esti-
mated without errors, ARACNE reconstructs an interac-
tion network without false positives edges, provided: (a)
the network consists only of pairwise interactions, (b) for
each j e m, I; 2 I. Further, ARACNE does not produce
any false negatives, and the network reconstruction is
exact iff (c) for each directly connected pair (ij) and for any
other node k, we have ;> min(Iy, I).

Tree networks satisfy all conditions of Theorem 3, while
topologies containing loops may or may not. In particu-
lar, networks with three-gene loops definitely violate (c)
[but may still satisfy (a) and (b)], and every such loop will
be opened along the weakest edge. For a tree, there is a
unique path that connects two nodes. Similarly, for net-
works that satisfy (a) and (b), the shortest path dominates
inter-node information transfer. We call these networks
locally tree-like. In other words, an interaction is retained
by ARACNE if and only if there exist no alternate paths,
via one or more intermediaries or branches on the net-
work graph, which are a better explanation for the infor-
mation exchange between two genes. Since biochemical
dynamics is inherently stochastic, statistical interactions
over more than a few separating edges are generically
weak. Thus we believe that the local tree assumption is
biologically realistic, and we expect ARACNE to produce
low false positive rates in practice.
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Examples of the data processing inequality. (a) g, g,
g3, and g, are connected in a linear chain relationship.
Although all six gene pairs will likely have enriched mutual
information, the DPI will infer the most likely path of infor-
mation flow. For example, g, <>g; will be eliminated because

I(g1 &) > (g1, 83) and I(gy, g3) > I(g), £3)- 82 <> g4 Will be elim-
inated because I(g,, g3) > I(g), g4) and I(g3, g4) > I(g2, 84)- 81 >
g4 will be eliminated in two ways: first, because I(g|, g;) > I(g|,
g4) and I(g,, g4) > I(g), g4), and then because (g}, g3) > I(g), g4)
and I(g3, g4) > I(g,, g4)- (b) If the underlying interactions form
a tree (and Ml can be measured without errors), ARACNE
will reconstruct the network exactly by removing all false
candidate interactions (dashed blue lines) and retaining all
true interactions (solid black lines).

Finally, to minimize the impact of the variance of the MI
estimator, a tolerance, 7, may be introduced such that the
DPI inequalities become of the form I;; < I;;(1 - 7), and
close values of MI are not pruned. For low values of 7
(<15%) a reasonable tradeoff between true positives and
false positives is achieved (see additional file 2: Prediction
errors as a function of DPI tolerance). This threshold qual-
itatively matches the variance of the MI estimator and

decreases with increasing sample size. Using such non-
zero tolerance leads to persistence of some 3-gene loops.

Algorithmic Complexity

Because for a network of N genes there are at most N
choose 3 gene triplets, ARACNE's complexity is O(N3 +
N2M2), where M is the number of samples and N is the
number of genes. The first term relates to the DPI analysis
and the second to the mutual information estimation.
This compares favorably with optimization methods that
must explore an exponential search space (see Compara-
tive Algorithms). In practice, the DPI is applied to a small
subset of triplets for which all three edges survive the
mutual information thresholding. Therefore, for large M,
the computationally intensive part is generally associated
with the second term (computing mutual information),
which scales as O(N2M2). As a result, ARACNE can effi-
ciently analyze networks with tens of thousands of genes.

Results

We study ARACNE's performance in reconstructing a class
of synthetic networks proposed by [16] and a human B
lymphocyte genetic network from gene expressions pro-
file data. The latter has been reported in [17] and will only
be recapitulated here. ARACNE's performance is com-
pared against Relevance Networks (RNs) and Bayesian
Networks (BNs). RNs are important to characterize the
improvement associated with the introduction of the DP],
while BNs have emerged as some of the most widely used
reverse engineering methods and provide an ideal com-
parative benchmark.

Comparative Algorithms

A Bayesian Network is a representation of a JPD as a
directed acyclic graph (DAG) whose vertices correspond
to random variables {Xj,..., X, }, and whose edges corre-
spond to parent-child dependencies among variables; see
[10] for an introduction and [18] for a more recent tuto-
rial. We implemented the BN algorithm in this work in
accordance with [19,20]. In particular, we score graphs
using the Bayesian scoring metric [21], for which we
adopt a uniform prior over graphs and employ a Dirichlet
prior over parameters to aid in the inference of undersam-
pled conditional distributions of children given their par-
ents. Such an approach inherently penalizes more
complex graphs. Learning the most likely network
requires exploring the entire graph space for the highest
scoring model, which is an NP-complete problem [22].
Thus heuristic procedures are used to search for locally
optimal graph structures. The comparative tests presented
here use the greedy hill climbing algorithm with random
restarts (simulated annealing and other structure search
methods were tested and observed to produce similar
results). These results were produced using the LibB soft-
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ware package [23], which is among the best implementa-
tions of the method.

Relevance Networks [6] compute mutual information for
all gene pairs in a microarray dataset and infer that two
genes are biologically related if their MI is above a certain
threshold. This approach is equivalent to the first step in
the ARACNE algorithm (i.e., without the DPI); however,
we use a more accurate MI estimation procedure than the
original implementation and have further developed the
method of assigning statistical significance.

Synthetic Networks

Networks Specification

We benchmark the three algorithms using synthetic tran-
scriptional networks proposed by Mendes et al. [16] as a
platform for comparison of reverse engineering algo-
rithms. These networks consist of 100 genes and 200
interactions organized either in an Erdos-Rényi (random
network) [24] or a scale-free [25] topology (Figure 3). In
the former, each vertex of a graph is equally likely to be
connected to any other vertex; in the latter, the distribu-
tion of the number of connections, k, associated with each
vertex follows a power law, p(k) ~ k7with > 0, and large
interactions hubs are present. Many real biological net-
works appear to exhibit such structure [26].

The Mendes models use a multiplicative Hill kinetics to
approximate transcriptional interactions:

n; m
dx; N IK]-] Ny Al
7dt =4a; ' " n; 1+ " " —bixi, (4)
j=1 IKj + Ij =1 AKZ +Al

where x; is the concentration (expression) of the i-th gene,
N,;and N, are the number of upstream inhibitors and acti-
vators respectively, and their concentrations are ;and A;.
All other parameters are specified in [16].

We obtain synthetic expression values of each gene x; in
each microarray M,, by simulating its dynamics until the
system relaxes to a steady state X; =~ 0 . Prior to each sim-
ulation, the efficiency of synthesis and degradation reac-
tions are varied by setting a;= 4, ; 4; and b; = y,; b;, where
a; and E, are the original constant values of the parame-
ters, and 4, 7,; are random variables uniformly distrib-
uted in [0.0, 2.0]. Note that 4, ;~ 0.0 corresponds to a gene
knock-out, while 4, ;~ 2.0 is a 2 fold increase in the syn-

thesis rate. This parameter randomization models the
sampling of a population of distinct cellular phenotypes

at random time points (at or close to equilibrium), as is
the case for the B cell experiments described later, where
the efficiency of individual biochemical reactions may be
different from assay to assay due to differences in temper-
ature, nutrients, genetic mutations, etc. Although this
model is a clear simplification of real biological networks,
it forms a reasonably complex interaction network that
captures some elements of transcriptional regulation, and
an algorithm that does not perform well on this model is
unlikely to perform well in a more complex case. Within
this model, an interaction is unambiguously defined as a
direct regulatory effect of one gene on another. Thus the
performance of reverse engineering algorithms can be
studied by comparing the inferred statistical interactions
to the direct interactions in the model. We specifically
note that, to our knowledge, this is the first attempt to
benchmark network reverse engineering algorithms based
on published objective criteria.

Performance metrics

Since genetic networks are sparse, potential false positives
(Ngp), that is, identification of an irreducible statistical
interaction between two genes not connected by a direct
regulatory link, far exceed potential true positives (Nyp)
[27]. Thus specificity, Non/(Npp + Npy), which is typically
used in ROC analysis, is inappropriate as even small devi-
ation from a value of 1 will result in large false positive
numbers. Therefore, we choose two closely related met-
rics, precision and recall. Recall, Nyp/(Npp + Npy), indi-
cates the fraction of true interactions correctly inferred by
the algorithm, while precision, Np/(Nyp + Npp), measures
the fraction of true interactions among all inferred ones.
Note that precision corresponds to the expected success
rate in the experimental validation of predicted interac-
tions. Performance will thus be assessed using Precision-
Recall Curves (PRCs). PRCs for ARACNE and RN are gen-
erated by adjusting the p-value or, equivalently, the MI
threshold. ARACNE's PRC does not extend to 100% recall
since the DPI eliminates some interactions even at p, = 1.
To reach the 100% recall, the DPI tolerance, 7, can be
adjusted until ARACNE's PRC degenerates into that of
RNs. For BNs, the adjustable parameter is the Dirichlet
pseudocount, and, again, we observe that the maximum
recall never reaches 100%.

Performance Evaluation

As shown in Figure 4, values of precision and recall for
ARACNE are consistently better than those for the other
tested methods. That is, for any reasonable precision (i.e.
>40%), ARACNE has a significantly higher recall than the
other methods, and its precision reaches ~100% at signif-
icant recall levels. For large p-values, ARACNE begins to
rapidly increase the number of false positives without a
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Figure 3
Topology of the 100 gene regulatory networks proposed by Mendes. Blue/red edges correspond to activation/inhibi-
tion. For the Erdos-Rényi topology (a) each gene is equally likely to be connected to every other gene, while the scale-free
topology (b) is characterized by large interaction hubs with many connections.
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corresponding increase in true positives (the right tail of
ARACNE's PRC). This is likely because as non-statistically
significant MI values are accepted, random fluctuations
may arbitrarily change the MI rank so that the DPI
removes interactions at random. We note that the inflec-
tion of the PRC for ARACNE starts at p, ~ 104, exactly
where we would expect the algorithm to begin inferring
large numbers of non-statistically significant interactions
for a network of this size. This suggests that a sensible
value for the MI threshold, producing a near optimal
result, can be selected a priori using a Bonferroni-corrected
p-value based on the number of potential network inter-
actions.

ARACNE's high performance can be better understood by
analyzing the distribution of MIs as a function of the
length of the shortest path connecting each gene pair
(degree of connectivity). ARACNE depends on MI being
enriched for directly interacting genes and decreasing rap-
idly with this distance. Figure 5 demonstrates these prop-
erties for our simulated datasets. There is no unique
choice for the MI threshold that separates directly and
indirectly interacting genes, and methods such as RNs that
attempt to use a single threshold will either recover many
indirect connections or miss a substantial number of
direct ones. However, since mutual information decreases
rapidly as signals travel over the network, the DPI effec-
tively eliminates indirect interactions whose correspond-

ing JPDs do not factorize. For all tested synthetic
microarray sizes and both network topologies, ARACNE
recovers far more true connections and far fewer false con-
nections than the other methods (Table 1). Remarkably,
in all cases, application of the DPI eliminates almost all
indirect candidate interactions inferred by Relevance Net-
works at the expense of very few true interactions. We note
that since ARACNE's performance degrades as the local
topology deviates significantly from a tree, it performs
slightly better on Erdos-Rényi than on scale-free topolo-
gies, for which small loops are more common. Another
challenge in reconstructing the scale-free topology derives
from the presence of large hubs with high in-degrees,
which have small (and thus difficult to estimate) MI with
their individual neighbors. However, ARACNE still per-
forms extremely well even on scale-free topologies
because signals in this network decorrelate rather quickly,
so the statistical properties of a tree-like structure are
locally preserved even in the presence of relatively tight
loops (see Theorem 3). We note that ARACNE differs sig-
nificantly from tree reconstruction methods, as the recon-
structed topology for the scale-free network (using 1,000
samples) contains ~30 loops with sizes as small as four
(see Appendix C for a description of our loop counting
algorithm).

In summary, ARACNE appears to (a) achieve very high

precision and substantial recall, even for few data points
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(125), (b) allow an optimal choice of the parameters h
(Gaussian Kernel width) (Figure 6) and 10 (statistical
threshold), (c) to be quite stable with respect to the choice
of parameters, and (d) to produce robust reconstruction
of complex topologies containing many loops.

Human B Cells

Although large gene expression datasets such as those
derived from systematic perturbations to simple organ-
isms (e.g., [5]) are not easily obtained for mammalian
cells, we suggest that an equivalent dynamic richness can
be efficiently achieved by using a significant set of natu-
rally occurring and experimentally generated phenotypic
variations of a given cell type. To this end, we have assem-
bled an expression profile dataset consisting of about 340
B lymphocytes derived from normal, tumor-related, and
experimentally manipulated populations (for an exten-
sive description see [28]).

This dataset was deconvoluted using ARACNE to generate
a B cell specific regulatory network consisting of approxi-
mately 129,000 interactions. Since the c-MYC proto-
oncogene emerges as one of the top 5% largest cellular
hubs in the complete network and is extensively character-
ized in the literature as a transcription factor, we per-
formed a first validation of the overall network quality by
comparing its interactions inferred by our method with
those previously identified by biochemical methods. The
in silico generated network is highly enriched in known c-
MYC targets; 29 out of 56 (51.8%) genes predicted to be

_ X f
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0.6 o“éﬁ\ N Bavesian Network
8 05" o ‘A - A- Relevance Networks ||
o)
e N
: _4n4
0.3+ Q gAA p,=10"" |
? A
0.2r i
%o
0.1r b
A
0 L L L L
0 0.2 0.4 0.6 0.8 1
Recall
Figure 4

first neighbors were either previously reported in the liter-
ature or biochemically validated in our labs, using chro-
matin immunoprecipitation, as ¢-MYC targets. This is
statistically significant (P = 2.9 x 1023 by »2 test) with
respect to the expected 11% of background c-MYC targets
among randomly selected genes [29]. In addition, known
c-MYC target genes were significantly more enriched
among first neighbors than among second neighbors
(51.8% vs. 19.4%), indicating that ARACNE is effective at
separating direct regulatory interactions from indirect
ones. Biological results related to the complete network
structure are described in detail in [17].

Discussion

ARACNE, which is motivated by statistical mechanics and
based on an information theoretic approach, provides a
provably exact network reconstruction under a controlled
set of approximations. While we have shown that these
approximations are reasonable even for complex mam-
malian gene networks, they may cause the algorithm to
fail for some control structures. First, ARACNE will open
all three-gene loops along the weakest interaction, and
therefore introduce false negatives for triplets of interact-
ing genes (although some may be preserved when a
nonzero DPI threshold is used). Improvements to the
algorithm are being investigated to address this condition.
Second, by truncating Eq. (1) at the pairwise interactions,
ARACNE will not infer statistical dependencies that are
not expressed as pairwise interaction potentials (such as
an XOR Boolean table for which MI between any gene pair

—-9— ARACNE
-© Bayesian Network  H
I g - A= Relevance Networks
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Re]
(0]
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Precision vs. Recall for 1,000 samples generated from the Mendes network. (a) Erdés-Rényi network topology. (b)
Scale-free topology. ARACNE's PRCs are consistently better than those of the other algorithms, and the precision reaches
~100% while maintaining high recall. Points on the PRCs for ARACNE and RNs corresponding to p, = 10 (the value yieding
<0.5 expected false positives for 4,950 potential interactions) are indicated with arrows.
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Distribution of mutual information for different
lengths of the shortest path between genes for the
scale-free topology. Here we plot the log of the empirical
probability that Ml for a given separation between genes is
above some value (in nats) marked on the horizontal axis.
High Ml values are significantly more probable for closer
genes. Statistical significance threshold of 10-4for the back-
ground Ml distribution, corresponding to I, = 0.0175 nats, is
marked on the graph. As shown, this threshold retains a large
number of indirect candidate interactions, and there is no
threshold that would be able to separate indirect and direct
interactions; a threshold that eliminates most of the former
(red arrows) also eliminates the majority of the latter. This
severely degrades performance of RNs. (Inset) Expanded log-
log view of the MI distribution for 934 gene pairs with 3 or
more intermediaries and the background distribution com-
puted by Monte Carlo. The curves are virtually indistinguish-
able, indicating that the background distribution can be used
to obtain reliable estimates of statistical significance thresh-
olds for filtering genes with higher degrees of connectivity.
Similar results apply for the Erdés-Rényi topology (see addi-
tional file 3: Ml distribution for different shortest path lengths
for the Erdés-Rényi topology).

is zero). By expanding Eq. (1) to include third and higher
order potentials our formulation, in principle, can be
extended to distinguish higher order interactions as well
[30]. However, we note that in practice (i.e., biochemi-
cally) it is difficult to produce only higher order interac-
tions without introducing some lower order dependencies
[9], and truncation of the Hamiltonian is not likely to pro-
duce serious systematic errors in identifying interactions
between gene pairs. In fact, the Mendes networks contain
higher order interactions, but corresponding pairwise
ones are effectively recovered instead. Another limitation
of ARACNE is the inability to infer edge directionality,
although we believe this to be a general limitation of all
methods that do not use temporal data. We intend to

investigate a two-tier approach in which first adirectional
gene interactions are inferred, and then edge directional-
ity is assessed via regression algorithms or specific bio-
chemical perturbations.

Because mRNA abundance measurements only serve as a
proxy for the interacting molecular species (i.e., activated
protein concentrations), the type of physical interactions
corresponding to the irreducible statistical dependencies
identified by ARACNE are not always clear. For example,
if the activity of a transcription factor is primarily medi-
ated by an activating enzyme, rather than by changes in its
mRNA abundance level, we expect ARACNE to identify
dependencies between this enzyme and the target genes of
the transcription factor. Moreover, a violation of the algo-
rithm's hypotheses may occur for proteins involved in sta-
ble complex formation. Since it is energetically efficient
for the cell to produce a stochiometrically balanced con-
centration of proteins involved in stable complexes (e.g.,
the ribosomal units), evolution has finetuned the tran-
scriptional control of these proteins so that their concen-
trations are balanced. Thus, regardless of the
concentration of the several transcription factors (TF) that
may control their expression, the correlation between the
final protein concentrations is generally higher than that
between each protein and each individual TF. This vio-
lates the assumptions of Theorem 3 and produces irreduc-
ible statistical interactions between protein pairs involved
in stable complex formation. Therefore, we expect some
edges to correspond to protein-protein interactions,
although we note that this situation would be correctly
handled if higher order dependencies were analyzed.

Finally, we end with the following observation. Since
ARACNE may fail for topologies with many tight loops, it
is important to understand whether an analyzed topology
is, in fact, locally tree like, and, therefore, the reconstruc-
tion can be trusted. We suggest two heuristics. First, loopy
topologies continue to have more loops after reconstruc-
tion (results not shown). Thus an excessive number of
loops in a deconvolved network should serve as a warning
sign (Appendix C); more analysis is required to determine
an acceptable range for this statistic. Second, as in the cur-
rent analysis, predictions made by ARACNE (or, for that
matter, any other computational algorithm) should be
directly experimentally verified.

Conclusion

The goal of ARACNE is not to recover all transcriptional
interactions in a genetic network but rather to recover
some transcriptional interactions with high confidence.
Within this scope, ARACNE overcomes several limitations
that have impeded the application of previous methods to
the genome-wide analysis of mammalian networks. It has
a low computational complexity, does not require discre-
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Table I: Recovery for varying numbers of samples generated from the Mendes networks, which contain an average of ~194 true

interactions after self-loops and bidirectional edges are eliminated.

Erdos-Rényi Topology

ARACNE Relevance Networks DPI Sensitivity DPI Precision Bayesian Networks
Num samples Nqp Nep N7p Nep Nyp Ngp
1000 128.00 1.33 143.33 462.67 99.71% 96.78% 50.00 3233
750 12433 2.67 139.33 411.00 99.35% 96.46% 45.33 31.00
500 119.00 1.67 130.67 311.33 99.46% 96.37% 41.00 29.00
250 101.00 4.67 110.00 182.33 97.44% 95.18% 24.67 2533
125 81.00 4.67 84.67 95.00 95.09% 96.10% 5.33 19.00
Scale-Free Topology
ARACNE Relevance Networks DPI Sensitivity DPI Precision Bayesian Networks
Num samples Nzp Nep Nqp Nep Nqp Ngp
1000 97.67 233 113.33 234.00 99.00% 93.67% 38.67 17.00
750 90.67 333 103.00 200.00 98.33% 94.10% 3333 15.33
500 80.33 5.33 91.67 154.67 96.55% 92.95% 27.00 13.33
250 6333 7.67 70.00 80.00 90.42% 91.56% 9.00 9.67
125 4633 3.67 48.00 49.67 92.62% 96.50% 4.00 6.00

Recovery for varying numbers of samples generated from the Mendes networks, which contain an average of ~194 true interactions after self-loops
and bidirectional edges are eliminated. For all sample sizes ARACNE efficiently eliminates almost all false candidate interactions inferred by RNs, as
indicated by the DPI sensitivity (calculated as the percent of false positives eliminated by the DPI), with minimal reduction in true positives, as
indicated by the DPI precision (calculated as the percent of false positives removed out of the total number of edges removed by the DPI).
Moreover, as the sample size decreases, the number of true connections inferred by ARACNE decays gracefully while the number of false positives
remains very low, whereas the performance of Bayesian Networks degrades rapidly for smaller sample sizes as the conditional probability tables
become very sparsely populated. Results are calculated using a p-value of 10-4for ARACNE and Relevance Networks, yielding <0.5 expected false
positives for 4,950 potential interactions, and using a Dirichlet prior with equivalent sample size of one for Bayesian Networks [19]. Results are

averaged over three network configurations for each topology.

tization of the expression levels, and does not rely on
unrealistic network models or a priori assumptions. The
algorithm can be applied to arbitrarily complex networks
of transcriptional, or any other, interactions without reli-
ance on heuristic search procedures. Thus we expect
ARACNE to be well suited for mammalian gene regulatory
networks, which are characterized by a complex topology,
do not benefit from well-defined supplemental data (such
as comprehensive protein interaction databases available
for yeast), and are more difficult to manipulate experi-
mentally, substantially hindering the acquisition of data
to which time-series based methods can be applied. There
are currently no other examples of a genome-wide mam-
malian network inferred from microarray expression pro-
files.

ARACNE's high precision in reconstructing a synthetic
network designed to simulate transcriptional interactions,
as well as the inference of bona-fide targets of c-MYC, a
known transcription factor, in human B cells, suggest
ARACNE's promise in identifying direct transcriptional
interactions with low false-positive rates in mammalian
networks, an obvious challenge for all reverse engineering
algorithms. More research is needed to precisely character-
ize other types of interactions corresponding to irreduci-
ble statistical dependencies identified by ARACNE. We
suggest that predictions made by ARACNE can be used in

conjunction with other data modalities such as genome-
wide location data, DNA sequence information, or tar-
geted biochemical experiments to progress towards this
level of detail. We plan to investigate this possibility using
a model organism platform as well as extensions to the
simulation model. However, studies based on targeted
perturbations to model organisms have demonstrated the
promise of using conceptual "gene-gene" networks to elu-
cidate functional mechanisms underlying cellular proc-
esses [31] as well as to identify molecular targets of
pharmacological compounds [32]. ARACNE may provide
a framework to enable such applications in a mammalian
context.

Appendices

Appendix A - Proofs of Theorems

Theorem |

If MIs can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly,
provided this network is a tree and has only pairwise inter-
actions.

Proof of Theorem |

First, notice that for every pair of nodes i and k not con-
nected by a true direct interaction there is at least one
other node j that separates them on the network tree.
Applying the DPI to the (ijk) triplet leads to removal of the
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Synthetic network reconstruction errors for varying
Gaussian kernel widths. The total number of inferred
errors (Ngp + Npy) in reconstructing the Mendes networks is
stable with respect to choice of estimator kernel width, vali-
dating the observation that rankings of Mls are more stable
than the MI estimates with respect to changes in this param-
eter (Figure 1). The choice of kernel width for each number
of samples that minimizes the mean absolute Ml estimation
error for bivariate Gaussian densities (indicated with dia-
monds) yields optimal or near optimal reconstruction of this
network for all samples sizes. Results are calculated for a sta-
tistical significance threshold of 10-# for the scale-free net-
work topology.

(ik) edge. Thus only true edges survive. Similarly, every
removed edge is not present in the true network. Consider
some (ijk) triplet. One of these nodes, say j, may separate
the other two. In this case the removed edge (ik) is clearly
not in the true tree. Alternatively, there may be no separat-
ing node, and one may be able to move between any pair
in the triplet without going through the third one. In this
case none of the three edges is in the true graph, and any
edge the DPI removes is fictitious. Thus all removed edges
are indirect, while all remaining edges are factual. The net-
work is reconstructed exactly.

Theorem 2
The Chow-Liu (CL) maximum mutual information tree is
a subnetwork of the network reconstructed by ARACNE.

Proof of Theorem 2

We notice that, without a loss of generality, we can
assume that the Chow-Liu tree and the ARACNE construc-
tion span all the nodes of the network. If this is not the
case, that is, a few connected clusters exist (separated by
edges with zero MI), then for the purpose of this theorem
we can complete CL and ARACNE structures by the same
edges with zero MI without formation of additional

loops, till they become spanning. Now suppose that the
theorem is false and there exists an edge (ij) that belongs
to the (completed) CL tree, but does not belong to the
ARACNE reconstruction. Since the CL construct is a tree,
this edge separates it into two separate trees T; and T; that
contain the i'th and the j'th nodes respectively. Since
ARACNE has removed the (ij) link, there exists a node F,
for which min(Iy, I) > I;;, Without a loss of generality, let
kbe in T;. Then replacing the (ij) edge in the Chow-Liu tree
by the (jk) edge will form no loops and will preserve the
tree structure. This will increase the total MI of the CL
reconstruction by I, - I;; > 0. Thus the original tree is not
the maximum MI tree. We arrive at a contradiction, which
proves the theorem.

Theorem 3

Let 7, be the set of nodes forming the shortest path in the
network between nodes i and k. Then, if Mls can be esti-
mated without errors, ARACNE reconstructs an interac-
tion network without false positives edges, provided: (a)
the network consists only of pairwise interactions, (b) for
each j € 7, I 2 I. Further, ARACNE does not produce
any false negatives, and the network reconstruction is
exact iff (c) for each directly connected pair (ij) and for any
other node k, we have I;;> min(Ij, I).

Proof of Theorem 3

To prove the absence of false positives, we notice that, for
every candidate edge (ik) that is not actually in the net-
work, there is at least one node j, such thatj e 7. Apply-
ing DPI to the (ijk) triplet will remove the (ik) edge.
Further, we notice that if (c) is satisfied, then any applica-
tion of DPI will not remove a true edge. However, if (c)
does not hold, a true edge will be removed. This com-
pletes the proof.

Appendix B — Relations to Graphical Models and
Statistical Physics

The definition of dependencies employed in the paper,
which is based on the presence of a potential that couples
interacting genes in the JPD,

P({Zi}):
%QXP _Z‘B(Xi)_thj(gi'gj)_.Z;e@jk(girgjrgk)_'"
i 1] L]

o~ (5)

is similar to that used in the theory of graphical models,
specifically Markov Networks (MNs) [10]. However, even
though there are some dissenting formulations (e.g.,
[33]), the usual implementation of MNs [10] is built
using the notion of conditional (in)dependence. In this
context it is impossible to distinguish, for example, a
clique of three genes that are fully coupled by three pair-
wise interactions from the same genes coupled by a third
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order dependence, and also from a combination of both
cases. Because of this, many authors use a convention that
if a higher order potential ¢... is present in Equation 1,
then all lower order potentials that depend only on a sub-
set of the genes coupled by ¢... are incorporated into it. In
contrast, the definition of [9], followed in this paper, aims
at discriminating interaction orders. Thus, in our case, a
three gene pairwise loop is distinct from a three-way inter-
action. In fact, extensions of ARACNE to deal with the lat-
ter have been developed [30], while the former still
requires work.

As is understood in the graphical models literature, the
formulation of Equation 1 resembles some statistical
mechanics problems, specifically spin glasses on random
networks [33,34], particularly if the g; are binary (such dis-
cretization of expression levels is a common technique to
deal with undersampling). In this case, the genes are the
Ising spins, and truncations to the first, second, or the
third order potentials are steps towards the mean field,
Bethe, and Kikuchi variational approximations [33,35-
37]. An important distinction is that in statistical physics

one searches for P ({g;}), a variational approximation to
JPD, P({g:}), that

Dy ( 15||P) = <log 13/P> _ within a given class of P, while
P

the true minimizes

the definition of [9] is equivalent to minimizing

Dy, (P|| P). This is because statistical physics solves a

direct problem - calculating various spin statistics given
an interaction network. In particular, low order marginals
P, are unknown and cannot be used in averaging. On the

other hand, we are here solving the inverse problem -
reconstructing the network given the known true marginal
distributions.

ARACNE, which truncates Equation 1 at the second order
potentials, is an analog of the Bethe approximation for the
direct problem. Just like this approximation and the asso-
ciated belief propagation algorithm [10,38], ARACNE
may fail for loopy topologies. It is, therefore, appealing
that, for locally tree-like networks, the algorithm still
works well, paralleling the corresponding discussion in
statistical physics [38].

Appendix C — Counting Loops in an Undirected Adjacency
Matrix

A pairwise interaction network can be represented by an
adjacency matrix A;, where A; = 1,0 denotes either pres-
ence or absence of the corresponding interaction. To test
the effect of violation of the "locally tree-like" assumption
on the performance of the algorithm, we need to be able

to count the number of cycles (loops) in a given network.
This is complicated by the fact that the total number of
cycles in a graph is not equal to the number of independ-
ent cycles; that is the number of edges that need to be
removed to transform the graph into a tree. We need to
count the number of independent cycles only. Addition-
ally, of all possible complete sets of independent cycles we
are interested in identifying the one with the smallest
loops (since small loops have the highest potential to vio-
late the locally tree-like assumption). We suggest the fol-
lowing algorithms to solve this task approximately.

1) We prune the nodes that have 0 or 1 neighbors in the
adjacency matrix A (since such nodes cannot be part of
any loops).

2) We transform the undirected network A into a directed
one B. For this we identify every A;# 0 in the original net-
work with a node in the new network (edges ij and ji are
represented by separate nodes). If the original network
had Al] = A]k = 1, l * k, then B(l]),(]k) = 1 O’[hel’wise B(l]),(kl) = O

3) We evaluate integer powers of the matrix B. If Tr(B") >
0, a loop (or loops) of size n are present. For the smallest
n with loops, we identify one of them (at random), record
nodes that form it, and remove one of these nodes in B
(i.e., edges in A).

4) We repeat 1-3 till no more loops are found.
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Additional material

Additional File 1

Determination of mutual information statistical significance. P-values are
assigned to MI thresholds using a Monte Carlo simulation for different

kernel widths, sample sizes (M) and for 10° gene pairs so that reliable esti-
mates are produced up to p = 104 (solid lines). Extrapolation to smaller

p-values is done using p(I = I | I= 0) o< oMl (dotted lines).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-S1-S7-S1.eps]
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Additional File 2

Prediction errors as a function of DPI tolerance. The number of inferred
errors, Npp + Ny, are plotted as a function of the DPI tolerance, t, for
(a) the Erdos-Rényi and (b) the scale-free topologies. Raising t to a value
of 0.2 results in a modest increase in false positives, while larger values of
T produce a much sharper increase. Therefore, a moderate choice for the
tolerance can help elucidate additional interactions without introducing
an excessive number of false positives. Results are calculated for a statisti-
cal significance threshold of 104 and a synthetic microarray size of 1,000.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-81-S7-S2.pdf]

Additional File 3

MI distribution for different shortest path lengths for the Erdds-Rényi
topology. Red and black arrows are explained in the legend of Figure 5.
Since there are no large in-degree hubs, decorrelation is slower than for
the scale-free network, and MI statistics even for fifth neighbors is still dis-
tinguishable from the background.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-S1-S7-S3.eps|
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