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Abstract: The number of processing elements per solution is growing. From embedded devices
now employing (often heterogeneous) multi-core processors, across many-core scientific computing
platforms, to distributed systems comprising thousands of interconnected processors, parallel pro-
gramming of one form or another is now the norm. Understanding how to efficiently parallelize
code, however, is still an open problem, and the difficulties are exacerbated across heterogeneous
processing, and especially at run time, when it is sometimes desirable to change the parallelization
strategy to meet non-functional requirements (e.g., load balancing and power consumption). In this
article, we investigate the use of a programming model based on series-parallel partial orders: com-
putations are expressed as directed graphs that expose parallelization opportunities and necessary
sequencing by construction. This programming model is suitable as an intermediate representation
for higher-level languages. We then describe a model of computation for such a programming model
that maps such graphs into a stack-based structure more amenable to hardware processing. We de-
scribe the formal small-step semantics for this model of computation and use this formal description
to show that the model can be arbitrarily parallelized, at compile and runtime, with correct execution
guaranteed by design. We empirically support this claim and evaluate parallelization benefits using a
prototype open-source compiler, targeting a message-passing many-core simulation. We empirically
verify the correctness of arbitrary parallelization, supporting the validity of our formal semantics,
analyze the distribution of operations within cores to understand the implementation impact of the
paradigm, and assess execution time improvements when five micro-benchmarks are automatically
and randomly parallelized across 2 × 2 and 4 × 4 multi-core configurations, resulting in execution
time decrease by up to 95% in the best case.

Keywords: graph-based programming; intermediate representation; parallelization

1. Introduction

Code parallelization has long been a challenging aspect of programming technolo-
gies [1]. In single-core, single-thread systems, temporal parallelization is an effective way
of addressing latency issues [2]. In multi-thread, and later in multi-core systems, temporal
and spatial parallelizations have become the keys to addressing performance limitations
in general [3]. However, as the number of parallel processors increases, moving from
multi- to many-core, and as these cores become more and more distributed, the difficulty
of parallelizing code (efficiently) increases accordingly [4].

The zeitgeist shows not just an increase in both the number of cores and the degree of
distribution, but also an increase in heterogeneity [5] and the level of runtime reconfigura-
tion of computing systems [6]. From the embedded to the high-performance computing
domains, runtime reconfiguration across heterogeneous parallel computing cores is an in-
exorable strategy to address not just computing performance, but also power consumption,
communication latencies, and predictability [7]. In this scenario, where “ideal” paral-
lelism depends not just on program structure but also on target architecture, and where
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reconfiguration might impose parallelization at runtime [8], traditional parallelization
technologies can no longer cope [9]. This is particularly relevant in modern embedded
systems, constrained by several metrics [10].

In this article, we explore a programming model and an associated model of com-
putation (MoC) for arbitrary code parallelization, i.e., a paradigm that allows expressing
programs such that they can be arbitrarily partitioned across N parallel processing elements,
maintaining semantic correctness. Moreover, the paradigm allows parallelization to be
(re)applied at any stage of runtime, lending itself to use across heterogeneous, runtime-
reconfigurable parallel systems. Specifically, this article

• Introduces Asynchronous Graph Programming (AGP), a programming paradigm
based on dynamic asynchronous graphs. A graph represents the potential execution of
a program, expressing it as a set of data dependencies, merges between branches, and
graph-expansion rules. In order-theoretic mathematics, AGP is a series-parallel partial
order. We show this by expressing programs in such a manner that it is possible to
partition graphs (parallelize the program) efficiently using knowledge of the target
architecture and graph structure to minimize dependencies. These properties hold at
runtime, allowing for seamless re-application.

• Formally describes its model of computation for programs expressed as they are in the
paradigm. AGP provides a mechanism for evaluating programs across N processing
elements in parallel, guaranteeing semantic correctness; e.g., the MoC guarantees
that sequential events are processed in the correct order, regardless of the parallel
allocation, while performing a best-effort first come, first served evaluation across
events of arbitrary order.

• We describe an implementation to empirically support this claim and evaluate the
benefits of parallelization using a prototype open-source compiler, targeting a message-
passing many-core simulation. We empirically verify the correctness of arbitrary par-
allelization, supporting the validity of our formal semantics, analyze the distribution
of operations within cores to understand the implementation impact of the paradigm,
and measure performance improvement of random parallelization across five micro-
benchmarks with increasing levels of parallelization opportunities, showing that, on
average, it is possible to reduce execution time between 28% and 87%, when moving
from single-core to a 2 × 2 multi-core configuration and between 33% and 95%, when
moving from single-core to a 4 × 4 multi-core configuration.

The remainder of this article is organized as follows: Section 2 provides a review
of code-parallelization approaches to put our work into context. In Section 3, we intro-
duce our programming model, describing how parallelization strategies might be applied.
Section 4 formally describes the small-step semantics of our MoC (which implements our
programming model), including a formal analysis of its parallelization. Section 5 describes
our prototype implementation, where we elaborate on our empirical evaluation framework
(a message-passing many-core simulation) and our experimental methodology and results.
Section 6 describes current related work in the field, and Section 7 concludes this article,
describing our ongoing research efforts in this domain.

2. Background: Code Parallelization Strategies

Code parallelization approaches can be broadly grouped into three different categories:
source code, compilation, and models of computation for parallelization (our approach lies in
the latter category).

Source-code parallelization consists of approaches to expressing parallelization oppor-
tunities at the source-code level (either automatically or manually). This includes clearly
static approaches such as partitioning computations across functions and threads [11]; i.e.,
a programmer conceptually identifies parts of their program that can be run in parallel and
implements them across threads. Other approaches are partially dynamic (i.e., potentially
overlap with compilation parallelism), e.g., insertion of compiler pragmas for loop unrolling
to exploit data parallelism or map-reduce patterns [12]. Approaches using higher-level
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paradigms mapped onto extant languages (e.g., task-based programming models such
as OpenMP [13]) also fall into this category (interested readers may consult [14] for a full
taxonomy of task-based programming models).

Compilation parallelization consists of optimizing parallelizing compilers [15] that per-
form static analysis (potentially combined with runtime profiling stages [16]) to identify
opportunities for parallelization at the compile-time level (potentially invisible to the pro-
grammer). Both source code and compiler parallelization approaches can be applied to
any model of computation, of course; however, the majority of these initiatives target
extant languages based on traditional models of computation such as imperative [17] or
functional [18] models (for good reason: advances in parallelizing C or Haskell code, for
example, have immediate impacts on practitioners). The impetus behind Deep Learning,
for example, has led to high demand for automatic parallelization of machine learning
models [19]. A full description of source code and compiler-level parallelization strate-
gies is beyond the scope of this paper, but we point interested readers to [20,21] for more
comprehensive descriptions.

Models of computation for parallelization, on the other hand, explore new computing
paradigms that are more amenable to parallelization. In some cases, new models of compu-
tation can be leveraged by extant languages [22] if operational semantics permit. In other
cases, new models of computation require new languages with brand new operational se-
mantics (there are many examples of these, particularly within Embedded Domain-Specific
Languages (EDSLs) [23]). Most novel models of computation are variations/extensions of
either the λ-calculus [24] or the π-calculus [25], within functional languages, or variation-
s/extensions of the operational semantics of imperative languages [26]. Our work, similarly
to approaches like [27], explores more radical models of computation outside these families,
hoping to shed light on strategies for parallel programming in reconfigurable systems.
While most of the examples we give throughout this article are for multi-/many-core
systems, our model should scale to more distributed systems.

3. Programming Model

Our programming model, Asynchronous Graph Programming (AGP), implements
computations as a directed graph of single-assignment semantics (a past iteration of AGP is
fully described in our previous work here [28], but we describe it in this article nonetheless,
as several changes have occurred at the programming-model level as we further developed
the model of computation). Listing 1 depicts a grammar for a possible AGP implementation,
although this syntax is not as relevant as the semantics described below: this grammar is not
intended for human-readable code but rather for specifying a specific push-down automata.
Although we do not prove it here, the language is both context-free and Turing-complete.

Listing 1: BNF grammar describing an AGP implementation. <op> (operations), <identi-
fier> and <const> (constants) not defined for brevity.

1 <graph> ::= <subgraph> <graph> | <subgraph>
2 <subgraph> ::= "subgraph" "(" <identifier> ")" <node_list>
3 <node_lst> ::= <node> <node_lst> | <node>
4 <node> ::= <identifier> "<-" "input" ";"
5 | <identifier> "<-" <expr> ";"
6 | "output" "<-" <identifier> ";"
7 <expr> ::= "(" <op> <<identifier>|<const>> <<identifier>|<const>> ")"
8 | "(" "expands" <identifier> ":" <node_lst> ")"

Each node in the graph is assigned once, as the result of a computation, or is expanded
into a subgraph. Operands for computations are either other nodes in the graph, or the
special input virtual node (output is also a special virtual node, that can be assigned like any
other node: we elaborate on these in Section 3.1 below). Nodes are considered unconstructed
if they exist in a graph, but their corresponding value has not yet been computed. Nodes



Computers 2022, 11, 164 4 of 20

are constructed only when all their dependencies (i.e., nodes whose values are required)
have been constructed. Nodes can also be destroyed without ever having been constructed:
for example, the operation “if condition result” (expressed here in Polish notation) has
two dependencies, “condition” and “result”. When both operands are constructed, the
operation constructs a node with the value of node “result” if the value of node “condition”
is considered true; if the value of node “condition” is considered false, the operation destroys
the corresponding node (removing it from the program) and subsequently destroys all
nodes that depend on the current node, pruning this branch of the program. A special
operation “merge” is used to propagate the result of one of two possible parallel paths:

“merge” constructs a node with the value of whichever of its operands is constructed first.
Recursion is achieved by expanding a node into a complete subgraph, connecting

nodes in the higher subgraph to input and output nodes in the lower graph; i.e., upon
expansion, for all inputs and outputs listed in the expansion function, the expanded sub-
graph’s input nodes are replaced by the mapped nodes in the higher graph, and references
from a mapped node to output are removed; a referencing node is placed in higher graph’s
corresponding dependencies.

The example in Listing 2 below demonstrates the AGP paradigm for a subgraph that
calculates the factorial of a number (assuming only positive integers are fed as input).
Typical programming characters such as − and ∗ represent arithmetic operations. The
result of the computation, connected to the output node, is the result of a merge (line 14): it
is either 1, if the input is 1 (base case of the recursion), or the result of the iteration, which is
the current input multiplied by the next iteration (line 5). The next iteration is the result
of a recursive expansion of the subgraph, where the lower graph’s input “x” is mapped
to a higher graph node “x − 1” (line 11). The expansion in line 10 always occurs, as long
as its inputs are constructed (i.e., node x_minus_one_conditional); however, because of the
semantics of “if” and “else”, which destroy its unconstructed nodes and their dependencies
if their respective logical tests fail (line 7), the expansion node is destroyed in the base case.
Partial runtime evaluation is depicted in Figure 1.

(a) (b) (c)

Figure 1. Visual representation of the factorial graph and its evaluation. (a) initial (compile time)
graph. (b) evaluation for input x = 2 after one step; (c) evaluation after two steps (subgraph
expansion will follow).
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Listing 2: “Factorial” function highlighting all aspects of AGP. Pseudo-syntax for legibility.

1 subgraph(factorial)
2 x <- input;
3 x_is_one <- (== x 1);
4 next_iter;
5 iter <- (* x next_iter);
6 x_minus_one <- (- x 1);
7 x_minus_one_conditional <- (else x_is_one x_minus_one);
8 result_true <- (if x_is_one 1);
9 result_false <- (else x_is_one iter);

10 fact <- (expands factorial:
11 x <- x_minus_one_conditional;
12 result -> next_iter;
13 );
14 result <- merge result_true result_false;
15 output <- result;

3.1. Rationale

The AGP paradigm becomes reasonable when we examine how input and output
are implemented at a lower level, within the context of the target use cases. Experience
writing highly asynchronous code (e.g., interrupt-driven bare-metal code in C, with shared
global state) shows the difficulty in preventing race conditions leading to erroneous local
states [29]. Experience with parallelizing functional languages, while (more) easily cor-
rect by construction, shows less efficiency (read: performance) than imperative code [30],
primarily due to memory hierarchy behavior [31], and especially when dealing with asyn-
chronous events. These issues are likely to be exacerbated as the degree of parallelization
and heterogeneity increases, thus the design decisions in AGP.

In AGP semantics, the behavior of input and output is undefined by construction.
They are used for subgraph expansion: upon expansion, references to input and output are
replaced by connections to existing nodes in the higher graph, if they have been mapped in
expansion code (note that this does not necessarily have to happen: it is possible to expand
a subgraph with more inputs and outputs than the ones mapped at expansion, resulting
in a free IO node). Free IO nodes (i.e., nodes connected to input and output that must be
evaluated) are evaluated according to custom rules, specified by the compiler and runtime
system (Figure 2). For example, the compiler/runtime might map all inputs and outputs to
stdio, i.e., as wrappers for low-level printf and scanf. Alternatively, the compiler/runtime
might map an input to a peripheral device Interrupt Service Routine; i.e., if the node is
constructed, that interrupt has occurred and whatever value it returned is bound to the
node. In this fashion, an asynchronous shared state is handled by construction: a merge
operator would connect results for computations interrupt occurred and interrupt did not
occur (probably expanding a new node to deal with the next interrupt in the case of interrupt
occurred; this expansion does not need to be synchronous as long as it is performed at the
same point in time, during graph processing, when interrupt-related nodes are merged,
to ensure no interrupts are lost). Similarly, the compiler/runtime might map an output to
a write to a hardware device. These examples are for bare-metal code, but they scale to
abstractions up the stack. For example, in a distributed system, input and output can be
mapped to message passing ports for send and receive (it is, of course, possible to map
inputs and output from different nodes to several different physical media at the same time).
Thus, we envision AGP being used across highly parallel systems with heterogeneous
interfaces, where low-level interface code merely populates or responds to a node value:
state logic and synchronization are embedded in the AGP graph structure.

Regarding parallelization, within AGP semantics, the problem of parallelizing code
across processing elements becomes a problem of partitioning a graph. Thus, we can
borrow from graph theory to decide on parallelization strategies in the function of require-
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ments. For example, we suspect that for shared memory multi-core performance, the best
parallelization strategy will be based on minimizing edges between partitioned graphs, as
this corresponds to minimizing the shared memory requirements that are incurred with
costly cache coherency mechanisms [32]. Examining these strategies is outside the scope of
this paper and is reserved for future work, but we hope they illustrate hypothetical AGP
applications. Note that because of the dependency semantics, ordering of operations is
guaranteed, regardless of the parallelization.

Figure 2. Mapping of program input/output operations to external I/O.

AGP is certainly not intended for programmers, but rather as an intermediate and/or
target representation for higher-level languages whose semantics can be expressed (and
take advantage of the AGP paradigm). Expressing Intermediate Representations as de-
pendency graphs is, of course, not new [33,34]: what is different in AGP, compared to
typical compiler optimization passes, is that the graph representation is preserved in target-
code generation and manipulated at runtime. While this is not necessarily useful in other
representations, which are instead leveraged for optimization prior to code generation,
AGP’s semantics allow the graph representation to be employed for parallelization in a
unique way. Although all single assignment languages should be able to compile down to
AGP (this is a hypothesis only; we have not tested it), we believe its true potential will be
achieved by languages with explicit parallelism.

4. Model of Computation

Directed graphs, unfortunately, are not easily mapped onto a flat memory space
as employed by virtually all von Neumann machines. Thus, to efficiently execute AGP
programs, we need to map a graph onto a “flat” (or linear) data structure, where every
element can be assigned a unique address, as per random access memory architecture.
Furthermore, the properties of AGP that lend themselves to parallelization (i.e., construction
rules) should be preserved. The following subsection shows how to transform an AGP
graph into a stack-based model, easily mapped onto random access memory, that can be
concurrently evaluated by N processing elements in a safe manner.

4.1. AGP Semantics

Our MoC maps a graph onto a stack. Connections between graph nodes correspond to
references from one stack element to another. Each element on the stack contains references
to all other elements that depend on it and a rule for its construction, as a function of
the elements it depends on. Evaluation proceeds by finding a ready element on the stack
(i.e., one whose dependencies have been fully evaluated) and evaluating it according
to its construction rule. Evaluating an element marks it as dead and populates all its
dependencies with its value for subsequent construction. Destroying an element (i.e.,
removing it without constructing it, due to the requirements for its construction having
been deemed impossible) marks it as dead and recursively marks all the elements that
depend on it. Whenever the top of the stack is a dead element, it is removed from the stack.
Evaluating an expansion pushes a sub-stack corresponding to the expanded subgraph on
top of the existing stack. Evaluation terminates when the stack is empty.
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Let Sn denote the stack as an ordered set of n elements, such that Sn = {En, En−1, . . . , E0},
and E denote an element on the stack. E is a tuple of the form E = 〈 f (d), e〉 or
E = 〈 f (d), eouter, einner〉, where f is the function that rules the construction of E; d is ei-
ther a set of primitive types (i.e., integers) that constitute the dependencies of E, or
a set of tuples of the form 〈En, x〉 that map an element on the stack and a primitive
type; and e = {E0, E1, . . . , En,< output >} is the set of elements in the stack (such that
∀i ∈ n, Ei ∈ Sn) that depend on E (the destinations of the constructed value of E), and
the optional special element output. The construction function f is of one of the types
T( f ) = {arithmetic, boolean, merge, expansion} (the primitive operations in our MoC), and
its type T( f ) dictates which evaluation rule is applied on the stack. T(E) denotes the type
of the function f in E. These rules were implicitly alluded to in Listing 2 and Figure 1.

Each evaluation transforms the stack such that Sn −→ Sm. We use the following
notation for stack transformations: Sm = Sn \ Ei describes the removal of Ei from the stack,
such that m = n − 1; Sm = Sl ` Sn describes appending (pushing) the stack Sl to the
top of stack Sn, such that m = l + n. The notation S′n = Sn.〈x, e〉 is the application of the
primitive value x to the dependencies d of all elements in the stack present in the set e, i.e.,
to the set Sn ∩ e. The notation S′n = Sn ×

〈
d, ein, eout, etargets

〉
is the transformation of Sn,

such that all its ordered elements ein are constructed using the ordered values d, and all its
output references in elements eout are replaced with references to the elements etargets. We
use parenthesis to sequentialize successive stack transformations. An example mapping
between graph form and stack form is depicted in Figure 3.

(a)
(b)

Figure 3. Mapping of a directed graph onto a stack. (a) Graph depiction. (b) Equivalent stack
depiction. Here, node names are used to identify stack elements (each element name is at the top of
its respective field).

We can now start describing the small-step semantics of AGP. For any E = 〈 f (d), e〉 |
T( f ) = arithmetic, where d is a set of primitive types:

→
Ei = 〈 f (d), e〉, f (d) −→ x

Sn −→ (Sn \ Ei).〈x, e〉

That is, arithmetic functions always construct an element value from its sources d,
remove it from the stack, and propagate its value to all the elements that depend on it. If
output ∈ e, the value is also propagated to the output of the program (although the medium
is not specified in the semantics, and we do not describe it in our rules). The construction
function f might be an input function, in which case it constructs the element from a
value obtained by a program input (for example, in the case of output, the medium is not
specified in the semantics): its arguments d are only evaluated as necessary preconditions
for computing input (i.e., to guarantee ordering).

For any E = 〈 f (d), e〉 | T( f ) = boolean, where f is either “if” or “else” and where d is
a set of primitive types:
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→
Ei = 〈 f (d), e〉, f == i f , d == 〈true, x〉

Sn −→ (Sn \ Ei).〈x, e〉

→
Ei = 〈 f (d), e〉, f == i f , d == 〈 f alse, x〉

Sn −→ (Sn \ Ei) \ (∀E ∈ e | T(E)! = merge)

→
Ei = 〈 f (d), e〉, f == else, d == 〈 f alse, x〉

Sn −→ (Sn \ Ei).〈x, e〉

→
Ei = 〈 f (d), e〉, f == else, d == 〈true, x〉

Sn −→ (Sn \ Ei) \ (∀E ∈ e | T(E)! = merge)

That is, boolean functions (that examine a boolean dependency) either propagate a
second dependency to all the elements that depend on it or remove them (destroy them)
from the stack, depending on the boolean value. Elements that are constructed by a merge
function are never destroyed. If output ∈ e, the value is also propagated to the output of
the program (although the medium is not specified in the semantics and we do not describe
it in our rules).

For any E = 〈 f (d), e〉 | T( f ) = merge, where d is a set of primitive types:

→
Ei = 〈 f (d), e〉, | d |= 1 −→ x

Sn −→ (Sn \ Ei).〈x, e〉

That is, merge functions propagate a single value to all the elements that depend on
it. An element constructed by a merge function may depend on several elements: the first
dependency that is constructed is the dependency used (this is used, for example, to merge
the results of “if” and “else” branches: only one of these would propagate its value to a
merge element, while the other will destroy all its dependents except ones constructed by
the merge).

For any E = 〈 f (d), eouter, einner〉 | T( f ) = expansion, the only case where d is a set of
tuples of the form 〈En, x〉 that map an element on the stack and a primitive type is the
following:

→
Ej −→ expand(Sl), val(d), elem(d) −→ d′, e′

Sn −→ ((Sl × 〈d′, e′, eouter, einner〉) ` (Sn \ Ei))

where

Ej = 〈 f (d), eouter, einner〉, f (d)

That is, an expansion pushes a new sub-stack on top of the current stack, replacing a
set of elements in the sub-stack with constructed values and replacing output destinations
with references to elements already in the stack (although this small-step semantic rule
seems complex, it represents nothing more than subgraph IO re-mapping).

4.2. Parallelizing AGP

We now have the tools to examine the parallelization of computations modeled
through AGP. At any given element evaluation, one of three transformations is applied
on the stack: removal of a single (evaluated) element with value application (denoted
by Application = Sn −→ (Sn \ Ei).〈x, e〉), removal of several elements (evaluated ele-
ment, and the elements that depend on it, recursively, denoted by Destruction = Sn −→
(Sn \ Ei) \ (∀E ∈ e | T(E)! = merge)), or removal of evaluated element and pushing a new
set of elements on top of the stack (denoted by Push = Sn −→ ((Sl × 〈d′, e′, eouter, einner〉) `
(Sn \ Ei))). Let us examine the concurrent application of these rules by two parallel threads
(if rules A and B can be safely applied in parallel by two threads, it is easy to observe rules
A, A, and B can be safely applied in parallel by three threads).

Let Sn be a stack evaluated concurrently by two computational threads. At any point
during evaluation, either a single evaluation rule will be applied on the stack at any one
time (if a second thread is, e.g., traversing the stack searching for a ready element) or two
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rules will be applied simultaneously. Thus, we can examine all possibilities of concurrent
rule application, to determine the safety of parallel execution.

Application and Application: i.e., two concurrent stack transformations, both of
the form Sn −→ (Sn \ Ei).〈x, e〉. Removal from a set is commutative, so (Sn \ En) \
Em = (Sn \ Em) \ En. The same property applies to the application of the primitive
value x to the dependencies d of all elements in the stack present in the set e, such that
(Sn.〈xn, en〉).〈xm, em〉 = (Sn.〈xm, em〉).〈xn, en〉, since syntactic rules in our programming
model enforce that while en and em might have overlap, the position in the respective sets
d is unique. Thus, two Application transformations can be applied in any order, or at the
same time, with the same result. This behavior is depicted, in stack form, in Figure 4.

Figure 4. Simultaneous applications across two parallel threads: before (left) and after (right).

Application and Destruction, i.e., two concurrent stack transformations of the forms
Sn −→ (Sn \ Ei).〈x, e〉 and Sn −→ (Sn \ Ei) \ (∀E ∈ e | T(E)! = merge). As before, removal
is commutative. The relationship between Sn.〈xn, en〉 and Sn \ (∀E ∈ em | T(E)! = merge)
is less clear, but it becomes intuitive by realizing that Sn.〈xn, en〉 = Sn, | Sn ∩ e = ∅; i.e.,
the application of the value x to elements no longer on the stack has no effect. Because of
this property, removal and value application are also commutative; thus, an Application
transformation and a Destruction transformation can be applied in any order, or at the
same time, with the same result (the exception to this is if a result of both applications is the
same element with a merge construction function, but that would correspond to a poorly
constructed program in our programming model). This behavior is depicted, in stack form,
in Figure 5.

Figure 5. Simultaneous application (thread 2) and destruction (thread 1) across two parallel threads:
before (left) and after (right). Red arrow denotes a destroyed node.
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Destruction and Destruction, i.e., two concurrent stack transformations, both of the
form Sn −→ (Sn \ Ei) \ (∀E ∈ e | T(E)! = merge). Since set removal is commutative,
two Destruction transformations can be applied in any order, or at the same time, with
the same result (there is a potential exception to this, in the case that the element being
evaluated, resulting in one of the transformations, is marked for removal in the other one,
but this would correspond to a syntactic error in our programming model, so that case is
not considered here). This behavior is depicted, in stack form, in Figure 6.

Figure 6. Simultaneous destructions across two parallel threads: before (left) and after (right). Red
arrow denotes destroyed node. One of the inputs of the merge node is destroyed, but the node remains
in the stack. This example shows one core destroyed a node in another core’s stack.

Application and Push, i.e., two concurrent stack transformations of the forms Sn −→
(Sn \ Ei).〈x, e〉 and ((Sl × 〈d′, e′, eouter, einner〉) ` (Sn \ Ej)). As before, removal is commuta-
tive. Since expansion is only evaluated if its dependencies are fully constructed, e ∩ e′ = ∅.
Since arithmetic functions are only evaluated if its dependencies are fully constructed,
Ei ∩ eouter = ∅. Because of these properties, Sn.〈x, e〉 and Sn × 〈d′, e′, eouter, einner〉 are com-
mutative. Thus, an Application transformation and a Push transformation can be applied
in any order, or at the same time, with the same result. This behavior is depicted, in stack
form, in Figure 7.

Figure 7. Simultaneous application (thread 1) and push (thread 2) across two parallel threads: before
(left) and after (right). Pushed (expanded) code is a simple addition of two newly-mapped nodes (a′

and b′ in this example).

Destruction and Push, i.e., two concurrent stack transformations of the forms Sn −→
(Sn \ Ei) \ (∀E ∈ e | T(E)! = merge) and ((Sl × 〈d′, e′, eouter, einner〉) ` (Sn \ Ej)). As before,



Computers 2022, 11, 164 11 of 20

removal is commutative. Since destruction is only applied to unconstructed elements (i.e.,
ones whose dependencies have not been fulfilled) and expansion is only evaluated if its
dependencies are fully constructed, e ∩ e′ = ∅. It is possible that e ∩ eouter 6= ∅ (resulting in
an expansion that eventually results in an Application to non-existing elements), but as
previously described, Sn.〈xn, en〉 = Sn, | Sn ∩ e = ∅, i.e., the application of the value x to
elements no longer on the stack has no effect. Thus, a Destruction transformation and a
Push transformation can be applied in any order, or at the same time, with the same result.
This behavior is depicted, in stack form, in Figure 8.

Figure 8. Simultaneous destruction (thread 1) and push (thread 2) across two parallel threads: before
(left) and after (right). Example depicts thread 1 destroying a node in thread 2’s memory, and thread
2 pushing nodes allocated to thread 1’s stack (a′).

Push and Push, i.e., two two concurrent stack transformations. In this case, both
transformations are of the form ((Sl × 〈d′, e′, eouter, einner〉) ` (Sn \ Ej)). This is the only
case where operations are not commutative, for strict ordering, as Sl2 ` (Sl1 ` Sn) 6= Sl1 `
(Sl2 ` Sn). However, if stack order is not important (and for the purposes of AGP, it is not),
as long as graph structure is preserved, then the transformations are indeed commutative,
resulting in the same elements pushed onto the top of respective stacks, preserving program
structure and behavior. This behavior is depicted, in stack form, in Figure 9.

Figure 9. Simultaneous pushes across two parallel threads: before (left) and after (right). Example
depicts threads pushing nodes to their own and to one another’s stacks.
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5. Experimental Evaluation
5.1. Evaluation Framework

We have implemented a prototype AGP compiler, chc, (publicly available here (https:
//github.com/paulofrgarcia-carleton/chc-public-release, last verified 14 November 2022)).
The supported syntax is slightly different from the one presented in Listing 2, but the
semantics are equivalent. chc generates a stack, populated by program nodes, following the
transformation rules described in the previous sections. chc can also generate (posix-based)
multithreaded C code that evaluates this stack in a portable manner, but that feature is
meant for prototyping and quick evaluation rather than for deployment.

To properly empirically verify that AGP semantics guarantee correct parallelization by
construction, we have set up a message-passing many-core simulation. Cores are organized
in a grid-like fashion (e.g., Figure 10), with each core equipped with its own local memory;
there is no shared memory across different cores. Each core can communicate with its
neighbors through queues; i.e., core (i, j) can communicate with cores (i − 1, j), (i + 1, j),
(i, j − 1), and (i, j + 1), if they exist. Rather than implementing functinal/cycle-accurate
simulation of a given instruction set, each virtual core merely implements an evaluation
algorithm to process AGP programs, as depicted in Algorithm 1. This model can be realized
in silico using several possible implementation architectures, e.g., [35].

Algorithm 1 Core evaluation loop.

S←allocated nodes
if Q 6= ∅ then . Communication block

N ← pop(Q)
if N should be forwarded then

Qdestination ← push(N)
else

S −→ S.N . Update local stack with N
end if

end if
while S 6= ∅ do

while Stop = dead do
GC(S) . Garbage Collect top of stack

end while
if Stop = expansion(Se) then . Should expand graph

S −→ (Se ` S)
Qdestination ← push(Se) . Propagate nodes allocated elsewhere

else
results← process(S)
Qdestinations ← push(results) . Update local stack and forward results to other

cores
end if

end while

https://github.com/paulofrgarcia-carleton/chc-public-release
https://github.com/paulofrgarcia-carleton/chc-public-release
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(a)
(b)

Figure 10. Evaluation architecture: message-passing many-core simulation. (a) 2 × 2, (b) 4 × 4.

Nodes are allocated to cores at random at compile time. Node-allocation strategies
are one of the fundamental properties to be explored within AGP, but they are outside the
scope of this article and are reserved for future work. We make no claims about the quality
of allocation strategies many are possible, within AGP, but our purpose in this article is to
show that the paradigm allows for any feasible strategy to be employed, still resulting in
correct program execution. Throughout our experiments, we allocate nodes randomly. All
possible program nodes (i.e., even nodes from subgraphs not yet expanded) are mapped
to cores, i.e., placed in their program memory. Each core traverses its internal stack,
attempting to evaluate ready nodes. When a node is evaluated, its result is propagated
to its dependents (either in local memory, if dependents are mapped to the same core, or
across the message-passing channels). Each core also acts as a relay for messages.

When subgraphs are expanded, the core responsible for processing expansion popu-
lates its internal stack with all the subgraph nodes allocated to it and broadcasts a message
so all other cores, if they have allocated subgraph nodes, do the same in their local stacks.
Expanding core is then responsible for recalculating subgraph offsets and destinations, as
well as propagating that information through the message-passing channels so other cores
can update the newly pushed nodes as well accordingly.

5.2. Experiments and Results

We are interested in evaluating several things:

• Empirically verifying the correctness of arbitrary parallelization, supporting the valid-
ity of our formal semantics.

• Analyzing the distribution of operations within cores to understand the implementa-
tion impact of the paradigm (i.e., identify optimization opportunities for compilers).

• Measuring speedup compared to single-core execution, for various different node
allocations.

To evaluate these properties, we constructed five micro-benchmarks. The first micro-
benchmark (“Linear”) was constructed to offer very few parallelization opportunities:
during most of its runtime, few data can be processed, as there is a direct sequential de-
pendency between data. The second micro-benchmark (“Cascade”) presents four identical,
and independent, computational streams. Third, fourth, and fifth benchmarks are matrix
multiplications, for matrix sizes of 2 × 2, 4 × 4, and 8 × 8, respectively.

Benchmarks’ execution profiles are depicted in Figure 11 (matrix multiplication for
sizes 4 × 4 and 8× 8 are omitted, for brevity: these are similar to the 2 × 2 version, but with
wider, and a higher number of, rows). These are not canonical program representations
expressed in AGP, as was the case in Figure 1; rather, they are visual depictions of the
lifetime of complete programs, to illustrate runtime data dependencies. AGP source code
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for these benchmarks are included in the simulation architecture, available here (https:
//github.com/layeghimahsa/AGP_compiler_chc, last verified 14 November 2022), for
those interested in replicating/extending our results or repurposing chc and the simulation
framework for other purposes.

We ran 1000 instances of each benchmark, randomly allocating nodes across cores, for
1, 2 × 2, 4 × 4 and 8× 8 multi-core configurations. While the solution space is far too large
to be comprehensively covered, random allocation allows us to sample the space without
designer biases. For every run, we confirmed that programs terminated and returned the
correct results (they did), supporting the validity of our claim that AGP programs can be
arbitrarily parallelized as described in our formal semantics. Figure 12 depicts execution
time histograms for each benchmark (single-core execution time is marked by the vertical
green line). Average results, with standard deviations, are depicted in Table 1.

(a) (b) (c)
Figure 11. Benchmarks’ execution profile. These plots do not represent canonical program imple-
mentations: rather, they depict full graph expansions throughout program runtime. Input nodes are
depicted on the top and output nodes at the bottom. (a) Linear. (b) Cascade. (c) Matrix multiplication
2 × 2.
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Figure 12. Execution time histograms for each benchmark. Single-core execution time is marked by
the vertical green line. Red bars represent runs in the 2 × 2 configuration; blue bars represent runs in
the 4 × 4 configuration.

https://github.com/layeghimahsa/AGP_compiler_chc
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We then instrumented the simulation framework to profile cores’ states during pro-
gram execution to analyze the distribution of operations within cores. Results for a ran-
domly selected run of Linear and Cascade are depicted in Figure 13 for 1, 2 × 2 and 4 × 4
configurations.

Table 1. Average Execution Time (in simulation ticks) per benchmark across configurations.

Configuration

Benchmark 1 × 1 2 × 2 4 × 4
Ticks Ticks Ticks

Linear 1.25× 103 6.78× 102 ± 4.75× 101 6.14× 102 ± 6.45× 101

Cascade 3.75× 105 2.72× 105 ± 5.01× 104 1.59× 105 ± 5.72× 104

2 × 2 Matrix mul. 2.86× 102 1.73× 102 ± 1.78× 101 1.94× 102 ± 4.74× 101

4 × 4 Matrix mul. 2.83× 103 8.46× 102 ± 6.33× 101 6.65× 102 ± 1.59× 102

8 × 8 Matrix mul. 6.35× 104 8.04× 103 ± 3.96× 102 3.10× 103 ± 6.06× 102

In Figure 13, idle time (yellow) depicts the percentage of time spent when a core is
certain it has no ready nodes to process. Processing time (purple) includes the percentage
of time actually evaluating a node, as well as the percentage of time traversing a core’s
allocated nodes to determine whether or not some node is valid (as they may change as
a result of communication from other cores). Stack update (red) is the percentage of time
spent pushing nodes to its local stack, as a result of an expansion triggered by another core
that is communicating that information, and communication time (grey) is the percentage of
time spent processing messages (either reading to self, transmitting from self, or relaying).
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Figure 13. Core utilization for different dimensionalities across two synthetic benchmarks (a) Linear
and (b) Cascade.

5.3. Discussion of Results

Our results support our formal semantics; i.e., AGP can be arbitrarily parallelized
with guaranteed correct execution. We have not provided a full formal proof deriva-
tion that guarantees correctness of arbitrary parallelization but a clear formulation of the
computational model that is used to explain the supporting empirical results.

Analysis of processor state reveals more interesting properties (Figure 13). Unsurpris-
ingly, single-core execution spends most of the time processing nodes and propagating
results across the graph. We observe a small amount of communication time, despite having
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a single core, because of how garbage collection is implemented (node pruning broadcasts
a message to all cores to eliminate dead nodes, even if there is just one core). As the number
of cores increases, several spend a significant amount of time communicating data to others
(as a result of processing subgraph expansion), which in turn leads to other cores spending
a significant amount of time updating their local stack (this is especially visible in Figure 13
for benchmark (b), which is highly recursive, expanding multiple subgraphs, in 2 × 2 and
4 × 4 configurations). Essentially, the allocation separates subgraphs across cores, resulting
in significant communication overhead to process a subgraph expansion. This is consistent
with the graph-partitioning strategies we alluded to previously: node allocation must take
into account graph locality to better utilize parallelism.

On average, execution time significantly decreases as the degree of parallelism in-
creases: experiments show it is possible to reduce execution time between 28% and 87%,
when moving from single-core to a 2 × 2 multi-core configuration, and between 33%
and 95%, when moving from single-core to a 4 × 4 multi-core configuration. As our
simulation does not implement a specific instruction set, but rather a direct interpretation
of AGP semantics, these results abstract important real runtime details; nonetheless, they
showcase the potential of the model of computation. Future work must assess how concrete
implementations fare.

5.4. Deployment Considerations

We have not yet performed an in-depth evaluation of how processor architectural
features affect the execution of AGP programs, but it is worth discussing expectations and
preliminary experiences.

Subsections of AGP programs that can be evaluated synchronously (because there
are no asynchronous dependencies within the subgraph) are essentially equivalent to
imperative programs: an optimizing compiler would produce fundamentally equivalent
code. Thus, architectural considerations are not relevant to a comparison of AGP and other
paradigms.

Asynchronous subsections, where parallelization can be beneficially employed, are rel-
evant. If parallelization is ideally performed, then the instruction stream on any given core
would be locally synchronous; i.e., equivalent to imperative execution. If parallelization is
not ideally performed (either because of the parallelization strategy or because the degree
of possible parallelization, in function of number of cores, exceeds program possibilities),
then a core would be executing an asynchronous instruction stream: from the machine code
perspective, a sequence of fairly independent instructions. Deeply pipelined cores are then
not likely to be negatively affected by AGP execution: for example, branch mis-prediction
penalties are likely to be negligible. In superscalar, speculative, out-of-order execution,
the asynchronous nature of this instruction stream is likely to offer higher possibilities for
keeping processors busy, as there are few dependencies between instructions. The caveat is
that, because of this independence, cache locality (both spatial and temporal) is likely to be
small: thus, we can likely expect low cache hit-rate. Whether processor utilization or cache
utilization is the bigger contributor to performance in an AGP program is not yet known.

6. Related Work

In Section 2, we categorized the different approaches to the automatic parallelization
of programs, which we group under source code, compilation, and models of computation
for parallelization. Here, we focus our attention on recent endeavors in each category,
comparing and contrasting them with the approach described in this article.

6.1. Source Code Parallelization

At the program source level, recent advances have proposed new memory models [36]
(in contrast with the traditional sequential consistency model) that allow for aggressive com-
piler optimizations, supported by novel exception mechanisms that incur little cognitive
overhead for programmers. Similar work, at the hardware level but with implications on
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programmability, is explored in [37]. Source analysis to guarantee parallel program correct-
ness (i.e., pre-compilation checkers) is described in [38], in the context of a source data-race
checker. AGP takes a very different approach: the programmer needs to be concerned not
with parallelization but instead with data dependencies and control flow within single
assignment semantics. Interpreting the written graph as a series-parallel partial order,
parallelism is then automatically (and correctly) extracted from the program representation
by graph analysis, and sequentiality (as explicitly implied by the programmer) is preserved
by node dependencies.

6.2. Compile-Time Parallelization

The fundamental challenge in compile-time parallelization is to guarantee that pro-
gram partitioning will result in correct execution, and this is primarily driven by the
synchronization constructs between parallel portions. The use of impredicative Concurrent
Abstract Predicates is explored in [39] to verify the correctness of both standard and custom
synchronization constructs. Similarly, [40] describes a high-level language and a compiler
optimization methodology for automatic parallelization in a conflict-free manner. At a
lower level of granularity, affine transformations have shown great promise in loop restruc-
turing, especially when driven by architecture-informed cost functions [41]; within this
research track, fusion conflict graphs seem to implement a subset of AGP functionality [42].
The use of graphs as compiler tools is, of course, not new; a domain-specific language
compiler for the transformation of graphs into message-passing implementations is de-
scribed in [43], and similar technology targeting GPUs are presented in [44]. Technologies
such as Tapir [45] allow fork-join parallelism (e.g., as supported by Cilk and OpenMP)
to be embedded into LLVM’s intermediate representation. AGP again takes a different
approach from verifying synchronization constructs: rather than focusing on the correct
implementation of a given parallelization strategy, AGP enforces a parallelization strategy
that is correct by construction (see Section 4).

Compiler-time parallelism is now focusing on speculative parallelization (particularly
to take advantage of runtime information): a comprehensive review of existing techniques
is presented in [46]. Whil not necessarily a method for parallelization, CSim2 [47] is a
compile-time technique (technically design time, as it includes pre-compilation simulations
and cross-checking) for the verification of concurrent system design, particularly focused
on guaranteeing that bottom layers obey the parallel architectures specified at higher levels.
Similarly, the toolchain described in [16] takes advantage of hardware side-channels to
extract multi-core profiles without disturbing software, and technologies for highly parallel,
heterogeneous systems simulation such as [11] are driving compiler optimizations. These
techniques and technologies are orthogonal to AGP and in fact will be leveraged in future
work to drive compile-time and runtime parallelization strategies.

6.3. Parallel Models of Computation

Different parallel models of computation (referred to as concurrency models in [48])
such as the actor model, futures, and transactions, are combined in the Chocola language,
a unified language that attempts to maintain the guarantees of each model, even when
they are combined. This multi-model approach lends itself quite well to fine-tuning for
particular applications, but still requires cognitive effort by the programmer to select and
implement the appropriate model. The streaming model of computation, already well-
established in image processing, is now being applied for big data across large, distributed
systems through novel paradigms, supported, of course, by implementations such as
SPL [49]. More generally, OpenMP [50] seems to continue to summarize the parallelization
zeitgeist, as its model of computation can be leveraged across several toolchains. OpenMP
targets coarse-grained parallelization, where the allocation across parallel threads occurs
pre-compilation (either heuristically or supported by profiling). In contrast, AGP takes
the approach of fine-grained parallelization, using a model that can, theoretically, allocate
processing to threads regardless of which conceptual computation those nodes belong to.
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Much like OpenMP, however, AGP does not restrict itself to shared memory machines,
as the IO model can be mapped across myriad input/output strategies. Formal parallel
methods such as BSP [51] are orthogonal to AGP and are good sources of node-allocation
strategies.

7. Conclusions

This article introduced Asynchronous Graph Programming, a programming model
and an associated MoC for arbitrary code parallelization. AGP allows expressing programs
such that they can be arbitrarily partitioned across N parallel processing elements, maintain-
ing semantic correctness. Moreover, the paradigm allows parallelization to be (re)applied
at any stage of runtime, lending itself to use across heterogeneous, runtime-reconfigurable
parallel systems. We have shown how AGP, an instance of series-parallel partial order,
can be used to express programs, and how its graph architecture can be mapped onto
a stack-based flat address space. We formally described how stack operations, used to
evaluate AGP programs, are parallel-safe, and empirically verified the correctness of and
evaluated improvements for automatic parallelization of five micro-benchmarks. Our
prototype AGP compiler, chc, is open-source, and we expect to extend it in the near future
and maintain it for the foreseeable future.

Our experiments suggest that node allocation must take into account graph locality to
better utilize parallelism; node allocation should reflect program dependencies, which can
be inferred from graph connections when expressed in AGP.

Our ongoing research encompasses several directions. Our work on the chc prototype
continues: we are extending the generated runtime system with low-level IO hooks and on
compiler mechanisms to map (and remap) nodes’ input/output operations onto those IOs.
Runtime reconfiguration (re-allocation of nodes across threads and dynamically spawning
new threads) is being prototyped on heterogeneous multi-cores driven by performance-
energy profiles. Finally, we are experimenting with high-level languages that compile
down to AGP, and what sorts of semantics and properties can be leveraged at that level.
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