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ARBITRAGE PRICING OF RUSSIAN OPTIONS AND
PERPETUAL LOOKBACK OPTIONS

By J. DARRELL DUFFIE AND J. MICHAEL HARRISON

Stanford University

Let X = {X,, t = 0} be the price process for a stock, with X, =x > 0.
Given a constant s > x, let S, = max{s,sup,_., ., X,}. Following the
terminology of Shepp and Shiryaev, we consider a “Russian option,” which
pays S, dollars to its owner at whatever stopping time 7 & [0,%) the
owner may select. As in the option pricing theory of Black and Scholes, we
assume a frictionless market model in which the stock price process X is a
geometric Brownian motion and investors can either borrow or lend at a
known riskless interest rate r > 0. The stock pays dividends continuously
at the rate 6X,, where 6 > 0.

Building on the optimal stopping analysis of Shepp and Shiryaev, we
use arbitrage arguments to derive a rational economic value for the
Russian option. That value is finite when the dividend payout rate & is
strictly positive, but is infinite when 8 = 0. Finally, the analysis is ex-
tended to perpetual lookback options.

The problems discussed here are rather exotic, involving infinite hori-
zons, discretionary times of exercise and path-dependent payouts. They
are also perfectly concrete, which allows an explicit, constructive treat-
ment. Thus, although no new theory is developed, the paper may serve as
a useful tutorial on option pricing concepts.

1. Introduction. Let X ={X,, ¢ > 0} be a one-dimensional diffusion
process satisfying the stochastic differential equation
(1.1) dX = pXdt + o XdW,
where W = {W,, t > 0} is a standard Brownian motion (or Wiener process).
The state space of X is (0,) and its initial state is X, = x, so X can be
represented in the form
(1.2) X, =xexp{oW, + (n - 30?)t}, ¢=0.
Now consider a market in which one can invest in a common stock or in a
riskless bank account with instantaneous (continuously compounding) inter-
est rate r > 0. The stock price dynamics are modeled by the geometric
Brownian motion X. Let us further assume that the stock pays dividends
continuously at the rate 86X, where 8 > 0 is a given constant. Thus, if an
investor owns a, shares of stock and has b, dollars in the bank at time ¢, the
market value of the investor’s portfolio at that time is Z, = a, X, + b,, and his
wealth dynamics are given by
(1.3) dZ =adX + brdt + adXdt = [a(p + 8)X.+ br]| dt + acXdW.
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Finally, let us assume that investors can buy and sell (or sell short) unlimited
amounts of stock, and can borrow or lend unlimited amounts at the interest
rate r, without incurring brokerage fees or other transaction costs. A positive
value for b, indicates that the investor is lending at the riskless interest rate,
whereas a negative value indicates riskless borrowing. Similarly, a positive
value for a, indicates a long position in stock (i.e., the investor owns stock),
whereas a negative value indicates a short position (i.e., the investor has sold
stock short). If the stock pays dividends, an investor who sells stock short
must pay dividends so as to match the income generated by “real” shares.

What we have described in the previous paragraph is the frictionless
market model made famous by Merton (1969, 1971, 1973) and Black and
Scholes (1973), modified in two rather minor ways. First, we have allowed
for the possibility that the stock pays dividends, restricting attention to
proportional-rate dividend policies defined by a single constant &6 > 0. As
Merton (1973) originally pointed out, this added feature complicates just
slightly the arbitrage valuation of options and other contingent financial
claims. (By a “contingent financial claim,” we mean a financial asset whose
value at any given time is determined by past and present values of the stock
price.) The second nonstandard feature in our model formulation is its
infinite time horizon. The infinite horizon is essential for our purposes, as will
become clear shortly.

Our objective is to determine through arbitrage considerations a rational
economic value for the “Russian option” analyzed by Shepp and Shiryaev
(1993). To define the Russian option, let

(1.4) S, = max(s, sup Xu), t>0,

O<ucx<t
where s > x is a constant. The Russian option is a piece of paper that entitles
its owner to choose a stopping time 7 € [0, ©) and be paid S, at that time. It is
crucial that no bound is imposed on the stopping time 7.

ProprosITION 1. Suppose that 6> 0, and let V(x,s|lu, o,r) be defined
by formula (2.4) of Shepp and Shiryaev (1993) (and repeated below for
convenience). Then the rational economic value of the Russian option is
V(x,slr — 8, o, r). That is, if the Russian option is offered for sale at any
other price, then arbitrage profits can be made by means of the trading
strategy described in Section 3.

ProrosiTION 2. If 6 = 0, then the Russian option has infinite rational
value. That is, if 8 = O and the Russian option is offered for sale at any finite
price, then arbitrage profits can be made by means of the trading strategy
described in Section 4.

In both cases (dividends or no dividends) the arbitrage value is indepen-
dent of the average rate of return u for the stock, a result familiar to
students of option theory but surprising to the novice.



ARBITRAGE PRICING OF RUSSIAN OPTIONS 643

Given the results of Shepp and Shiryaev (1993), there is little in our paper
that can really be called new, but the paper may serve as a useful tutorial on
option pricing concepts. Proposition 1 almost follows from a general theorem
of Karatzas (1988), but the latter result involves a technical restriction that is
not obviously satisfied in our context. Perhaps more to the point, we deal with
a concrete example in an explicit and constructive fashion, showing exactly
how arbitrage strategies are executed, whereas Karatzas’ more general treat-
ment involves relatively abstract arguments. Also, given Proposition 1 and
the Shepp—Shiryaev analysis, Proposition 2 is more or less obvious, although
we are not aware of prior work that deals in a precise way with infinite
valuations and the associated notion of arbitrage, so there is at least formal
novelty in our treatment. The tutorial value of the paper, as a stress test of
basic option pricing concepts, is enhanced by the resulting combination of
features: the possibility of infinite valuation, the infinite time horizon, the
discretionary (American) exercise time and the path dependency of the
payoft.

In the next section we summarize briefly the essential mathematical
results of Shepp and Shiryaev (1993). Propositions 1 and 2 are then proven in
Sections 3 and 4, respectively. In each case we give explicit arbitrage strate-
gies to back up our pricing results. The final section extends the pricing
analysis to perpetual “lookback” options, those giving the right to sell at the
high, or buy at the low.

2. Preliminaries. Shepp and Shiryaev (1993) solve the following mathe-
matical problem. Given an interest rate r > 0, parameters x and o'> 0
describing stock price dynamics, and positive initial values x and s for the
processes X and S, respectively, find a stopping time 7 > 0 to maximize

(21) E(x,s)(e_rTS‘r)'

For parameter combinations such that u < r, Shepp and Shiryaev define a
stopping constant
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Then they define
V(x,s) =V(x,slp,o,7)
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They show that V(x,s) is the supremum of (2.1) over all stopping times 7,
and that this supremum is achieved by the optimal stopping time

(2.2) ™ =inf{t > 0: X, < S,/a}.
Consider again the situation described in Section 1, in which the stock

with price process X pays dividends continuously at rate 8X. Restricting
attention initially to the case § > 0, let us define

(2.3) B(o,8,r)y=a(r—-8,0,r)
and
(2.4) F(x,slo,8,r) =V(x,slr —8,0,r).

From (2.3), (2.4) and the foregoing explicit formulas for « and V, one has the
following properties (all of them are either noted in Section 2 of the
Shepp-Shiryaev paper or else are easy to verify):

FisC'on @ = {(x,8):0 <x <s < x}

(2.5)
andis C? on @, = {(x,s): s/B <x < s};
(2.6) F(x,s)=s on9;
(2.7 F(x,s) =s for0<x<s/B;
(2.8) (r—8)xF(x,s) + 30%x*F,,(x,s) = rF(x,s) for (z,s) €9,;
(2.9) F,(s,s) =0 fors > 0;
(2.10) forall (x,s) €2, F(x,slo,8,r)te as d|0;
(2.11) B(o,8,r)>1 and B(o,8,r)te asd|lO0;
(2.12) F(x,8) >0 on9.

For the case of positive dividends (8 > 0), we will show in Section 3 that if
the Russian option is sold in the market for any price other than F(x, s), then
arbitrage profits can be made. That is, the optimal stopping analysis of Shepp
and Shiryaev gives us the rational economic value of the option if we first
change the drift parameter for the stock price process from u to r — 8. This
valuation procedure is one that might be guessed from existing-but-not-
» precisely-applicable general théory; compare with Merton (1973), Harrison
and Kreps (1979) and Karatzas (1988). In Section 3 we prove its validity by
explicit construction, making full use of the penetrating analysis by Shepp
and Shiryaev.
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Given the valuation formula F(x, s) for the case of positive dividends, one
naturally anticipates from (2.10) that any finite price for the Russian option
will create arbitrage opportunities when & = 0. In Section 4 we prove rigor-
ously that this is the case, again relying heavily on the Shepp-Shiryaev
analysis.

3. Proof of the valuation formula with positive dividends. To prove
Proposition 1 we must construct an arbitrage if the price of the option is
either higher than or lower than F(x,s). In each of these two cases, our
analysis involves the following “replicating strategy.” Let

(3.1) a,=F.(X,,8,), t>0,
and
(3.2) b,=F(X,,8,) —a,X,, t>0.

Consider the trading strategy that holds a, shares of stock at time ¢ and
maintains a bank account of b, at time ¢. The market value of this stock—bank
portfolio at time ¢ is

(3.3) Z,=a, X, +b,=F(X,8S,), t>0.
In particular, one must invest Z, = F(x,s) > 0 in order to establish the
initial position (a,, b,).

The following proposition shows that trading strategy (a,b) is “self-
financing,” at least up until the stopping time:

(34) r=inf{¢ > 0: X, < S,/B}.
LEMMA 1. Ifx > s/B (thatis, 7 > 0), then for each stopping time T' € (0, 7),

(3.5) Zy - Zo = [ (a,dX, + 8a,X, dt + rb, dt).
0

REMARK. The first term on the right represents capital gains realized
over the time interval [0, T'] on the investor’s stock holdings; compare with
Harrison and Pliska (1981). The second term represents dividend income
earned over that interval and the third term represents interest income from
the investor’s bank account. Thus (3.5) says that all changes in the market
value of the investor’s portfolio are due to gains and losses on investments; no
new cash is infused after time zero, nor is cash withdrawn after time zero,
and hence the trading strategy (a, b) is said to be self-financing over the time
interval (0, 7).

ProoF. Observe that S is a continuous process of bounded variation (its
sample paths are increasing). By (2.5), we can apply Itd’s formula for T < 7,
giving us )

(3.6) dZ=F,(X,S)dX+F(X,S)dS + 3F,.(X, S)(dX)Z;
the second-order terms involving dSdX and (dS)? are both zero. Also, the
sample path of S increases only at times ¢ when X, = S,, so the second term
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on the right side of (3.6) can be rewritten as F,(S,S)dS, and then (2.9)
implies that this term is zero. Next, from (1.1) we have (dX)? = ¢2X2 dt, so
(3.6) reduces to

(8.7) dZ = F(X,S) dX + 102X ?F, (X, S) dt.

We now substitute (2.8), (3.1) and (3.2) into (3.7) to obtain

dZ = F.(X,S)dX + [rF(X,S) — (r — 8) XF,(X,S)] dt
=adX + aXbdt + rbdt.

Integrating both sides of (3.8) over [0,T] gives (3.5), so the lemma is
proved. O

(3.8)

LEMMA 2. At time 7 the market value of the stock—bank portfolio (a, b) is
Z =8,

ProoF. This is immediate from (3.3), (3.4) and (2.7). O

Moving now to the proof of Proposition 1, let us first dispense with the
trivial case in which x < s/f and moreover the Russian option is offered for
sale at a price p < F(x, s). When x < s/8 we have F(x, s) = s by (2.7), so an
investor can simply buy the option, exercise it immediately to earn s, making
an instantaneous profit of s —p > 0 with no risk whatever. This is the
simplest example of an arbitrage.

Next consider the case in which x > s/, implying 7> 0 by (3.4), and
moreover the Russian option is offered for sale at some price p < F(x, s) at
time zero. Consider a trading strategy which:

buys a Russian option for p dollars at ¢ = 0, holds it over
(3.9)  the interval (0, 7) and exercises it at time 7, thus earning
S, at time 7

sets up and maintains the stock—bank portfolio (—a, —b)
(3.10) over the interval [0, 7), producing stock—bank holdings at
time 7 with market value —Z_= —S_; and

uses time 7 earnings from exercise of the Russian option to
(3.11) redeem stock—bank obligations at that time, and exits the
market.

This trading strategy generates Z, = F(x, s) dollars of cash at time zero
through short sales, and only p of those dollars are needed to buy the
Russian option, so the investor pockets a “bonus” of F(x,s) —p dollars
at ¢t = 0. Thereafter, the strategy described by (3.9) through (3.11) is self-
financing, so the bonus earned at time zero is not accompanied by any risk of
subsequent loss. In other words, this trading strategy gives the investor an
arbitrage profit of F(x, s) — p dollars.

Finally, suppose that the Russian option is offered for sale at some price
p > F(x, s) at time zero. The idea of the arbitrage is to sell short the option
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and to dominate the exercise payment required by the buyer of the option
with the value of the stock—-bank strategy (a, b) previously described. Be-
cause the owner will not necessarily exercise at the “rational” time 7, the
strategy (a, b) need not be self-financing, but the following extension of
Lemma 1 shows that any cash flows generated by it are to the advantage of
the arbitrageur. [In a slightly different setting, Karatzas (1988) shows that
this can be done by exploiting the definition of the “Snell envelope.” He does
not go on to make the corresponding arbitrage argument.]

LEMMA 3. For any stopping time T € [0, ) we have

(312) Zp—Z, = fT(a,, dX, + 8a,X, dt + rb, dt) — fTrStl(Xt<St/ﬁ) dt.
0 0

REMARK. Again one interprets the first term on the right as total invest-
ment earnings over the interval (0,T). Thus (3.12) says that an investor
maintaining the stock-bank portfolio (a, ) can continuously withdraw cash
at rate rSdt when X < S/8, but need not ever infuse new cash.

PrROOF. Recall that Z, = F(X,, S,) by (3.3). If F were a C? function, we
would proceed as follows based on the standard version of It6’s formula. (In
fact, F is not C2, but we address that issue later.) If X, > S,/8, formula (3.8)
for dZ, is obtained exactly as before. If X, < S,/B, on the other hand, then
Z,=F(X,,8,) =8, by (2.7). Moreover, 8> 1 by (2.11), so S remains con-
stant when X, < S,/B, implying that dZ, = dS, = 0. Integrating dZ from 0
to T gives

(313)  Zy—Z,= [ (a,dX, + 8a,X, dt + rb,dt)1x,. 5,
0

From (2.7), (3.1) and (3.2) we have a, =0 and b, = F(X,,S,) = S, when
X, < 8,/8, so (3.13) is equivalent to (3.12).

In fact, F is not C2. Rather, as implied by (2.5) and (2.7), F is C! and is C2
everywhere in & except on the ray {(x,s) €9: x = s/8)}. Because 8 > 1, we
can use the fact that S, remains constant while (X,, S,) is in an open set
containing this ray, say 2, = {(x,s) €2: 0 <x <s/B,}, where 1 < B, < 8.
Because F is C? off 9,, this effectively reduces the problem to calculating,
for each fixed s, an increment in Z of the form F(X_,s) — F(X,, s), where
X, €92, and 7=infl¢: X, =s/B,}. Because the interval (0,s/B;) contains
only a single point at which F(-, s) is not C?, we can apply Itd’s rule for C*
functions, that are C? except at isolated points, of a one-dimensional continu-
+ ous semimartingale. For example, the formula given in the statement of
Theorem 1.5 of Revuz and Yor [(1991), page 208] is sufficiently general. This
application of It6’s formula gives exactly the same result asserted previously
for the C? case, completing the proof of the lemma. O
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With this preliminary, we claim that arbitrage profits can be made by:

selling short one Russian option at time zero and paying
3.14) the buyer S, at whatever stopping time T he may choose
T
to exercise;

setting up and maintaining the stock—bank portfolio (a, b)
over the time interval [0, T"); and

using the market value Z, of the stock~bank portfolio to
meet the required payment S; on exercise of the option.

(3.15)

(3.16)

To prove the arbitrage, three facts must be noted. First, because p > Z, =
F(x, s) by hypothesis, short sale of the option generates more than enough
cash to establish the initial stock—bank position; the investor can pocket the
difference p — F(x, s) at time zero. Second, because Z,; = F(X,,S;) > Sy by
(2.6), liquidation of the stock—bank portfolio generates at least enough cash
to meet the required payment S; at the time of exercise. Finally, by Lemma
3, the arbitrageur need never infuse new cash during the interval (0,7);
he/she will even be able to garner additional arbitrage profits if the buyer of
the option fails to exercise at time 7.

4. Infinite value in the case of no dividends. Moving now to the
proof of Proposition 2, we consider the case in which the stock pays no
dividends (8 = 0). Suppose that a Russian option is offered for sale at any
price p < «, By (2.10) we can choose a fictional dividend rate & > 0 small
enough that

(4.1) F(x,s) =V(x,slr—8,0,r) >p.

Fixing such a 6> 0, set B = a(r — §,0,r) and define 7= inf{t > 0: X, <
S,/B} as in (3.3). Now consider the stock-bank trading strategy (a, b) defined
over [0, 7) by (3.1) and (3.2). As before, Z, = a, X, + b, = F(X,, S,) represents
the market value at time ¢ of an investor’s portfolio if strategy (a, b) is
followed. As we will see shortly, however, this strategy is not self-financing.
Arguing exactly as in Section 3, one finds that (3.5) remains valid, and we
restate that relationship in the convenient form

(42)  Zp-Zy= ['(a,dX, + rb,dt) + [a,6X,dt, T=<r.
0 0

The first term on the right side of (4.2) represents cumulative investment
gains or losses. Property (2.12) implies that a,8X, > 0, so the second term is
increasing and represents a cumulative infusion of new cash that must be
added continuously to maintain the stock—bank portfolio (a, b). Now consider
a trading strategy which:

(4.3)  buys a Russian option at price p at ¢ = 0;

establishes the stock-bank portfolio (—a,, —b,) at ¢t =0,

(44) this generating cash in the amount Z; = F(x, s) > p;
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maintains the stock-bank portfolio (—a, —b) over the
(4.5)  interval (0, 7), which continuously generates cash at rate
aX$§; and

exercises the Russian option at time 7, which pays S, at
(4.6)  that time, allowing the investor to redeem his stock—bank
obligation of Z_= F(S,, X.) = S, dollars.
Under this strategy the investor pockets F(x,s) —p > 0 at ¢t = 0 and has
continuous earnings at rate aX8 up to time 7, with no risk of loss. This is an
arbitrage profit, so Proposition 2 is proved.

If p is very large, then the fictional interest rate § must be very small to
satisfy (4.1), and it follows from (2.11) that B will be large. This means that 7
is large with high probability, so an investor will need a lot of time to execute
the arbitrage strategy outlined in this section. For example, for sufficiently
large values of p, the probability of completing the strategy in one human
lifetime will be negligible. Of course, the arbitrage strategy itself can be
resold from generation to generation.

It is worth remarking that the rational economic value of the option is also
infinite if dividends are paid at any nonpositive rate, whether or not of the
form 6X, determined by a constant 8. The arguments are essentially the
same as before. This case would include random storage costs as well as
random depreciation rates.

5. Extensions to lookback options. We now extend to the pricing of
lookback options, those giving the opportunity to sell the stock at the highest
price it has reached (the “sell-at-the-max” put) or to buy the stock at the
lowest price it has reached (the “buy-at-the-min” call). The European versions
of these lookback options, which are traded in over-the-counter markets, were
given arbitrage-free pricing formulas by Goldman, Sosin and Gatto (1979).
We will give explicit formulas for the prices of perpetual American versions of
these options in the case 8 = 0. For § > 0, readers may use our methods to
deduce convenient bounds, but not explicit prices.

First, we take the perpetual sell-at-the-max put, with 8 = 0. This is a
security that offers the right, but not the obligation, to sell the security at a
stopping time 7 chosen by its owner, for the maximum price that the stock
has reached to date. Because that exercise price is always at least as great as
the current market value, the option pays S, — X, at the exercise date
(stopping time) 7 chosen by its owner. The rational price of the option is
infinite. This follows from much the same reasoning used in Section 4.
Suppose, for example, the put were offered for sale at some finite price p. Let
6> 0 be chosen small enough, as a fictitious dividend coefficient, that
F(x, s|lr — 8, 0,r) — x > p. The strategy of buying the call for p, buying the

_stock for x and selling the replicating strategy described in Section 4,
generates an arbitrage. The initial profit is F(x,s|lr — §,0,r) —x —p > 0.
The cash flows on the Russian replicating strategy are more than covered by
exercise of the Russian option at the exercise time inf{¢: X, = S,/B(o, 8, r)},
as described in Section 4. Thus exercising the lookback at the same stopping
time yields an arbitrage. We summarize as follows.
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PROPOSITION 3. If 8 = 0, then the sell-at-the-max put option has infinite
rational value. That is, if this option is offered for sale at any finite price, then
arbitrage profits can be made.

Let us consider now a sell-at-the-max put option with finite maturity T
(that is, an option whose owner may exercise at any stopping time 7 < T).
Using Proposition 3, it can be shown that the value of this finite-maturity
American lookback put increases without bound as T — «. (Although this
conclusion seems “obvious” from Proposition 3, we have not found an easy
proof. To be more specific, the simplest proof that we have found uses special
properties of Brownian motion.) On the other hand, Goldman, Sosin and
Gatto (1979) derived an explicit formula for the analogous finite-maturity
European put option (allowing exercise only at time T'), and it is easy to show
that their finite-maturity value converges to a finite limit as T' — «. Combin-
ing those two facts, one may conclude that: (a) a finite-maturity American
lookback put is, in general, more valuable than its European counterpart,
and consequently (b) it is sometimes optimal to exercise a finite-maturity
lookback put early. Incidentally, both of these conclusions can be inferred
under certain conditions from the demonstration by Goldman, Sosin and
Gatto (1979) that finite-maturity European lookback put options may actu-
ally decrease in value with an increase in maturity.

A third conclusion that one can draw from this comparison between the
asymptotic values of American and European lookbacks is-that, in order to
approach the full economic value of the perpetual put, one must exercise at
carefully chosen, path-dependent stopping times that diverge to infinity, and
that one cannot approach the full value simply by waiting sufficiently long.
An appropriate sequence of exercise times is 7, = inf{¢: X, = S,/B,}, where
B, | 0. Taking 7, = n will not approximate the full (infinite) value.

Next, we consider the perpetual buy-at-the-min call. This is a security that
offers the right, but not the obligation, to buy the stock at a stopping time 7
chosen by its owner, at the minimum price the stock has reached to date.
Because that exercise price is always less than or equal to the current market
value, the option pays X, — Y, at the stopping time 7 chosen by its owner,
where

(5.1) Y, = min(y, ians)
s<t
for y < x.

We claim that the unique arbitrage-free price of the perpetual buy-at-the-
min call is simply x, the current stock price. (That is, owning such an option
is essentially equivalent to owning a share of stock.) The argument goes as
follows. First, suppose that the option is being traded at some price x + &,
where £ > 0. One may then sell such an option for x + &, simultaneously buy
a share of stock for x, pocket the net cash flow £ and simply hold the share of
stock until the buyer decides to exercise his option. At that time (say, 7) the
buyer will pay Y, > 0 and will be given the share of stock bought at time zero,
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which generates another positive cash flow of Y_, all with no risk to the seller
of the option.

On the other hand, suppose that the perpetual buy-at-the-min call option
is traded at some price x — £, where ¢ > 0. One may then buy such an option
for x — £, simultaneously sell short a share of stock to generate a positive
cash flow of ¢, pocket ¢/2 as arbitrage profits, put the other £/2 in the bank
and wait. The purchase price Y associated with the call option can only
decrease from its initial value Y, whereas the value of the bank account is
b, = (g/2)exp(rt) after ¢ time units. At the first time ¢ that b, = Y,, one may
exercise the call option, using the bank account to pay for the share of stock
and using that share of stock to redeem the short position assumed at time
zero. Thus, the income of £/2 at time zero is earned without any associated
risk. We summarize this reasoning as follows.

PROPOSITION 4. Suppose that 8 = 0. Then the rational economic value of
the perpetual buy-at-the-min option is x, the initial stock price. That is, if the
buy-at-the-min option is offered for sale at any other price, then arbitrage
profits can be made.
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