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ABSTRACT In this paper, we introduce a new methodology for network access control for Android
devices based on app risk assessment. Named ARANAC (which stands for Application Risk Assessment
based Network Access Control), this methodology is specially tailored for scenarios using the Bring-Your-
Own-Device (BYOD) policy, where the adoption of some solutions can lead to problems in security and
privacy for both the employees and the business organization. ARANAC mainly relies on the analysis of an
aggregate of permissions declared in the manifests of installed applications on users’ devices. The access
control scheme combines three operational modules: i) a device monitoring tool, ii) a novel permission-based
risk model, and iii) an anomaly-based detection machine learning module based on a methodology (called
MSNM, from Multivariate Statistical Network Monitoring) that provides both detection and diagnostic
capabilities. ARANAC’s novelty is in the combination of four features. Firstly, it is privacy-aware, and thus,
it does not require detailed information about installed applications but only an aggregate of permissions.
Secondly, it builds a normality model by combining expert knowledge with data, capturing the behavior of
a complete population of mobile devices. Thirdly, it is dynamic, as permissions are updated in real time,
allowing the network to re-assess access control on a continuous basis. Finally, its diagnostic capabilities
allow for giving recommendations to final users so that they are capable of mitigating their risks when
accessing networks. We evaluated the approach with more than 80 Android devices at a university campus
network and obtained interesting results regarding security risks in the usual deployment of device apps.

INDEX TERMS Android permissions, bring-your-own-device, mobile security, network access control, risk
assessment.

I. INTRODUCTION

Mobile devices such as smartphones and tablets are the
most globally widespread platforms among users nowadays.
According to GSMA, there are around 5.2 billion people
subscribed to mobile services (around 67% of the global
population). These subscriptions generated $4.1 trillion in
economic added value globally in the last year [1], and by the
year 2024 these figures will approach 5.8 billion people and
$5 trillion, respectively. In accordance with the ever-
increasing relevance of mobile environments, a Cisco study
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reveals that mobile traffic constitutes around 40 Exabytes
of traffic per month at present and around 80 Exabytes per
month in the coming years [2].1

As the adoption of mobile devices and services increases,
security incidents in such environments have experienced a
huge increase in the last years [3], in the form of different
types of malware, e.g., adware, SMS trojans, ransomware,
dropper and banking trojans. Moreover, given the fact that
around 85% of the mobile market corresponds to Android
devices [4], this operating system is exposed to awide number
and variety of risks and attacks [5], [6].

1See also https://newsroom.cisco.com/press-release-content?type=
webcontent&articleId=2055169
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As a consequence of all the above, mobile security con-
stitutes a primary challenge for our society. Primary secu-
rity services like authentication and authorization are usu-
ally implemented within access control systems (ACSs). Fre-
quently, ACSs are only used as an entrance barrier to a
system, but others adopt a continuous monitoring approach,
where some kind of detection procedures are used to both
determine the occurrence of undesired activities or behaviors
[7], [8] during the lifetime operation of devices as well as to
carry out some kind of countermeasures.
In this paper, we describe the fundamentals of ARANAC

(Application Risk Assessment based Network Access
Control), a continuous monitoring access control proposal for
mobile devices to access resources in the context of an orga-
nization, using the Bring-Your-Own-Device (BYOD) policy.
ARANAC is based on the monitoring of app permissions [9].
From them, we follow a Risk-Based Access Control
model [10] to assign a risk value to each device permission set
from expert knowledge. Then we build a normality model for
those permissions by considering not only local information
(a single device), but also global knowledge of permissions in
a sample of devices belonging to the same organization (e.g.
devices from workers of a company in a BYOD scenario).
To build this model we apply the Multivariate Statistical
Network Monitoring (MSNM) detection methodology [11],
for two main reasons: i) it allows for building an aggregated
model to capture normality for the whole population of
devices, and ii) it is capable of providing not only anomaly
detection capabilities, but also diagnosis, i.e., identifying
those permissions that have caused an anomaly in a device,
which is essential for sending recommendations for final
users to reduce risks. Thus, ARANAC’s detection capabilities
will allow for granting and restricting access to the devices on
the network environment. Moreover, the diagnostic informa-
tion is provided to the final devices/users to solve the detected
risks in order to reconsider their access to the network.
For the evaluation of the system, we have built a prototype

that includes amonitoring tool for Android devices developed
by the authors to collect information over time about commu-
nications, apps, resource consumption and interfaces, among
others. We evaluate ARANAC with more than 80 devices
in a university campus network. The results obtained show
the promising performance of the access control pro-
posal. Both the monitoring tool and the anonymized data
collected for experimentation are made available in a public
repository.
In summary, the main features and contributions of

ARANAC to address the security and privacy issues in BYOD
scenarios are:

• Firstly, it follows a Risk-Based Access Control
approach, which allows the system to obtain a certain
risk score for the different permission set on the devices
in the network so that policies can be applied according
to risk levels. The process to evaluate the risk of a
mobile device is based on the continuous monitoring
of the Android permissions declared by the installed

applications. From this monitoring, we estimate the risks
involved in the target system.

• As a main novelty, the system evaluates the risk of a sin-
gle device by comparing the data collected on it with the
global information provided by all the different devices
in the network in a crowdsourcing basis. The system
relies on the use of exploratory techniques based on the
Multivariate Statistical Network Monitoring (MSNM)
approach, which decideswhether to allow or deny access
to the device.

• The system respects users’ privacy, since the data
employed by the monitoring system (permissions used
by applications) are conveniently aggregated to allow the
detection process without divulging private information.

• The system is able to provide recommendation ser-
vices. Indeed, the diagnosis capabilities provided by the
MSNM technique allow final users to receive tips/advice
about how to reduce their risk level, if necessary, and
how to (re)gain network access.

The organization of the rest of the paper is as follows:
Section II reviews the main proposals in the field of mobile
security in the specialized literature, with special emphasis
on access control. Section III describes the overall operation
of the permission-based access control system introduced in
this work: ARANAC. In particular, Section III-A presents
the overall architecture of the proposal, while each of its
component modules is subsequently described: Section III-B
for the monitoring tool used in the prototype developed,
Section III-C for the permission risk analysis developed, and
Section III-D for the use of the MSNM detection approach
to detect compromised devices in the network, and thus, for
considering when to grant access or not. This last section
also explains how to diagnose elevated risk levels in order
to recommend users how to mitigate said risks. Thereafter,
Section IV presents the experimentation carried out to eval-
uate the overall performance of ARANAC and then dis-
cusses the results obtained. Finally, Section V draws the main
conclusions and offers/proposes some future lines of work.

II. BACKGROUND ON ACCESS CONTROL

FOR MOBILE PLATFORMS

As the social adoption of mobile platforms (namely smart-
phones, tablets and even IoT related devices) has become
wider, the number of threats and security incidents for these
kinds of devices has also increased [1], [12]–[14]. In this
way, the topic of mobile security has consequently received
significant attention by the research community in the last
years [15]–[21], with a number of specific proposals being
developed and specially focused on Android platforms.

Like in other environments, security solutions for mobile
devices are varied and range from prevention to reaction
related approaches, either regarding authentication, confi-
dentiality, integrity, privilege escalation, information leakage,
fraud avoidance, etc. As an example of this variety of propos-
als, authors in [22] present Secand, an application designed
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to locate stolen mobile devices with turned on status. When
the user of a smartphone notices that their phone is stolen
and sends an SMS to the stolen phone from another phone,
Secand would detect the password within the SMS and send
current GPS coordinates back to the phone, from which an
SMS is sent. The app is also able to switch the front camera
of smartphone on in order to take and send pictures to the
counter party as a multimedia message system and/or to lock
the phone. Another example of a security-oriented app is
that of [23], wherein the authors introduce a face recognition
system to access Android devices, both to unlock the screen
and to use installed apps.
Beyond the existence of specific protection related works

like [22] and [23] mentioned before, one principal R&D
line in the field of mobile security regards malware detec-
tion [8], [24]–[28], intended to determine the existence of
potentially malicious apps on the device. Some specific
well-known proposals developed for that are TaintDroid [29],
CrowDroid [30], DREBIN [31], BehaviorDroid [32],
EnDroid [33], BDfinder [34], in which activity and variables
like API calls, system calls, permissions, addresses, system
logs, and processes, among others, are monitored to deter-
mine harmful behavior.
Another key direction to secure mobile environments is

that of access control, which is aimed at restricting the access
and use of system resources. In the next subsection we
describe several proposals developed in the literature on this
topic.

A. ACCESS CONTROL

Access control (AC) refers to the selective restriction of
access to a place or resource. The permission to access
is called authorization and constitutes one of the princi-
pal security measures in informated-related environments.
As an example, the Android security system is built upon a
permission-based framework [9], [35], [36] which restricts
the access of third-party apps to sensitive resources such
as external storage, contacts, emails, and even credit card
numbers (see Section III for some further details about this).
Once an app is installed on the device, the user must grant the
requested permissions at runtime in order to allow access to
specific resources such as GPS or SMS.
As discussed in papers like [37], [38], various for-

mal access control models are presented in the literature,
such as: Discretionary Access Control (DAC), Mandatory
Access Control (MAC), Role-BasedAccess Control (RBAC),
Attribute-Based Access Control (ABAC), etc. These models
are used to implement organizational policies that prevent
the unauthorized disclosure of sensitive data and for enabling
secure access to data and resources. Each AC model has its
own methods for making AC decisions and policy enforce-
ment.
In the context above, authors in [39] propose a modi-

fied version of the Android OS supporting context-based
access control policies. These policies restrict applications
from accessing specific data and/or resources based on the

user context. The restrictions specified in a policy are auto-
matically applied as soon as the user device matches the
pre-defined context associated with the policy. In a similar
line, authors in [40] present CoDRA, an access control system
for Android that offers context-based dynamically config-
urable restrictions as well as fine granular policy and the
ability to enforce various policy configurations at different
levels of system operation. CoDRA employs both static and
dynamic restrictions to improve the overall security of the
device.

In [41], authors propose a lightweight, fine-grained, and
flexible access control scheme for file storage inmobile cloud
computing, known F2AC, this access control schema can
not only achieve iterative authorization, authentication with
tailored policies, and access control for dynamically changing
accessing groups, but also can provide transition and revoca-
tion of access privileges. A new access control model called
‘‘directed tree with linked leaf model’’ is proposed for further
implementations in data structures and algorithms.

Oglaza et al. present in [42] Kapuer, an IBAC (Identity
Based Access Control) related permission management sys-
tem for Android devices that: i) learns users’ privacy prefer-
ences with a novel learning algorithm, ii) proposes abstract
authorization rules, and iii) provides advanced features to
manage these high-level rules.
Authors in [43] introduce a context-aware role-based

access control model that can provide dynamic granting and
revoking permissions while keeping the number of policies
as small as possible. In the model, Android applications
are assigned roles which contain a set of permissions and
contexts associated with said permissions. These permissions
are activated and deactivated for the containing role based on
the associated contexts. The approach is unique in that the
system associates contexts with permissions as opposed to
existing similar works that associate contexts with roles.
Related with ABAC, Baseri et al. [44] investigate pro-

viding Location-Based Services (LBSs) for attribute-based
access control in mobile clouds. More specifically,
the authors propose a multi-authority attribute-based access
control scheme to support coexistence of authorities, to pro-
vide anonymity of users and to protect their identity against
malicious authorities. The proposed scheme uses the dynamic
location of mobile users as contextual information about
those users, employs location range constraints as a policy in
attribute-based encryption and authorizes users with dynamic
locations which satisfy access policies.
Authors in [45] design an Android lightweight kernel layer

mandatory access control framework, analyze and discuss
the necessity of terminal kernel layer security protection and
propose and finalize verifiable the lightweight kernel layer
access control model. Similarly, authors in [46] present a
security system called collaborative policy-based security
scheme (CSS) that permits users to customize the access
permissions of Android applications during runtime. They
therefore present a collaboration-based security model for
discovering m-apps that misuse user/system permissions to
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violate the predefined security policies. The proposed CSS
model strengthens the MAC model of AOS to protect the
underlying computing environment from the execution of
malicious m-apps on the device.
More recently, Dutta et al. propose in [47] the creation

of the PALS system that builds upon existing work in
attribute based access control models, captures physical con-
text collected from sensed data (attributes), and performs
dynamic reasoning over these attributes and context driven
policies using Semantic Web technologies to execute access
control decisions. Based on reasoning about user context,
details collected by cloud service providers and device
type, this mechanism generates corresponding access control
decisions.

1) RISK-BASED ACCESS CONTROL

An interesting access control scheme is the so-called
risk-based access control model which estimates the security
risk value related to the access request in order to dynamically
determine the access decision. Authors in [48] perform a
review of risk-based access control works.
The risk-based access control model comprises some key

modules (see Figure 1). The risk estimation module is the
main one, which gets access requests from users, analyzes
them, collects the required information of risk factors, and
estimates the security risk value related to each access
request. Then the estimated risk value is checked against
access policies to make the access decision, i.e., whether to
grant or deny access.

FIGURE 1. Risk-based access control model (from [48]).

One example of this is [49], in which Choi et al offer
an approach and framework for context-sensitive risk-based
access control suitable for medical information systems. This
approach categorizes context information, estimating and
applying risk through context-based and treatment-based per-
mission profiling and specifications by expanding the eXten-
sible Access Control Markup Language (XACML) to apply
risk.
Additionally, Hintze et al. present in [50] CORMORANT,

an extensible framework for risk-aware multimodal authen-
tication on mobile devices. By continuously assessing the
risk of unauthorized access while evaluating the user’s iden-
tity using various biometrics, this framework facilitates both

convenient and more user-friendly security and can also be
configured to achieve a higher level of overall security.

Meanwhile, authors in [10] propose a risk-based access
control model for IoT technology that takes into account
real-time data information requests for IoT devices and gives
dynamic feedback. The proposed model uses IoT environ-
ment features to estimate the security risk associated with
each access request by using user context, resource sensitiv-
ity, action severity and risk history as inputs for a security risk
estimation algorithm that is responsible for access decision.
Then the proposed model uses smart contracts to provide
adaptive features in which the user behavior is monitored to
detect any abnormal actions from authorized users. A further
variant of that paper can be found in [51].

In [52], Tyche is presented, a secure development method-
ology that leverages the risk-asymmetry in physical device
operations to limit the risk that apps pose to smart home users,
without increasing the user’s decision overhead. Tyche intro-
duces the notion of risk-based permissions for IoT systems.
When using risk-based permissions, device operations are
grouped into units of similar risk, and users grant apps access
to devices at that risk-based granularity. Starting from a set of
permissions derived from the popular Samsung SmartThings
platform, they conduct a user study involving domain-experts
and Mechanical Turk users to compute a relative ranking of
risks associated with device operations.

III. ARANAC: APPLICATION RISK ASSESSMENT

BASED NETWORK ACCESS CONTROL

ARANAC is a novel approach to grant or restrict the access of
mobile devices to a network within a corporate BYOD envi-
ronment. Unlike other risk-based access control approaches,
risk estimation is performed in ARANAC by taking into
account the risk of the permissions of all the applications
running on a mobile device in comparison with other devices.
After the analysis of the overall risk of all the devices in
the environment, we are able to differentiate between anoma-
lous devices and ‘normal’ devices, thus ensuring that user’s
privacy is always preserved. In this way, ARANAC decides
whether a device can access the network infrastructure or not.

As stated, ARANAC uses permission data to deter-
mine access control to the network, specifically focused on
Android devices. The permission model adopted by Android
is a central part of the Android securitymodel that governs the
access of applications (apps in the context of mobile devices)
to device resources, system components, and sensitive user
data [9]. The granting of these permissions by the user is
essential to gain a limited access to specific device resources
and capabilities of the device, but the permissions also expose
the user/device to security and privacy threats. Thus, the anal-
ysis of the risks involved in permissions granted by the user
on all applications installed on a specific mobile can provide
useful information for access control.

There is a great wealth of studies which have analyzed
the Android security mechanism based on permissions and
other sets of features of the Android ecosystem that can
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compromise the security of the device or expose the user’s
privacy [53], [54].
Android groups the permissions into three protection levels

in increasing order of severity: normal, dangerous or signa-
ture. Normal permissions do not pose a risk to the user’s pri-
vacy or the device’s operation and are automatically granted.
Some of these permissions are related to network access,
Bluetooth, WiFi, or alarm settings. Dangerous permissions
are those that may pose a risk and should therefore be
explicitly granted by the user. At this level, such permissions
include access to the camera, contacts and location access,
microphone usage, sensors operation, SMS, and external
storage. Signature permissions are automatically granted by
the system if the requesting app is signed with the same
certificate as the application that declared the permission.

Such permission-basedmechanisms have been widely crit-
icized for several reasons. Firstly, in many cases, apps request
more permissions than are strictly necessary; in fact, the latest
Android version (API 29) includes 158 permissions.2 There-
fore, the requirements/consequences of accepting so many
permissions with the installation of any app coupled with,
in many cases, a lack of information about the risk level of
each permission, can severely confuse developers and end-
users. Consequently, the current permission system is not able
to help users to make the correct decision about the secu-
rity/privacy risk level that is associated with the installation of
a specific app [55]. Therefore, malicious third-party appsmay
pose a severe risk to the device’s security and may become a
source of user privacy leakage.

Fang et al. [9] explore some of the risks that can impact
security and user privacy in Android mobile devices, such as
the coarse granularity of permissions, incompetent permis-
sion administration, insufficient permission documentation,
overclaiming of permissions, permission escalation attacks,
and TOCTOU (Time of Check to Time of Use) attacks.

In the same direction, Alepis et al. [56] examine some
security flaws that can be caused by the recent modifications
to permission models on Android devices. In fact, a new
dynamic permission management was introduced in latest
releases of Android that allows the revocation or granting
of app permissions at runtime. Furthermore, these permis-
sions may be checked and revoked by users transparently
and at anytime. However, in order to do so, detailed infor-
mation must be provided on the risk level involved in each
permission.

To determine the risks, an analysis of the attack vectors
and existing attacks that can be produced on the Android
ecosystem is carried out in different studies [57], [58]. In the
analysis, malicious attacks as well as not-fully malicious
attacks (e.g., collecting sensitive user’ information) were
considered [59]. In this way, Sadeghi et al. present in [60]
a taxonomy which systematically analyzes some of the
most relevant security risk assessment approaches recently
proposed for Android devices.

2https://developer.android.com/reference/android/Manifest.permission

A. ARANAC ARCHITECTURE

ARANAC has a multilayer architecture as shown in Figure 2,
which is composed of three tiers: i) data collection, ii) device
analysis, and iii) access control. Firstly, at the data collection
tier, the aggregate permission information of all apps installed
on each mobile device is monitored and collected through a
monitoring tool installed on the final device.

FIGURE 2. ARANAC architecture.

At the device analysis tier, the permission information
collected over the set of mobile devices in the corporate
environment is analyzed in order to dynamically detect poten-
tial anomalies and conclude whether such anomalies should
lead to the access rejection of mobile devices in the net-
work. To that end, the analysis is carried out in two stages.
First, a risk estimation associated with each permission is
performed by an assessment module of the permission set
available in Android. After that, a risk analysis procedure is
completed by the application of the methodology MSNM in
order to detect threats due to the installed applications on a
given device.

At the access control tier, the results of this analysis are
subsequently addressed by the user recommendation and the
access control modules. On the one hand, the access con-
trol module applies the corresponding granting or restriction
of network accessibility according to the risk analysis per-
formed. On the other hand, the user recommendation stage
informs final users about potential anomalies and possible
solutions to be carried out in order to regain access to the
network.

In the next section, a description of the previous tiers and
modules is detailed.

B. APPLICATION MONITORING

Threat detection procedures rely on some kind of monitoring
process aimed at gathering specific operational information
of the target system. We have developed a specific moni-
toring tool named AMon3 (short for ‘Android Monitoring’).
AMon is a JAVA app oriented tomultidimensional device data
gathering in Android environments [61]. It collects disparate
sources of information over time, from network usage to pro-
tection options enabled on the device. AMon is developed for
Android Oreo, and it is compatible with Android Pie. Some
of its functionalities are either limited for older versions of
Android or are implemented to be compatible with previous

3Publicly available at https://github.com/nesg-ugr/AMon

VOLUME 9, 2021 101325



J. A. Gómez-Hernández et al.: ARANAC: Bring-Your-Own-Permissions Network Access Control Methodology

and newer versions. The current minimal supported version
is Android Marshmallow, but it could be downgraded at the
cost of some functionalities.

FIGURE 3. Collection modules of AMon.

Due to the different data sources gathered by AMon, its
global functionalities are distributed around four different
modules as shown in Figure 3:

• The communications module implements a local VPN
to track outgoing network traffic and obtain data and
statistics from it. This module is based on the NetGuard
project by Marcel Bokhorst [62]. NetGuard is a fire-
wall application able to log and store traffic, develop
traffic statistics, and prevent other applications from
connecting to the Internet. In AMon, we only retrieve
data from packet headers (to maintain the privacy of
communications) in addition to some statistics, the IP
address (Android 6.0+) and the MAC address.

• The applications module provides a list of installed
applications (packages) along with the corresponding
permissions, and a timestamp indicating when they are
collected. Permissions are an essential feature from a
security point of view, since they are a major source
of malware infections [63]. It is important to note that
the permission related information collected by AMon
concerns all the possible permissions a given app could
request (extracted from the manifest file of the app) and
not necessarily those granted by the user.

• The hardware resources module provides access to the
state of the device hardware. This information can be
split into three groups: (i) information related to the
device and obtained by the Build class of the Android
API, such as the brand, model, manufacturer, SDK,
number of cores, RAM size, and battery capacity; (ii)
information on the use of resources by the device, such
as CPU, RAM and battery consumption; and (iii) com-
munication related information, i.e., if Wi-Fi, Bluetooth,
Mobile Data, GPS, etc. are active.

• Finally, the protection mechanisms module provides
access to some security related checks, such as if the
device is rooted, if a mechanism (PIN, pattern, or pass-
word) to lock the device is active, and whether devel-
oper options or the software installation from unknown
sources are enabled or not. While the presence of one
of those situations is not really a security fault, they
represent potential risks.

As shown, AMon collects both static and dynamic infor-
mation over time. In this work, we focus on app permissions

to perform subsequent risk analysis. Each app/package has an
associated list of 158 permissions (in Android API level 29),
and each device can have hundreds, or even thousands,
of applications/packages installed. In addition, storagewill be
significantly increased by the fact that our application stores
a snapshot of the permissions each time a new app is installed
or existing app permissions are changed. Therefore, to reduce
the quantity of information handled, permissions are encoded
here in binary format: every permission is represented by one
bit, equal to a value of 1 if set or 0 if otherwise.

In summary, AMon collects apps and their permissions
as a tuple per device: < Idi, ti,Appi,Psi >, where Idi is
the identifier of mobile device, ti is the timestamp when the
permissions are captured, Appi = {app1, app2, . . . , appn}
is the set of applications hosted on the mobile device, and
Psi = {ps1, ps2, . . . , psn} is the set of permissions for each
inspected application. Each set psj includes a boolean list
of active permissions, that is, psj = {per1, per2, . . . , perm}

where a binary value 1 means that the permission is active
and a value 0 that the permission is not enabled.
Despite the long list of detailed permissions that can be

gathered through AMon, in order to respect users’ privacy,
we will only collect here an aggregate of permissions cor-
responding to the entire set of installed applications. This
provides a high level of privacy which is often a requirement
for BYOD environments.

C. PERMISSION RISK ASSESSMENT

The estimation of the risk associated to permissions allows us
to highlight those permissions that may involve greater threat.
That risk estimation will facilitate better risk analysis of the
applications installed on a mobile device.
Generally, there are three approaches to assign a risk score

to permissions: i) permission frequency ranks found in mal-
ware applications; ii) taxonomies based on inspections of the
permission set; and iii) hybrid strategies. The first approach
evaluates the most frequent permissions requested by mal-
ware applications and/or the usage of permission patterns
[59], [64]. Then, an analysis based on this risk ranking deter-
mines whether applications hold permissions susceptible to
be exploited by malware. In the second approach, the risk
estimation is assigned based on the inspection of permis-
sions classified in categories, taking into account a specific
feature such as protection-level or permission-group, among
others [65]. In this case, the risk rank is set independently of
known malware patterns and applications. Finally, the hybrid
approach defines new metrics based on a combination of
different risk ranks. For instance, in [66] a risk score for
permissions is defined with five sub-scores that take into
account the permission frequency between benign or mali-
cious applications, the monetary cost, the protection-level,
and the relation with private information.
In our proposed method, the risk estimation is based on

a re-evaluation of certain permissions belonging to normal
or dangerous classes as defined by Android. In that sense,
a normal Android permission is classified as dangerous if it
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is frequently found in malicious applications. Subsequently,
for evaluating the associated risk, we adopt the thread mod-
eling technique based on the well-known STRIDE approach
from Microsoft [67], where STRIDE is the abbreviation of
Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service and Elevation of Privilege. Although other
threat-detection models exist, as explained by Shevchenko
[68], STRIDE provides a design-centric approach which
allows for investigating the security properties of Android
platforms independently of the kind of security attack in
question.
Granting a permission can imply a potential risk to be

estimated in term of security or user privacy, since enabling
a permission provides the application with access to device
resources or the ability to invoke specific functionalities
through the Android API. Therefore, each permission can
pose a potential threat that can be classified into STRIDE
categories. To rank the risks for each permission, we use the
DREAD model [69] to evaluate the likelihood of an attack
to exploit the threats associated by a particular permission.
The DREAD model consists of the evaluation of potential
Damage, Reproducibility, Exploitability, Affected Users and
Discoverability that a risk could have associated with the
activation of a permission. This way, a risk value is calculated
through Eq. (1) as follows:

Risk = Damage + Reproducibility + Exploitability

+Affected Users + Discoverability (1)

Values from 1 (low) to 3 (high) are assigned to each
component in Eq. (1) with the overall sum providing a result
in the range 5 to 15. Analyzing the overall ratings, we can
assign a high risk for a rating in the range 12-15, medium
risk for values in the range 8-11, and low risk for values 5-7.
Fig. 4 shows how the DREAD value is estimated for each
permission.

FIGURE 4. Template for evaluating the risk associated to each permission
by the DREAD model.

To simplify the calculation of the DREAD value for the
corresponding 158 permissions in Android, we select the tax-
onomy of sensitive permissions proposed by Olukoya et al.
in [53]. In this taxonomy, the permission set is grouped

into four levels of sensitive permissions guided by three risk
indicators: protection-level of Android, permission-group of
Android, and demoted permission (permission with a protec-
tion level that can be downgraded). Once the sensitive level
is set, it is easier to apply the DREAD value by considering
the template shown in Fig. 4. The risk estimation for some
permissions is shown in Fig. 5.

FIGURE 5. Risk estimation of some Android permissions based on the
DREAD model.

The application of permission risk assessment in
ARANAC enhances the risk rank which helps the detection
of risky devices in the subsequent device risk analysis.

D. DEVICE RISK ANALYSIS

The information collected by the monitoring module and
evaluated through the risk model is passed onto a subse-
quent analysis module, which employs an anomaly detection
approach based on machine learning. This module applies
access control so that anomalous, suspicious devices are not
granted access, while ’normal’ devices are. This approach
results in a data-driven and dynamic risk-based access con-
trol, where the acceptable level of risk to grant network access
depends on the level of risk of the devices already in the
network. It is dynamic since it is based on the accumulate
of permissions in a device, which can change over time.
Therefore, changes due to the installation of new apps can
result in the revocation of both network access as well as
operation in the corporate environment.

Our choice for the machine learning anomaly detection
technique is the Multivariate Statistical Network Monitor-
ing (MSNM) approach [11], based on Principal Component
Analysis (PCA), due to its capability to provide diagnostic
information about anomalies. Therefore, we can obtain infor-
mation about why a given device was not granted access, and
the device owner could use it to restore an acceptable security
level in the device, e.g., by uninstalling specific apps so that
access can be restored.

PCA is applied to data sets whereM variables/features are
measured on N observations/individuals. This data can be
arranged in amatrixX ofN rows andM columns. For the spe-
cific implementation of this paper, observations correspond to
individual devices and features correspond to aggregates of a

VOLUME 9, 2021 101327



J. A. Gómez-Hernández et al.: ARANAC: Bring-Your-Own-Permissions Network Access Control Methodology

specific permission, computed as the total number of apps in
the device with that permission granted. Thus, each row of
X contains a vector of aggregates of the M permissions in a
specific mobile device.
In PCA, the original features are linearly transformed into

the Principal Components (PCs), eigenvectors ofXX := XT ·

X, typically for mean-centered X. In our case, we auto-scale
(normalize to zero mean and unit variance)X, to homogenize
the scale of common and uncommon permissions. Further-
more, we optionally multiply each column of the auto-scaled
X by the corresponding risk level so that the PCA model is
focused on permissions of high risk.
The PCA model is a matrix factorization that follows the

expression:

X = TA · PtA + EA (2)

where A is the number of PCs, TA is the N × A score matrix,
PA is theM ×A loading matrix and EA is the N ×M residual
matrix.
For the detection of anomalies with MSNM, two statistics

are monitored: the Q-statistic (Q-st), which compresses the
residuals, and the D-statistic (D-st) or Hotelling’s T2 statis-
tic, which is computed from the scores. For an observa-
tion, the D-st and Q-st can be obtained from the following
equations:

Dn = tn · (6T )
−1 · ttn (3)

Qn = en · etn (4)

where6T represents the covariancematrix of the scores in the
calibration data. The D-statistic and Q-statistic can be inter-
preted as the anomalous level of an observation in the model
and residual sub-spaces of PCA, respectively. The closer to
0 these statistics are, the more normal the corresponding
observation.
With the statistics computed from the calibration data,

upper control limits (UCL), which are basically detection
thresholds to establish anomalous objects, can be marked in
the charts with a certain confidence level [11]. When the
system is calibrated and control limits are calculated, it can
be applied to new incoming data (new devices). An anomaly
is identified when either the D-st or the Q-st exceed the
corresponding UCL.
Upon detection of an anomaly, the affected device can be

granted access or rejected (access controlmodule).Moreover,
a subsequent diagnostic step is performed to identify the fea-
tures associated to the anomaly through the tool oMEDA [70].
The output of oMEDA is a 1×M vector where each element
contains the contribution of the corresponding feature to the
detected anomaly. Those contributions with larger magnitude
are considered relevant. In the present proposal, the diagno-
sis will point to which permissions make a specific device
too anomalous to be granted access. With this information,
the device owner can be properly notified to identify the apps
that are using such permissions and uninstall them if desired
(user recommendation module).

A specific contribution of this paper is the derivation of
time series control charts for the maximum values of the D-st
and the Q-st in the devices of the network. The time series
plot is useful to provide security analysts with insightful
visual analytics on the security state of the network devices
over time. To obtain these control charts, we simply compute
the maximum D-st/Q-st values from the set of devices with
access or requesting to access the network in a given sampling
time and normalize it by the corresponding UCL. The result
consists of a couple of time charts for the normalized D-st and
the Q-st.

IV. EXPERIMENTATION

A. SETUP

We designed and deployed an experimental setup in the pri-
vate network of the University of Granada (UGR), in the
south of Spain. This is an example of a BYOD network,
in which students and academic staff use their personal
mobile devices to connect to the Internet and to internal and
external network services.

Fig. 6 shows the specific deployment of ARANAC at the
UGR network. The system architecture is composed of three
main nodes: i) mobile devices’ service, ii) central server for
device risk analysis, and iii) access control module, using a
client-server paradigm. Algorithm 1 shows the general access
control procedure performed by ARANAC corresponding to
the architectural description given in Figures 2 and 6.

FIGURE 6. Deployment of ARANAC in a BYOD environment in the
University of Granada network.

The monitoring system service based on AMon is installed
on each mobile device to capture an aggregate of 158 app per-
missions corresponding to all the apps installed and to send to
a central server, which stores the information into a database
for subsequent device risk analysis. This information is
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Algorithm 1 General ARANAC Algorithm

Data: D-st: D-statistics of normality model; Q-st:
Q-statistics of normality model; (R0..Rn): Risk
associated with every permission;

Result: Access granted or not
begin

if (Device i tries to connect to network) then
Dev-i(p0,. . . ,pn)=Sum the permissions of all
apps;
Weight every permission with its risk estimation;
Calculate D-i and Q-i for Dev-i;
if (D-i >= D-st || Q-i >= Q-st) then

// Device is anomalous

Notify ‘‘Denied to Dev-i’’ to the Access
Control Service;
Calculate anomalous permissions with
oMeda;
Notify the user of the permissions to be
corrected;
Notify to the Access Control Service ‘‘No
access granted’’;

else

// Device is “normal"

Notify ‘‘Access granted to Dev-i’’ to the
Access Control Service;
Notify "Access granted" to the Access
Control Service;

periodically sent to the server, with the period of time elapsed
between successive samples being configurable in the setup.
The data associated to the user devices are captured over

time as shown in Fig. 7, with a total of more than 80 mobile
devices monitored over a period of 337 days. The global
data are publicly available at https://github.com/nesg-ugr/
mdsm-dataset.

FIGURE 7. Evolution of the number of mobile devices monitored over
time.

A relevant aspect regarding data collection is the need
to comply with the current regulations on data protection
and privacy through the General Data Protection Regulation
(GDPR). Although AMon collects anonymized information
of the monitored mobile devices, a specific campaign was
conducted to find volunteers to participate in the experiment.
Therefore, a special document to provide consent from users
was approved to cover the different goals of the experiment
as well as to guarantee the legality of the performed activities.

After analysing device risks from the data collected by
means of the MSNM methodology, the risk information will
be sent to the user recommendation service, installed in our
case on each mobile device, in order to inform about the
detected anomalies and the corresponding recommendations
personalized to each user. Likewise, information about access
granting or revoking is sent to the access control service
installed on the Internet gateway.

B. RESULTS

In the following subsections, we analyze the access-related
data obtained in two different ways. First, we analyze the
data without including the risks associated to the permissions.
For each single day t (for t = 1 to t = 337), we apply
standard pre-processing to the feature matrix Xt , containing
Nt devices (see Figure 7) times 158 permissions. In particular,
we auto-scale the data as discussed before. On a second
approach, each column in the auto-scaled matrix Xt is mul-
tiplied by the risk factor associated to the each permission
following Eq. (1). We apply MSNM over these two variants
and discuss observed differences.

1) ANALYSIS WITHOUT CONSIDERING

PERMISSION RISK MODEL

Figures 8 and 9 show the time series control charts for
the maximum values of the D-st and the Q-st, respectively,
normalized by their corresponding UCLs at 99% confidence
level [11]. These plots are useful to spot days where at least
one anomalous device attempted to enter the network during
the entire capture.

Before day 303 (12-Jan-2020), both themaximumD-st and
the maximum Q-st remain below the control limits, illustrat-
ing that no device exceeded the later. Under this situation,
all the devices have been granted access to the network.
Both charts show an abrupt change at day 303 (12-Jan-2020),
where the control limits are exceeded. After spotting this
situation in the time series plot, we can proceed by inspecting
the MSNM model at day 303.

Fig. 10 shows the anomaly detection results on day
303 where each dot in the scatter plot represents a device,
with a unique anonymized index.4 Observations above the
horizontal UCL (for the Q-st) and/or to the right of the vertical
UCL (for the D-st) are identified as anomalous and denied
access. This is the case of devices 312, 394, and to a lesser

4It is important tomention that the device identifier values are independent
of the number of devices considered.
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FIGURE 8. Time series control chart for the maximum value of D-st.

FIGURE 9. Time series control chart for the maximum value of Q-st.

FIGURE 10. MSNM plot (with the MEDA Toolbox): scatter plot with the
D-statistic vs the Q-statistic and control limits at 95% of confidence.

extent, 161. In this case, the three devices requested access
for the first time on day 303. However, at each time t , MSNM
re-evaluates the risk of all devices represented inXt , and may
dynamically revoke access to a previously accepted device or
grant access to a previously denied device, responding to a
change in its aggregate of permissions.
The ability to diagnose a revocation in MSNM is a useful

feature to allow users to improve the security level of devices

TABLE 1. Anomalous features and devices without using the risk
assessment model.

with denied access. This is illustrated with devices 312 and
394 in X303 using the oMEDA diagnosis technique [71],
which allows for identifying the features related to an anoma-
lous observation detected by MSNM. The results obtained
are shown in Table 1. oMEDA detects that device 312 has
46 anomalous permissions while device 394 has 22, taking as
reference the rest of normal devices in X303. In ARANAC,
a device with denied access receives the list of anomalous
permissions. This maintains user privacy to a certain level,
since the access control system does not have information
about the specific apps causing the situation. With this list,
the software in the device can identify apps that reduce the
security level of the device and ask the user to uninstall them
to (re)gain access to the network.

To assess how accurate MSNM and oMEDA were in
the detection and diagnosis on day 303, we checked the
accumulated permissions of the devices inX303 for one of the
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features highlighted in Table 1: ANSWER_PHONE_CALLS.
Authors in [72] show the dangerous nature of this permission.
The result is shown in Figure 11, where we can see that the
number of apps with the mentioned permission in the anoma-
lous devices is more than ten times the expected amount for
the rest of the devices. This shows that the anomaly detection
and diagnosis is performing correctly.

FIGURE 11. Number of apps with permission ANSWER_PHONE_CALLS in
the set of devices.

2) ANALYSIS CONSIDERING PERMISSION RISK MODEL

We repeated the previous analysis but now multiplied the
column of each matrix Xt by its corresponding risk factor
proposed in Section III-C. We obtained very similar results
in terms of detection: no anomalies was found until day
303 and on that day, devices 312 and 394 showed up as
clearly anomalous. However, the diagnostic results to differ
if considering or not the associated risk. This is illustrated for
device 312 in Figures 12 and 13.

When we did not consider the risk model, the diagnosis
of device 312 in X303 reported 46 anomalous permissions.
Figure 12 shows the security level of these permissions
according to the risk model: most permissions are of value 8.
If we use the risk factor of each permission in the model,
the diagnosis only reports 13 anomalous permissions, and
all of them with a risk level above 11. Clearly, the use of
risk information in MSNM biases diagnostic results towards
high-risk permissions. In Table 2, the diagnostic results for
both anomalous devices 312 and 394 using the risk model are
reported. We can see that the permissions reported for device
394 have also been reduced in number when considering the
risk model.
Based on the above, the ARANACversion that includes the

risk model provides a more selective detection of potentially
dangerous permissions according to the risk model. That is to
say, this version systematically highlights permissions of high
risk, while the other provides a more disparate set of risks
and a longer list of permissions. Additionally, from the point
of view of the final user, the results provided by the second
access approach are more suitable to regain network access.

FIGURE 12. Risk levels of anomalous permissions on device 312, day 303,
without ARANAC Risk Assessment Model.

FIGURE 13. Risk levels of anomalous permissions on device 312, day 303,
with ARANAC Risk Assessment Model.

TABLE 2. Anomalous features and devices considering risk assessment
model.

V. CONCLUSION AND FUTURE WORK

This work introduces ARANAC, a novel access control
methodology suitable for use in corporate networks. It is
based on the risk estimation for the app permissions installed
on a mobile device and it is designed so that the associated
risk is compared with the rest of the devices in the envi-
ronment in order to grant or deny individual access. This
is expected to improve the overall security of the corporate
environment.

ARANAC is composed of three main modules developed
by the authors: a monitoring tool, a risk estimationmodel, and
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a ML-based detection methodology to determine suspicious
devices. Although the monitoring tool, AMon, is able to col-
lect a variety of information, we focus here on device app per-
missions. Moreover, such information is privacy-respectful
as it is expressed as a set of 1’s and 0’s (denoting the set
of 158 permissions considered in current Android platforms),
where no information about the specific apps installed in each
case is released. The risk estimation is based on STRIDE
and DREAD models to assign risk values to each of the
permissions. Finally, the anomaly-based detection module,
named MSNM, determines which devices present suspicious
permissions and, from that, accepts or denies access to the
corporate network. In addition, MSNM has diagnostic capa-
bilities to extract which specific permissions are contributing
to the suspiciousness of the device, which would allow the
affected device to solve the problem (e.g., by uninstalling
certain apps) and try to regain access.
We have evaluated ARANAC in a real university envi-

ronment, with the results obtained showing a successful
performance by the system as a security related mechanism
to control access to corporate environments. In that sense,
the use of the risk assessment method significantly reduces
the number of permissions detected as dangerous and high-
lights those with highest risk. This will facilitate the work
of users to deactivate the permissions that result in access
rejection and users could then try connecting to the network
again.
As a future work, we consider it of interest to extend the

risk model to estimate risk values associated to the rest of fea-
tures collected by the monitoring tool AMon (resource usage,
communications, etc.). This will provide a more complete
view of the overall threat involved in granting certain mobile
devices access to corporate networks.
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