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There is no assurance that interface states can be found at the boundary separating two materials. While a

strong perturbation typically favors wave localization, we show on the contrary that in some two-dimensional

photonic crystals (PCs) possessing a Dirac-like cone at k = 0 derived from monopole and dipoles excitation,

a small perturbation is sufficient to create interface states. The conical dispersion together with the flat band at

the zone center generates the existence of gaps in the projected band structure and the existence of single mode

interface states inside the projected band gaps stems from the geometric phases of the bulk bands. The underlying

physics for the existence of an interface state is related to the sign change of the surface impedance in the gaps

above and below the flat band. The established results are applicable for long wavelength regimes where there is

only one propagating diffraction order for an interlayer scattering.

DOI: 10.1103/PhysRevB.90.075423 PACS number(s): 42.70.Qs, 42.25.−p, 78.67.Pt, 78.68.+m

Conical dispersions in periodic systems can give rise to

many properties in electronic and classical wave systems

[1–7]. The most famous example is graphene’s Dirac cones

at the corner of the Brillouin zone [1–3]. It was shown

recently that conical dispersions can also be realized at k =
0 in two-dimensional (2D) photonic and phononic crystals

[8–12]. Using effective medium theory, such 2D PCs have

been shown to possess effective ε = μ = 0 at the frequency of

a Dirac-like point. Many interesting phenomena such as wave

tunneling through arbitrary-shaped waveguides, transforming

wavefronts, and cloaking [13–21] can be achieved by using

2D PCs with conical dispersion at k = 0 [11].

In this paper we show that conical dispersion at k = 0 can

give rise to interface states in a deterministic manner. The TM

polarized bulk band structure, with an electric field along the

cylinder axis of a PC with C4v symmetry [shown schematically

in the inset of Fig. 1(a)], possessing a conical dispersion at

k = 0, is shown in Fig. 1(a). The dispersion has a upper

cone and lower cone meeting at a point with f = 0.541c/a.

Here c is the speed of light in vacuum, and a is the lattice

constant. There is an additional band that is flat near k =
0. The states in this flat band are quasilongitudinal, with the

average H field parallel to k [11]. The projected band structure

with k|| along [01] (or [10]) direction is shown in Fig. 1(b).

The conical dispersion guarantees that there are gaps in the

projected band structure both above and below the Dirac-like

point, separated by the allowed states originating from the

quasilongitudinal band. We will show that the gaps above and

below the quasilongitudinal bands have “opposite characters”

stemming from the geometric properties of the bulk bands.

These properties guarantee the existence of interface states

along the [01] direction in the boundary formed between two

PCs which have their system parameters slightly perturbed

from the accidental degeneracy condition required for conical

dispersion. Single-mode interface states will always appear in

certain gap regions shared by the two PCs. The dispersions

of these interface states can be predicted by calculating the

surface impedance of each semi-infinite PC using scattering

*Corresponding author: phchan@ust.hk

theory. The sign of the surface impedance (which determines

the existence of the interface states) is determined by the

geometric phases of the bulk photonic bands. Our results

demonstrate that the surface scattering and the geometric

properties of the photonic dispersion of the bulk periodic

crystal are related and such knowledge can facilitate the design

of localized interface modes in classical wave systems.

Our system is shown schematically in Fig. 2(a). Two

semi-infinite PCs comprising dielectric cylinders in a square

lattice with the same lattice constant a are put together to

construct an interface along the y direction ([01] direction).

The relative permittivities and radii of cylinders PCs on the

left half space (red) and right half space (blue) are ε1,R1

and ε2,R2, respectively. The relative permeability is always

μ = 1. The bulk photonic band structures of the two PCs

for TM polarization with ε1 = 10,R1 = 0.205a and ε2 =
12.5,R2 = 0.22a are shown in Fig. 2(b). These parameters

are chosen to be slightly perturbed from the conical dispersion

formation condition at k = 0, which is ε = 12.5,R = 0.2a.

The perturbation breaks the triply degenerate states at k = 0

into a pair of doubly degenerate states and a singlet state. The

projected band structures of the two PCs along the y direction

are shown in Fig. 2(c). Pass band regions are marked in red or

blue for each PC and band gaps are in white. There exist a few

regions of common gaps for both projected band structures.

To search for the possibility of interface states inside the

regions of common gaps, we have calculated the eigenmodes

of a large slab consisting of the two PCs by the full wave

numerical solver COMSOL, each with 15 cylinders along

the x direction. Perfectly matched layer boundary conditions

are applied to the x direction, whereas a periodic boundary

condition is applied to the y direction for each wave vector

k|| along the Ŵ̄X̄ direction. In two regions of common gaps,

we found single-mode interface states near the frequencies

0.53c/a and 0.45c/a. These interface states are marked by

green lines in Fig. 2(c). In Fig. 2(d) we plot the E field

distribution of a typical interface mode in the upper branch

marked by a black star on the green line. It is obvious that

the interface state is localized near the interface. We found

that as long as the structural parameters of PCs on either side

of the interface are slightly perturbed relative to the conical

1098-0121/2014/90(7)/075423(10) 075423-1 ©2014 American Physical Society
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FIG. 1. (Color online) (a) The bulk band structure for ε =
12.5,R = 0.2a. The linear bands meeting at k = 0 has a conical

dispersion and a quasilongitudinal band that is flat along ŴX. The

inset is a schematic picture of a 2D PC consisting of an array of

dielectric cylinders. (b) The projected band structure for k|| along the

[01] direction. Bulk allowed states are shaded in red. The symbols

UC, LC, and QL label the projected bands that are derived from the

bulk bands in the upper cone, lower cone, and the quasilongitudinal

bands, respectively. White marks gaps where surface states can form.

The conical dispersion guarantees that there are gaps in the projected

band structure above and below the bulk allowed states generated by

the flat quasilongitudinal band (labeled by QL).

dispersion formation condition, the existence of interface

states is assured independent of the details of the perturbation.

(See Appendix A for interface state formation for different

types of perturbation.)

The results of interface states shown above raise an

interesting question. Why should a small perturbation near

the Dirac-like cone at k = 0 give rise to interface states

and why should such localized states exist deterministically

in certain common gaps but absent in others? To answer this

question, we first note that the condition for the formation

of an interface state is given by ZL(ω,k||) + ZR(ω,k||) = 0

[22], where ZL(R)(ω,k||) is the surface impedance of the

semi-infinite PC on the left (right) for a given k|| [23]. In

order to obtain the surface impedance, we use scattering theory

[22,23] and treat the 2D PC as a large stack of one-dimensional

(1D) PCs with each 1D layer having the configuration shown

in Fig. 9(a) of Appendix B. Scattering theory allows us to

calculate the reflection (r) and transmission (t) coefficients for

this one-layer PC with an incident wave at a given frequency

and k||. The r and t for a particular value of k|| determine an

impedance for that k||, which we will call Z1(ω,k||) with the

subscript “1” denoting the impedance obtained by considering

one constituent layer. If we consider only the monopole and

dipole bands, the reflection and transmission coefficients of

a one-layer PC illuminated by an external plane wave with

a given k|| can be obtained analytically (Appendix B). The

calculated r and t allow us to obtain an impedance Z1(ω,k||) =
±

√
(r + 1)2 − t2/[

√
1 − k2

||/k
2
0

√
(r − 1)2 − t2] for a single

layer. The sign of Z1(ω,k||) can be determined by the causality

considerations. The projected band structures calculated with

only zero-order interlayer diffraction agree well with the “ex-

act” result computed using full-wave calculations (Appendix

B) in our interested frequency region near the Dirac-like cone

frequency. The projected band structures of two PCs with

ε1 = 10,R1 = 0.205a and ε2 = 12.5,R2 = 0.22a calculated

by scattering theory with only zero-order interlayer diffraction

are shown in Figs. 3(a) and 3(b). Regions in which higher

order diffractions play an important role are shaded in purple

in Figs. 3(a) and 3(b).

We can also extract the impedance for a N -layer stack,

ZN (ω,k||), by calculating the r and t for a stack of N

layers. As the system has inversion symmetry, we can always

choose a centrosymmetric unit cell. We calculate the r and

t at the boundary of the unit cell from which we determine

the impedance parameter ZN (ω,k||). It can be shown that

ZN (ω,k||) is uniquely defined and has the same value for any

number of N from N = 1 to ∞, which will simply be denoted

as Z(ω,k||) as long as we consider only zero-order interlayer

diffraction (Appendix B). Therefore, as Z(ω,k||) = ZN (ω,k||)
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FIG. 2. (Color online) (a) Schematic picture of an interface along the [01] direction constructed by two semi-infinite 2D PCs with a square

lattice. The lattice constant for both PCs are a. (b) The band structures of 2D PCs with parameters that are close to the conical dispersion

condition at k = 0. The red circles are for the PC with ε1 = 10,R1 = 0.205a, the blue squares for the PC with ε2 = 12.5,R2 = 0.22a. (c) The

projected band structures of these two PCs along the interface direction (Ŵ̄X) with red color for the PC with ε1 = 10,R1 = 0.205a and blue

color for the PC with ε2 = 12.5,R2 = 0.22a. The green lines are the interface states. (d) The electric field distribution of the eigenmode of

one interface state at the frequency 0.524c/a and k|| = 0.6π/a [labeled by a black star on the green line in (b)] computed by COMSOL. The

eigenmode is seen to be localized at x = 0 which marks the interface separating two PCs each modeled by a 15-layer slab. In the COMSOL

computation, periodic boundary condition is applied along the y direction. The far ends of the unit cells are terminated by perfectly matched

layers in the x direction.
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FIG. 3. (Color online) The pass and forbidden band regions in the projected band structures along the interface direction (Ŵ̄X) labeled with

the imaginary part of the surface impedance [Im (Z)], calculated using scattering theory (ignoring interlayer evanescent coupling, see text) for

(a) ε1 = 10,R1 = 0.205a and (b) ε2 = 12.5,R2 = 0.22a. The purple color marks regions where higher order diffractions play an important

role in scattering theory. (c) The projected band structures and interface states calculated by full-wave (COMSOL) calculation. Green lines

represent the interface states determined using COMSOL. Black circles are calculated analytically by surface impedance shown in (a) and (b).

The dashed line marks for k|| = 0.6π/a.

as N → ∞, Z(ω,k||) becomes the surface impedance of

the semi-infinite PC for frequencies inside the band gap

and for that specific orientation as determined by the layer

stacking. Therefore, the surface impedance of a semi-infinite

PC Z(ω,k||) can be extracted from the scattering theory of just

one bulk layer.

We emphasize that the surface impedance parameter is

uniquely defined as long as the zero-order interlayer scat-

tering approximation is valid. In lossless materials, Z(ω,k||)
is pure imaginary inside a gap, i.e., Im(Z(ω,k||)) > 0 or

Im(Z(ω,k||)) < 0. Figures 3(a) and 3(b) show that different

gaps near the Dirac-like cone frequency carry different signs

of Im(Z(ω,k||)) and the sign can be used to characterize

the gap. In particular, we note that for a given k||, the gaps

above and below the quasilongitudinal band always have

a different sign of Im(Z(ω,k||)). For a given k||, the value

of Im(Z(ω,k||)) decreases monotonically from 0 to −∞
with increasing frequency in a region with Im(Z(ω,k||)) < 0,

whereas the value of Im(Z(ω,k||)) decreases monotonically

from +∞ to 0 with increasing frequency in a region with

Im(Z(ω,k||)) > 0. This property, together with interface state

formation condition of Im(ZL) + Im(ZR) = 0 implies that

there must exist one and only one interface state inside the

common gap if the surface impedances of the two 2D PCs

have different signs and therefore cannot be interface states

inside the gap if Im(ZL) and Im(ZR) have the same sign. In

Figs. 3(a) and 3(b) we mark explicitly the sign of Im(Z(ω,k||))
in each gap of the two PCs. According to the condition of

interface state formation, it is easy to see that there are interface

states in the common gaps with frequencies around 0.53c/a

and 0.45c/a, whereas no interface states are allowed in the

other common gaps. In addition, we can use the value of

Im(Z(ω,k||)) extracted from the scattering theory to calculate

the interface wave dispersions. The results are shown as black

circles in Fig. 3(c). For comparison we have also carried

out the full-wave (COMSOL) calculations to obtain the band

dispersions of the interface states. These results are shown by

green lines in Fig. 3(c). Excellent agreements have been found

between the two calculations.

The guaranteed existence of surface or interface states is

frequently related to the topological properties of the bulk

bands [24–35]. To give an “geometric” interpretation of the

formation of interface states, we note that the projected band

structure for a particular k|| comes from the bulk bands with

a fixed ky = k|| and with kx varying from −π /a to π /a. For

example, the pass bands and forbidden gaps in the projected

band structure at k|| = 0.6π /a in Fig. 3(c) (marked by a yellow

dashed line) correspond to reduced 1D band structures shown

in Fig. 4, where we plot the reduced 1D band structures of

two PCs along the kx direction with ky = 0.6π/a and ε1 =
10,R1 = 0.205a, and ε2 = 12.5,R2 = 0.22a, respectively.

We calculate the geometric Zak phase [36] of the reduced

1D bands shown in Fig. 4 using the formula

ϕn = i

∫ π /a

−π /a

〈unkx ,ky=k|| |ε(�r)∂kx
|unkx ,ky=k||〉dkx, (1)

where un�k is the cell periodic part of the Bloch function of the

E field for the nth band at a particular �k, and ε(�r) is position

dependent relative permittivity. The Zak phase is calculated

using the periodic gauge and the origin is chosen at the left

boundary of the unit cell as shown in the right panel in Fig. 4(a).

The Zak phases for the four lowest bands are ϕ1 = π and

ϕn = 0 for n = 2, 3, 4. The zero Zak phases of bands 2 and

3 are required by the C4v symmetry of the PCs (Appendixes

C and D). Now we apply a rigorous relation found in a 1D

system with inversion symmetry [37]. The relation relates the

ratio of the signs of Im(Z(ω,k||)) in two adjacent gaps, say

the nth and (n − 1)th gaps, to the Zak phase of the band in

between [37], i.e.,

Sgn[Im(Zn(ω,k||))]

Sgn[Im(Zn−1(ω,k||))]
= ei(ϕn−1+π). (2)

One point we want to note is that Eq. (2) is valid for

only considering the monopole and dipole bands with zero-

order interlayer diffraction. It is easy to show that the sign

of Im(Z(ω,k||)) in the lowest gap is always negative. The

knowledge of the Zak phases of the bulk bands allows us

to determine the signs of the gaps through Eq. (2). The results
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FIG. 4. (Color online) (a) Left panel denotes the Brillouin zone of

a square lattice, the blue line represents kx running from −π /a to π /a

with a fixed k||. The right panel shows the coordinate for calculating

the Zak phase, the origin is located on the left boundary of the unit cell.

The bulk band structure with a fixed ky = k|| = 0.6π/a for the PC

with (b) ε1 = 10,R1 = 0.205a and (c) ε2 = 12.5,R2 = 0.22a. The

Zak phases of the bulk bands are labeled with green. The characters

of the bulk gaps are labeled by the sign of Im (Z) with blue color for

Im (Z) < 0and red color for Im (Z) > 0.

are shown in Figs. 4(b) and 4(c), where the blue color denotes

the gaps with Im(Z(ω,k||)) < 0 and the red color stands for

the gaps with Im(Z(ω,k||)) > 0. These results are consistent

with that of the scattering theory shown in Figs. 3(a) and 3(b)

along the yellow dashed lines, respectively. Thus, for only

considering the monopole and dipole bands, by knowing the

bulk Zak phase we can also determine the sign of Im(Z(ω,k||))
without doing any calculations using scattering theory. From

Figs. 4(b) and 4(c) it is also seen that there are two overlapping

gaps that have different signs of Im(Z(ω,k||)). The overlap of

the second gap in Fig. 4(b) and the third gap in Fig. 4(c)

gives rise to the lower branch of the interface states near the

frequency 0.45c/a found in Fig. 3(c) and the overlap of the

third gap in Fig. 4(b) and the fourth gap in Fig. 4(c) gives rise

to the higher branch near the frequency 0.53c/a.

We note that there is in general no assurance for the

existence of interface states between two arbitrary photonic

crystals. While interface states in 2D PCs have been obtained

using numerical computations [38–42], it is highly desirable to

explain the underlying physics of the interface state formation

and to search for configurations where interface state existence

is guaranteed. We show here that the Dirac-like cone at k = 0

systems provides a systematic way to generate interface states.

The conical dispersions at k = 0 has two special properties

that facilitates the formation of interface states: (1) the conical

band structure provides gaps in the projected band and (2)

the associated quasilongitudinal flat band (which always

accompanies the conical dispersion at k = 0) divides the gap

into two regions with different signs of surface impedance.

The different signs of surface impedance can be traced to the

geometric properties of the bulk bands. We should point out

that the presence of a Dirac-like cone is a sufficient condition

for the creation of interface states but it is not a necessary

condition. We emphasize that the identification of interface

modes using bulk-interface correspondence [the discussion

near Eqs. (1) and (2)] is not limited to Dirac-like cone

systems. It is generally applicable to classical wave systems

as long as the impedance is a complex number (rather than a

matrix), which is correct in the subdiffraction regime we are

considering. Our method of interface mode analysis, which

considers the properties of the band gaps as characterized by

the sign of the surface impedance and tracing the origin to bulk

band geometric characteristics, can be applied to other systems

as well. In fact, the physics considered here can be applied

equally well to phononic systems. The physics of interface

states demonstrated here can provide a useful paradigm for the

construction of interface states in different classes of classical

wave systems.

C.T.C. thanks Professor Feng Wang and Professor Vic Law

for discussions. This work is supported by Hong Kong RGC

Grants 600311 and AOE/P-02/12.

APPENDIX A: INTERFACE STATES IN

TWO-DIMENSIONAL PHOTONIC CRYSTALS WITH

CONICAL DISPERSIONS

In two-dimensional (2D) photonic crystals (PCs), the Dirac-

like cone at k = 0 can be formed by the accidental degeneracy

of the monopole and dipole degrees of freedom [11]. The

interface we are considering separates two semi-infinite 2D

PCs, each with system parameters (dielectric constant and/or

radius of cylinders) that are slightly perturbed from the

accidental degeneracy condition to form a Dirac-like cone

at the zone center. Due to the requirement of threefold

degeneracy, we note that the conical dispersion at k = 0

(accounting for 2 degrees of freedom) must coexist with

an additional band whose character is quasilongitudinal and

nearly dispersionless near the Dirac-like point. We note that

this band is also required to exist because of the zero-index

equivalence [11] as zero-index material has an additional

longitudinal solution. Here we give two examples in which

the frequency difference between two quasilongitudinal bands

is very small as shown in Figs. 5 and 6. Figure 5 shows the

case when both PCs on each side have a higher frequency for

the dipole mode, whereas in Fig. 6 the monopole modes have a

higher frequency. Even though the common band gap between

two quasilongitudinal bands is very small for both cases, we

are able to find a band of interface states in each common

band gap. To visualize these interface states, we also plot in

Figs. 5(c) and 6(c) two eigenmodes of two interface states at

some particular k|| (labeled by black stars on the green lines).

It is clearly seen that the electric field is localized near the

interfacial region in each case.

From the two examples shown above, we have demon-

strated that “perturbing the conical dispersion” generates

interface states. Noting that the accidental degeneracy at the

conical point at k = 0 comes from the degeneracy of a pair
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FIG. 5. (Color online) (a) The band structures of 2D PCs with

parameters that are close to the conical dispersion condition at k = 0.

The red circles are for the PC with ε1 = 18,R1 = 0.16a, and the blue

squares for the PC with ε2 = 18,R2 = 0.165a. (b) The projected band

structures of these two PCs along the interface direction (Ŵ̄X̄) with

red color for the PC with ε1 = 18,R1 = 0.16a and blue color for the

PC with ε2 = 18,R2 = 0.165a. The green line in the common band

gap represents the interface states. (c) The electric field distribution

of the eigenmode of one interface state at the frequency 0.544c/a

and k|| = 0.22π/a [labeled by a black star on the green line in (b)]

computed by COMSOL.

of doubly degenerate dipole modes and a monopole mode,

perturbation will cause the splitting of the threefold degeneracy

into a twofold (dipoles) and onefold (monopole) and there are

three possible combinations:

(i) The monopole is higher in frequency than the dipole at

k = 0 in one PC on one side of the interface and the monopole

is lower in frequency than the dipole at k = 0 on another side

of the interface. This case is shown in Fig. 2 of the main text.
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FIG. 6. (Color online) (a) The band structures of 2D PCs with

parameters that are close to the conical dispersion condition at k = 0.

The red circles are for the PC with ε1 = 12.5,R1 = 0.22a, and the

blue squares for the PC with ε2 = 12.5,R2 = 0.225a. (b) The en-

larged projected band structures of these two PCs along the interface

direction (Ŵ̄X̄) with red color for the PC with ε1 = 12.5,R1 = 0.22a

and blue color for the PC with ε2 = 12.5,R2 = 0.225a. The green

line in the common band gaps represents the interface states. (c) The

electric field distribution of the eigenmode of one interface state at

the frequency 0.496c/a and k|| = 0.144π/a [labeled by a black star

on the green line in (b)] computed by COMSOL.
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FIG. 7. (Color online) (a) The band structures of 2D PCs with

parameters that are close to the conical dispersion condition at k = 0.

The red circles are the band structures for the PC with ε1 = 10,R1 =
0.205a, and the blue squares for the PC with ε2 = 18,R2 = 0.17a.

For both of the band structures, the frequencies of dipole bands are

higher than those of the monopole bands at k = 0. (b) The projected

band structures of PCs along the interface direction (Ŵ̄X̄) with red

color for the PC with ε1 = 10,R1 = 0.205a and blue color for the PC

with ε2 = 18,R2 = 0.17a. There are five common band gaps in both

of the two projected band structures. The green lines in the common

band gaps represent the interface states at the interface created by the

two PCs. Here a is the lattice constant of the PCs.

(ii) The monopole is lower in frequency than the dipole at

k = 0 in both PCs (see Fig. 7 below). Figure 5 is an extreme

case of this category.

(iii) The monopole is higher in frequency than the dipole

at k = 0 in both PCs (see Fig. 8 below). Figure 6 is an extreme

case of this category.

In Fig. 7(a) we show the case in which the frequencies of

dipole bands are higher than those of monopole bands at k = 0

on both sides of the interface. The bulk band structures of two

PCs have the following parameters: ε1 = 10,R1 = 0.205a for

the PC with red circles and ε2 = 18,R2 = 0.17a for the PC

X

(a)

XM

F
re

q
u

e
n

c
y

 (
ω

a
/2
π
c

)

Γ

ε1=12.5, R1=0.22a

Γ Γ

ε2=20, R2=0.205a

Projected Band Structures

ε1=12.5, R1=0.22a

ε2=20, R2=0.205a

(b)

FIG. 8. (Color online) (a) The bulk band structures of two PCs

with different parameters that are close to the conical dispersion

condition at k = 0. The red circles are the band structures for the

PC with ε1 = 12.5,R1 = 0.22a, and the blue squares for the PC with

ε2 = 20,R2 = 0.205a. For both of the band structures, the frequencies

of dipole bands are lower than those of the monopole bands at k = 0.

(b) The projected band structures of PCs along the interface direction

(Ŵ̄X̄) with red color for the PC with ε1 = 12.5,R1 = 0.22a and blue

color for the PC with ε2 = 20,R2 = 0.205a. There are four common

band gaps in both of the two projected band structures. The green

lines in the common band gaps represent the interface states at the

interface created by the two PCs. Here a is the lattice constant of the

PCs.
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with blue squares. The projected band structures of two PCs

along the interface direction (Ŵ̄X) are shown in Fig. 7(b).

There are five common band gaps: the first one is near the

frequency 0.625c/a, the second one is in the frequency range

between 0.526c/a and 0.563c/a, i.e., the region between two

quasilongitudinal flat bands in the bulk band structures of two

PCs, the third one is in the range between 0.49c/a and 0.51c/a,

the fourth one between 0.46c/a and 0.48c/a, and the fifth one

is around the frequency 0.425c/a. The interface states are

found in the second and fourth common partial band gaps

denoted by two green lines in Fig. 7(b). The results for the

case where the frequencies of monopole bands are higher than

those of dipole bands at k = 0 on either side of the interface

are shown in Fig. 8. Interface states are also found.

APPENDIX B: SURFACE IMPEDANCE Z(ω,k||) AND

SCATTERING THEORY

In order to obtain the surface impedance Z(ω,k||) for 2D PC,

we use the layer-by-layer scattering formalism, which treats a

2D PC as stacks of 1D PCs. Detailed description of layer-by-

layer scattering formalism can be found in the literature [23].

We start with one single constituent layer, which in our system

is one single row of cylinders with distance a between the

cylinders. The one-layer PC is arranged along the y direction

with one unit cell along the x direction, and the cylinders are

centered in the unit cell and at x = a/2 [shown in Fig. 9(a)].

Scattering theory allows us to calculate the reflection (r) and

transmission (t) coefficients for this one-layer PC with an

incident wave at a given frequency and k||. If we consider only

the monopole and dipole bands, the reflection and transmission

coefficients of a one-layer PC illuminated by an external plane

wave with a given k|| can be obtained analytically and the

results are

r = i

2akx

(P̃ + M̃xk|| + M̃ykx)

and t =
[

1 + i

2akx

(P̃ + M̃xk|| − M̃ykx)

]

, (A1)

(b)

(a)

a

x

y

1 r

t

kx

k

FIG. 9. (Color online) (a) The system configuration used for

calculating the reflection (r) and transmission (t) coefficients for

a one-layer PC. The cylinders are at the center of unit cell at x = a/2.

(b) The moduli of reflection (|r|) and transmission (|t |) coefficients

and the imaginary part of surface impedance [Im(ZN )] inside the

band gap of a N -layer PC for considering only zero-order interlayer

diffraction as a function of the number of layers of the 1D PC

with a fixed k|| = 0.6π/a. In the N -layer slab, each layer has the

configuration shown in (a) with ε1 = 12.5,R1 = 0.22a. The working

frequency is 0.524c/a. Here Z0 is the impedance of vacuum.

where P̃ = [1/αM + F6 − ik||F3]/{[ε0/(αEk2
0) − F1](1/αM

+ F6) + F 2
3 }, M̃x = {−iF3 + k||[ε0/(αEk2

0) − F1]}/
{[ε0/(αEk2

0) − F1](1/αM + F6) + F 2
3 }, and M̃y =

−kx/(1/αM + F4). Here αE and αM are the monopolar

and dipolar polarizability of the cylinder, k|| is the wave vector

along the y direction, kx is the wave vector perpendicular to

the interface, k0 = ω/c, where ω is the angular frequency,

and F1,F3,F4,F6 are 1D lattice sums defined as

F1 =
∑

m�=0

i

4
H0(k0|�r − maŷ|)eimk||a

∣

∣

∣

∣

�r=0

,

F3 = ∂

∂y

∑

m�=0

i

4
H0(k0|�r − maŷ|)eimk||a

∣

∣

∣

∣

�r=0

,

(A2)

F4 = ∂2

∂x2

∑

m�=0

i

4
H0(k0|�r − maŷ|)eimk||a

∣

∣

∣

∣

�r=0

,

F6 = ∂2

∂y2

∑

m�=0

i

4
H0(k0|�r − maŷ|)eimk||a

∣

∣

∣

∣

�r=0

,

where m is an integer, and H0(x) is the zero-order Hankel

function of the first kind. The r and t for a particular value

of k|| determine an impedance for that k||, which we will

call Z1(ω,k||) with the subscript “1” denoting the impedance

obtained by considering one constituent layer shown in

Fig. 9(a).

We can extract the impedance for a N -layer stack by

calculating the r and t for a stack of N layers, and let

those be denoted by ZN (ω,k||). As the system has inversion

symmetry, we can always choose a centrosymmetric unit cell.

We determine the r and t at the boundary of the unit cell

from which we determine the impedance parameter ZN (ω,k||).
For the frequencies and k vectors we are considering, it is

sufficient to consider only zero-order interlayer diffraction,

namely that the evanescent wave coupling between adjacent

layers can be ignored. It can be shown that ZN (ω,k||) is

uniquely defined and has the same value for any number

of N from N = 1 to ∞ which will simply be denoted

as Z(ω,k||). In Fig. 9(b) we show the moduli of reflection

(|r|) and transmission (|t |) coefficients inside the band gap

with fixed k|| = 0.6π/a and f = 0.524c/a as function of the

number of N of the 1D PC with only zero-order interlayer

diffraction included. Each layer of PC has the configuration

shown in Fig. 9(a) with ε1 = 12.5,R1 = 0.22a. Although

|r| and |t | are dependent on N , and each converges to

a constant when N is large, ZN (ω,k||) is independent of

N . Therefore, as Z(ω,k||) = ZN (ω,k||) as N → ∞, Z(ω,k||)
becomes the surface impedance of the semi-infinite PC for

frequencies inside the band gap and for that specific orientation

as determined by the layer stacking. Therefore, the surface

impedance of a semi-infinite PC Z(ω,k||) can be obtained

from the scattering theory of just one bulk layer.

We note the surface impedance Z(ω,k||) is extracted via

calculating the reflection (r) and transmission (t) coefficients

of the one-layer PC and as such, it ignores evancesent

waves. This is a good approximation if high-order interlayer

diffractions can be ignored. To verify whether only considering

the zero-order interlayer diffraction is adequate, we calculate
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(a) (b)

0

0.5

1

FIG. 10. (Color online) The projected band structures of PC

along the interface direction (Ŵ̄X) with ε1 = 10,R1 = 0.205a cal-

culated by two different methods: (a) for full-wave calculation and

(b) for multiple scattering theory with only zero-order interlayer

diffraction. The purple region in (b) represents the higher-order

diffractions play an important role in the multiple scattering theory.

the projected band structure of one PC along the interface

direction (Ŵ̄X) and compare the result of the full wave

calculation with that if high-order interlayer diffraction can be

ignored. The relative permittivity, permeability, and radius of

the cylinders of the PC are ε1 = 10,R1 = 0.205a, respectively.

The full-wave calculation is shown in Fig. 10(a) and the

calculation obtained by scattering theory for only zero-order

interlayer diffraction is shown in Fig. 10(b). The purple region

shown in Fig. 10(b) is the region where the higher-order

diffractions should play an important role and we see that

the results of these two methods agree well with each other for

a large region of k||.

APPENDIX C: CALCULATIONS OF THE ZAK PHASES

In the main text we use the numerical calculations to

evaluate the Zak phases of certain reduced 1D bands for a

particular k||. In this Appendix we show the details about

how to calculate the Zak phase and use the method proposed

by Kohn [43] to verify the Zak phase obtained by numerical

calculations.

In 2D PC, the Bloch wave vector comprises kx and ky , in

order to get the projected band structure, we fix ky = k|| and

let kxvary from −π/a to π/a. In the main text we have plotted

the bulk band structures of two PCs along the kx direction

for ky = 0.6π/a (shown in Fig. 4). The definition of Zak

phase in 1D is ϕn = i
∫ π/a

−π/a
〈unkx ,ky=k|| |ε(�r)∂kx

|unkx ,ky=k||〉dkx

[36], where un�k is the cell periodic part of the Bloch

function of the E field for the nth band at a particular
�k, and ε(�r) is position dependent relative permittivity in

the unit cell. For the implement of numerical calcula-

tions, the integral formula has been changed to summation

form, so ϕn = −∑M
l=1 Im ln〈unkx,l ,ky=k|| |ε(�r)|unkx,l+1,ky=k||〉 in

the limit of large M [44]. For TM polarization (Ealong

cylinder axis direction), the eigenmodes of En�k and un�k
are related by En�k(�r) = un�k(�r) exp(i�k · �r). To obtain the

Zak phases of these bands, we first use COMSOL to

calculate the eigenmodes un�k(�r) of 2D PC for different

kx at a particular nth band and ky = k||. Then, we can

calculate the inner product: 〈unkx,l ,ky=k|| |ε(�r)|unkx,l+1,ky=k||〉 =
∫∫

unit cell
ε(�r)u∗

nkx,l ,ky=k||
(�r) · unkx,l+1,ky=k|| (�r)d�r . With this in-

ner product, using the periodic gauge un,−π/a,ky
(x,y) =

exp(i2πx/a)un,π/a,ky
(x,y), the Zak phase of the nth band can

be obtained (shown in Fig. 4). Since the Zak phase is dependent

on the choice of the origin, in the calculation we set the origin

at the left boundary of the unit cell (shown in Fig. 4).

We will use the method given by Kohn [43] to determine

the Zak phases of the bulk bands. Noting that our system

possesses inversion symmetry and in the subdiffraction regime

we have effectively an 1D problem after fixing a ky = k||,
the Zak phase of the band should be π if the eigenmodes

at the two high symmetry points in the Brillouin zone have

different symmetries [43], and it should be zero otherwise.

These two high symmetry points in the reciprocal space are

the P (kx = 0,ky = k||) and Q (kx = −π/a,ky = k||) points

shown in Fig. 11(a). We choose the origin of the coordinate to

be at the center of the cylinder, the unit cell chosen in this way is

different from the case depicted Fig. 4 in the main text. We plot

the eigenmodes (Ez field) of P and Q points in Fig. 11. The

real part and imaginary part of the eigenmodes represent the

interactions between monopole and dipole excitations. Since

the system at P and Q points possess σx mirror symmetry,

the real part and imaginary part of the eigenmodes should be

either an even or odd function of x. Through analyzing the

mirror symmetry of the eigenmodes at P and Q points, we

can obtain the Zak phases of the bands. Let us first examine

the eigenmodes of the quasilongitudinal band (the third band

in the band structure shown in Fig. 4) at the P point. The real

part and imaginary part of the eigenmode are antisymmetric

[shown in Figs. 11(b) and 11(c)]. At the Q point, the real part

and imaginary part of the eigenmode are symmetric [shown in

Figs. 11(d) and 11(e)]. Based on the criterion given by Kohn,

the Zak phase for the quasilongitudinal band is π . The same

analysis shows that the Zak phase for the lower band (the

second band in the band structure shown in Fig. 4) is also

equal to π . The Zak phase is dependent on the choice of the

origin. If we choose the origin of the coordinate in the middle

of two nearest neighbor cylinders (as shown in Fig. 4 in the

main text), all the Zak phases of the bands discussed above

should have an addition phase of π . Therefore, both the Zak

phases of the second and third bands discussed in the main

text should be 0.

APPENDIX D: THE GROUP THEORY ANALYSIS FOR THE

ZAK PHASES OF THE REDUCED 1D BANDS AND THE

FORMATION OF INTERFACE STATES

Here we analyze the problem from a group theory point

of view. The group theoretical technique is given in detail in

Sakoda’s book [45]. To be consistent with the conventional

group theory treatment [45], we choose here the origin of

the coordinate to be at the center of the cylinder [shown in

Fig. 12(a)]. This choice is different from the origin chosen

in the Zak phases calculations in Fig. 4 (at the middle of

two neighboring cylinders), which was more convenient for

scattering theory treatment. We note that there is a phase shift

of π due to this shift of origin. Thus, to prove that the Zak

phases of the three lowest bands shown in Fig. 4 are π , 0, 0,

here we need to show that the Zak phases of the three lowest

bands to be 0, π , π if the origin is chosen at the cylinder

centers.
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FIG. 11. (Color online) The electric field distributions of the

eigenmodes at two high symmetry points for two bands in a unit

cell. (a) The schematic of kx from −π/a to π/awith a fixed k||in
the Brillouin zone. The relative permittivity, permeability, and radius

of the cylinders of the PC are ε1 = 10,R1 = 0.205a, respectively.

Here a is the lattice constant. P and Q points denote two high

symmetry points in the Brillouin zone. (b), (c) and (d), (e) are the

electric field distributions of the eigenmodes in P and Q points

for the quasilongitudinal band (the third band in the band structure

shown in Fig. 4), respectively. (f), (g) and (h), (i) are the electric field

distributions of the eigenmodes in P and Q points for the lower band

(the second band in the band structure shown in Fig. 4), respectively.

The origin of the coordinate is located at the center of the cylinder.

In the left panel of Fig. 12(a) we show the 2D Brillouin

zone of the photonic crystal which has C4v symmetry. To study

interface states with a fixed k||, we need to consider the reduced

1D Brillouin zone (BZ) by fixing ky = k|| and let kx vary from

−π/a to π/a as shown with the blue line. The zone center

and boundary points in this reduced 1D Brillouin zone are

labeled by P (kx = 0,ky = k||) and Q (kx = −π/a,ky = k||),
respectively.

The cylinder is located at the center of the unit cell.

The origin of the coordinate is also chosen at the center

of the cylinder as shown in the right panel of Fig. 12(a).

Following the procedures detailed in Ref. [45], the irreducible

representations of the bands along the high symmetry points

and lines of the 2D BZ can be found and they are shown

in Fig. 12(b) for the PC with ε = 10,R = 0.205a and k|| =
0.2π/a. In the following we give some details of the symmetry

of the low lying bands relevant for our study. The third band is

a quasilongitudinal band along ŴX. The average magnetic

field is parallel to the wave vector and the eigenelectric

field has odd symmetry with respect to the direction of

the wave vector. The P3 point shown in Fig. 12(b) is the

eigenmode of the third band with wave vector at the P

point [shown in Fig. 12(a)]. As it is a quasilongitudinal mode

with wave vector along the y direction, it has odd symmetry

under σx , and so it has the B representation. At X′ point

(kx = −π/a,ky = 0), the quasilongitudinal mode should have

different (odd or even) symmetries under σx and σy , it can

hence be represented by the B1 or B2 representation. Since the

quasilongitudinal mode along the ŴX′ direction is odd under

σy , it has B2 representation. The compatibility relation requires

that the mode with B2 representation along the X′M direction

(kx = −π/a,ky) has even symmetry under σx , which has A

representation. So the eigenmode of the Q3 point shown in

Fig. 12(b) has even symmetry under σx . The eigenmodes of the

P3 and Q3 points in the third band have opposite symmetries

under σx , and as such, the Zak phase of this band should be

π with respect to the origin of the coordinate located at the

center of the cylinder [shown in the right panel of Fig. 12(a)].

If the origin of the coordinate is chosen to be in the middle

of two neighbor cylinders, the Zak phase should be added

with π , then it becomes 0 [shown in Fig. 12(c)]. With similar

arguments we can obtain the representations of the eigenmode

of the first and second bands at the P and Q points shown in

Fig. 12(b). We can then also obtain the Zak phases of these

bands shown in Fig. 12(c).

From Eq. (2) in the main text, we showed that the signs

of the surface impedances of the projected band gaps above

and below the flat band manifold must be opposite as required

by the symmetry of the system. If the interface is formed

by two PCs with parameters that are slightly perturbed from

those of a Dirac-like cone, there is a common gap. This is

quite obvious already in Figs. 2(b), 3(c), 5(b), 6(b), 7(b),

and 8(b). This situation is further illustrated schematically

in Fig. 12(d), where the common gap is between two dashed

black lines in Fig. 12(d)). It is in this common gap region

that interface modes decaying exponentially into the bulk can

form. We note in particular that for one of the PC (red color),

the common gap is below the projected band of the flat band of

that PC derived from the quasilongitudinal bands, while for the

other PC (blue color), the common gap is above the projected

band of the flat band of the other PC. That is to say, in the

common gap, one PC on one side of the interface must have

an opposite sign of surface impedance to the PC on the other

side. As a consequence, one interface state should exist in this

gap.
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FIG. 12. (Color online) (a) The left panel shows the 2D Brillouin zone. The blue line marks the reduced 1D zone along the kxdirection

for a fixed ky = k|| with the k points P and Q at the center and the boundary, respectively. The right panel shows one unit cell of the 2D PC

with the origin of the coordinate at the center of the unit cell. (b) The bulk band structure of the PC with ε = 10,R = 0.205a. The two dashed

black lines denote wave vector ky = k|| = 0.2π/a along the ŴX and X′M directions, respectively. P1, P2, and P3 denote the eigenmodes in

the first, second, and third bands with wave vector at P point shown in (a) with ky = k|| = 0.2π/a, respectively. Q1, Q2, and Q3 denote the

eigenmodes in the first, second, and third bands with wave vector at Q point shown in (a) with ky = k|| = 0.2π/a, respectively. (c) The Zak

phases of the three lowest bands for the PC with ε = 10,R = 0.205a and k|| = 0.2π/a are labeled with green. Here the origin of the coordinate

for calculating the Zak phase is located in the middle of two neighbor cylinders (the same as Fig. 4). The characters of the bulk gaps are labeled

by the sign of Im (Z) with blue color for Im (Z) < 0 and red color for Im (Z) > 0. (d) The schematic diagram showing the projected bands

of two PCs along the Ŵ̄X direction with two Dirac-like cones with a small frequency deviation. There is a common gap (between two dashed

black lines) between the projected bands of the two flat bands.

APPENDIX E: THE RELATIONSHIP OF THE SURFACE

IMPEDANCE AND THE ZAK PHASE WITH THE

INTERFACE STATES

In the main text and this Appendix, we have given several

examples showing the interface states in two semi-infinite

2D PCs. Using scattering theory, the surface impedance

Z(ω,k||) of the semi-infinite PC can be obtained. The signs of

Im(Z(ω,k||)) in the gaps of the projected band structure above

and below the quasilongitudinal band are always opposite.

For a specific k||, in the Im(Z(ω,k||)) < 0 region, the value

of Im(Z(ω,k||)) decreases monotonically from 0 to −∞ with

increasing frequency, while in the Im(Z(ω,k||)) > 0 region, the

value of Im(Z(ω,k||)) decreases monotonically from +∞ to

0 with increasing frequency. This implies that Im(Z(ω,k||)) in

the common band gaps between two quasilongitudinal bands

of two PCs can always satisfy the condition of interface

state formation, and hence the existence of one and only

one interface state shown in Figs. 5–8 can be explained.

For other common band gaps, as long as they satisfy the

Im(Z(ω,k||)) < 0 and Im(Z(ω,k||)) > 0 on either side of the

interface, the interface wave existence condition can also be

satisfied. Therefore, the interface states must exist (as shown

in Figs. 7 and 8). If we know the Zak phases of the bulk band,

we do not need to go through the tedious calculation of the

scattering problem to obtain Z(ω,k||). Using the band structure

information calculated by one unit cell, we can get the Zak

phases of the bulk bands, which can determine the characters

of the band gaps, and then the existence of the interface states

can also be determined. The Zak phase links the bulk band

properties to the scattering theory which determines surface

properties.
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