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Arbitrary linear transformations for photons in the
frequency synthetic dimension
Siddharth Buddhiraju 1, Avik Dutt 1, Momchil Minkov 1, Ian A. D. Williamson 1 & Shanhui Fan 1✉

Arbitrary linear transformations are of crucial importance in a plethora of photonic applica-

tions spanning classical signal processing, communication systems, quantum information

processing and machine learning. Here, we present a photonic architecture to achieve

arbitrary linear transformations by harnessing the synthetic frequency dimension of photons.

Our structure consists of dynamically modulated micro-ring resonators that implement

tunable couplings between multiple frequency modes carried by a single waveguide. By

inverse design of these short- and long-range couplings using automatic differentiation, we

realize arbitrary scattering matrices in synthetic space between the input and output fre-

quency modes with near-unity fidelity and favorable scaling. We show that the same physical

structure can be reconfigured to implement a wide variety of manipulations including single-

frequency conversion, nonreciprocal frequency translations, and unitary as well as non-

unitary transformations. Our approach enables compact, scalable and reconfigurable inte-

grated photonic architectures to achieve arbitrary linear transformations in both the classical

and quantum domains using current state-of-the-art technology.
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A
rbitrary linear transformations in photonics1–3 are of
central importance for optical quantum computing4,
classical signal processing and deep learning5–10. A variety

of architectures are being actively studied to implement linear
transformations for quantum computation and photonic neural
networks, including those based on Mach–Zender interferometers
(MZI)4,5, microring weight banks6,7,11, phase-change materials8,9,
and diffractive metasurfaces10. All such approaches use path
encoding of photons in real space. By contrast, implementing
such linear transformations in the frequency space would open
avenues beyond those possible with previously reported archi-
tectures, which are inherently time-invariant. For example,
frequency-space transformations allow spectrotemporal shaping
of light and generation of new frequencies, with wide-ranging
applications in frequency metrology, spectroscopy, communica-
tion networks, classical signal processing12–14 and linear optical
quantum information processing15–24. Nonlinear optics has tra-
ditionally been the workhorse for such spectrotemporal shaping,
but the requirement of high-power fields and the difficulty of
implementing arbitrary linear transformations motivates new
architectures for manipulating states in the frequency domain. To
that end, photonic synthetic dimensions offer an attractive solu-
tion to implement linear transformations in a single physical
waveguide by harnessing the internal degrees of freedom of a
photon25–32. Synthetic frequency dimensions in particular offer a
small spatial footprint and inherent reconfigurability since mul-
tiple frequency modes can be addressed simultaneously, and the
short- and long-range coupling29,30,33,34 between them can be
controlled by applying an appropriate time-domain signal to a
modulator.

Previous works have considered implementing photonic linear
transformations using different frequency channels in parallel but
without frequency conversions among them6,7,9,11 by demulti-
plexing the different frequencies into separate spatial channels.
Additionally, optimized fast modulation has been used for tai-
loring single photon spectra from two-level quantum emitters35,
or for quantum frequency conversion15 and linear optical
quantum computation17,36, where the modulator is used as a
generalized beam splitter in synthetic frequency dimensions.
However, the design of an entire scattering matrix that imple-
ments an arbitrary N ×N linear transformation in synthetic space,
which is essential for many applications in quantum information
processing and neural networks, has not yet been shown.

Here, we show that arbitrary linear transformations can be
performed directly in the synthetic space spanned by the different
frequency modes carried by a single physical waveguide. We use
gradient-based inverse design to automate the process of
designing the linear transformations, and demonstrate that a wide
variety of transformations can be realized. As examples, we show
single-frequency conversion, nonreciprocal frequency transla-
tions as well as general arbitrary unitary and non-unitary trans-
formations, all achieved with high fidelities in a fully
reconfigurable fashion.

Results
Theory. Consider a ring of radius R formed by a single mode
waveguide with a refractive index n. The ring is coupled to an
external waveguide of the same refractive index. Assuming suf-
ficiently weak coupling between the ring and the external wave-
guide and neglecting group-velocity dispersion, the eigenmodes
of the ring occur at frequencies ωm= ω0+mΩR, where ω0 is the
central frequency, m is an integer and ΩR= c/nR is the free
spectral range (FSR) of the ring in angular frequency units, with c
being the speed of light in vacuum. These eigenmodes take the
form e�iðm0þmÞϕ, where m0 denotes the angular momentum of the

0th mode and ϕ is the azimuthal coordinate of the ring. Corre-
sponding to these eigenmodes, we define amðtÞeiωmt to be the
amplitude of the mode centered at ωm, normalized such that
∣am(t)∣2 corresponds to the photon number in the mth mode.
Likewise, we define s±m ðtÞeiωmt to be the amplitudes of the modes
of the external waveguide at the input and output ports, respec-
tively, as shown in Fig. 1b. The coupling between the ring modes
and waveguide modes at frequency ωm is described by an external
coupling rate γem, while other losses occurring in the ring, such as
absorption or bending loss, are captured by an internal decay rate
γim. Lastly, we assume that the dielectric constant of the ring is
modulated using an electro-optic modulator in the form

∑
N f

l¼1 δϵlðϕÞ cosðlΩRt þ θlÞ, where δϵl is the depth of the mod-
ulation and θl is the phase of the modulation at frequency lΩR.
The angular dependence δϵl(ϕ) occurs due to the physical loca-
lization of the electro-optic modulator to a specific range of ϕ, as
shown in Fig. 1. The dynamics of the coupled ring-waveguide
system can be described by a coupled-mode theory (see Supple-
mentary Note 1) given by:

�idtam ¼ i γem þ γim
� �

am þ
ffiffiffiffiffiffiffiffi

2γem
p

sþm

þ ∑
N f

l¼1
κlam�l þ κ�lamþl

� �

;
ð1Þ

s�m ¼ sþm þ i
ffiffiffiffiffiffiffiffi

2γem
p

am; ð2Þ
where

κ± l ¼ � αl
4n2

e�iθl

Z 2π

0

e�ilϕδϵlðϕÞdϕ ð3Þ

is the modulation-induced coupling between the modes of the
ring, with αl describing the radial and zenith-angle overlap of the
eigenmodes of the ring with the electro-optic modulator (see
Supplementary Note 1).

If the δϵl’s are real, i.e., only the real part of the refractive-index
is modulated, then κ�l ¼ κ�l . Therefore, the modulation conserves
the total photon number summed across all frequency channels.
Further, if γim are negligible, then no photons are lost to
absorption or radiation. Under these conditions, the setup of Eqs.
(1–2) implements a unitary transformation between the fields sþm
at the input ports and the fields s�m at the output ports. This
unitary transformation can be obtained by first converting Eq. (1)
to the frequency domain, resulting in

a ¼ Δω� iΓ�K½ ��1
ffiffiffiffiffi

2Γ
p

sþ; ð4Þ

where a ¼ f¼ a�1; a0; a1; ¼ gt , s± ¼ f¼ s ±�1; s
±
0 ; s

±
1 ; ¼ gt ,

Γ ¼ diagð¼ γe�1; γ
e
0; γ

e
1; ¼ Þ, Δω is a constant detuning of the

equally spaced frequencies of input comb s+ from the ring’s
resonant frequencies, and Kmm0 � κm�m0 as defined by Eq. (3).
Then, from Eq. (2), we obtain s� ¼ Msþ, where

M ¼ I þ i
ffiffiffiffiffi

2Γ
p

Δω� iΓ�K½ ��1
ffiffiffiffiffi

2Γ
ph i

: ð5Þ

A direct verification of the unitarity of M is included in
Supplementary Note 2. In the idealized situation as described
above, where the ring-waveguide system is assumed to be single-
moded over a broad bandwidth and is free from group velocity
dispersion, the matrix M is infinite-dimensional. In practice, the
dimensionality of the scattering matrix can be controlled by
introducing a “truncation” along the frequency dimension. Such a
truncation can be implemented using one or more auxiliary rings
coupled to the main ring (see Supplementary Note 3). The
auxiliary rings couple to and perturb a few modes immediately
outside the (2Nsb+ 1) modes around the 0th mode, dispersively
shifting and splitting them. These perturbed modes have
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frequencies such that the modulation tones of lΩR cannot couple
these modes to the (2Nsb+ 1) modes of interest. Therefore, the
total number of modes under consideration in the coupled ring-
waveguide system is 2Nsb+ 1, and the scattering matrix defined
in Eq. (5) is of size (2Nsb+ 1) × (2Nsb+ 1).

The main objective of our paper is to show that an arbitrary
scattering matrix of size (2Nsb+ 1) × (2Nsb+ 1) can be created. To
that end, we first note that the number of real degrees of freedom
in the scattering matrix (Eq. (5)) of a single ring under modulation
is equal to twice the number of distinct modulation tones, 2Nf,
provided the modulation amplitudes δϵl and phases θl are
independently controllable. Since the system is truncated to have
2Nsb+ 1 frequencies, the largest harmonic of ΩR that will result in
nonzero coupling between any two modes is 2Nsb, i.e., Nf ≤ 2Nsb.
Since an arbitrary unitary matrix of size (2Nsb+ 1) × (2Nsb+ 1)

has ð2Nsb þ 1Þ2 real degrees of freedom whereas Nf≤2Nsb, we
conclude that a single modulated ring is insufficient to
approximate an arbitrary unitary matrix to a high degree of
accuracy, even if all modulation tones up to 2NsbΩR are used. To
overcome this problem, notice that products of unitary transfor-
mations are also unitary37. Therefore, as shown in Fig. 1a, instead
of a single ring, we consider a sequence of Nr number of rings with
each ring providing Nf complex degrees of freedom. Thus, if the
total degrees of freedom in series of rings coupled to the

waveguide, given by 2NfNr, exceeds ð2Nsb þ 1Þ2, then the setup of
Fig. 1a should be able to approximate an arbitrary unitary
transformation to a high degree of accuracy.

Below, we optimize these 2NfNr degrees of freedom to enable
physical approximation of arbitrary unitary and certain non-
unitary transformations. For unitary transformations or parts
thereof, we use as the objective function the fidelity, which
measures the accuracy of an approximation V to a unitary
transformation U:

F ðU ;VÞ ¼ jhU ;Vij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjUjjFjjVjjF
p ; ð6Þ

where hU ;Vi ¼ ∑ijU
�
ijV ij is the element-wise inner product and

jjUjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ijjU ijj2
q

is the Frobenius norm. The use of an absolute

value in Eq. (6) allows for the tolerance of a single global phase, i.e.,
if F ðU ;VÞ ¼ 1, then the transformation V achieved by the
architecture is equal to UeiΦ for some phase Φ. To achieve a high
fidelity for a given target matrix we use gradient-based inverse
design to optimize the parameters of the modulated system. To
enable such optimization, we implemented a numerical model of
the unitary transformations defined by Eq. (5) in an automatic
differentiation framework38. While explicitly defined adjoint
variable methods have been widely used for photonic inverse
design39, automatic differentiation is the generalization of the
adjoint variable methods to arbitrary computational graphs.
Automatic differentiation has recently been successfully applied to
the inverse design of photonic band structures40 as well as photonic
neural networks41, where explicit adjoint methods are challenging
to implement. Here, automatic differentiation enables the efficient
computation of the gradients of a scalar objective function with
respect to complex control parameters, which in this case are the
coupling constants κ±l as defined in Eq. (3). The advantage of using
automatic differentiation is that one needs only to implement the
computational model as described above, while the automatic
differentiation framework manages the gradient computation
through an efficient reverse-mode differentiation. Using the
gradients from automatic differentiation, the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm42 is used
for optimization.

Implementation of linear transformations. For the results in
this Section, we assume that the ring-waveguide system under
consideration operates with Nsb= 2, i.e., 5 equally spaced lines
followed by at least 4 perturbed lines on each side. The five
relevant modes are indexed {−2, −1, 0, 1, 2}. For simplicity, we
assume that all five ring modes couple to the waveguide with
equal strength, i.e., γem � γ and γim ¼ 08m. We also assume that
the source frequencies in the waveguide are on resonance with the
ring, i.e., Δω= 0 in Eq. (5). Examples of finite intrinsic loss
(γim≠0) and non-uniform detuning (Δω ≠ 0) are considered in

Fig. 1 Setup to implement arbitrary linear transformations in frequency space. a An array of dynamically modulated rings (orange) coupled to an external

waveguide. The green blocks represent electro-optic modulators (EOMs) and the black line is an external waveguide coupling to each of the rings. The

output spectrum on the right is the result of the transformation implemented by the system on the input spectrum (left). b Detailed view of a single ring

depicting the waveguide port inputs and outputs s
±
m
. The smaller purple circles indicate auxiliary rings that couple selectively to modes am of the larger

orange ring to implement frequency-dimension truncation to the ring spectrum. The time-periodic voltage profile applied to the EOM is a result of the

inverse-design algorithm.
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Fig. 3 Nonreciprocal frequency conversion. A three-ring system with three modulation tones per ring, demonstrating a a conversion efficiency exceeding

1− 10−5 from mode 0 to mode +2 in forward propagation. The input and output field profiles are indicated by sL and sR, respectively, and b the complex-

conjugated output profile, s�
R
, injected back into the output port results in a conversion efficiency exceeding 1− 10−5 from mode +2 to +1 instead of mode

0 in backward propagation through the same system, indicating highly efficient nonreciprocal frequency shifts. Modulation parameters are provided in

Supplementary Note 6.

Fig. 2 Frequency translation. A two-ring system with two modulation tones per ring (Nr= 2, Nf= 2) demonstrating a conversion efficiency exceeding 1− 10−5

from mode 0 to +2. The bar plots show log-scale photon flux in each mode at a the input, and b the output. c The error function shown as a function of the

number of iterations of the optimization algorithm to achieve the conversion efficiency of b. Modulation parameters are provided in Supplementary Note 6.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22670-7

4 NATURE COMMUNICATIONS |         (2021) 12:2401 | https://doi.org/10.1038/s41467-021-22670-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Supplementary Notes 4 and 5. Note that the different source
frequencies’ phases should not drift with respect to each other
during the timescale of the transformation. To ensure such phase
coherence between the different input frequency modes, the
source could be a mode-locked laser or an electro-optic frequency
comb with a tailored amplitude/phase spectrum to implement the
input vector. Alternatively, active phase stabilization could be
implemented to compensate for slow-timescale phase drifts.
Under the assumptions made in this Section, the transformation
in Eq. (5) is completely determined by the ratios κl/γ, where κl is
controlled by the index perturbation amplitude δϵl and phase θl,
as described by Eq. (3). Therefore, we optimize the amplitude and
phase of κl (in units of γ) for Nr rings and Nf modulation tones
per ring to implement a variety of transformations. Note that
since we only optimize for the ratios κl/γ, our approach is robust
to variations in γ during fabrication.

First, we consider the application of such ring-waveguide
networks to implement high-fidelity frequency translation that is
useful for frequency-domain beam-splitters or single-qubit gates.
As an example, we show a design where an input signal in mode
0, after forward propagation through the network, results in a
complete conversion to mode +2. Using our inverse-design
framework, such a frequency translation corresponds to designing
only one column of a unitary transformation and can be achieved

with a fidelity exceeding 1− 10−5 using just two rings and two
modulation tones per ring, as shown in Fig. 2a, b. In Fig. 2c, we
present the error function versus the number of iterations. The
error function is defined as 1− F+2, where F+2 is the normalized
output photon flux in the mode +2. After a few iterations, almost
all the photon flux is converted to frequency ω+2 at the output.

In addition to such high-fidelity frequency conversion
implemented in forward propagation through the network, the
transformations achieved in this architecture can be different in
forward and reverse propagation due to the relative phase shift
between the modulation tones across the different rings and the
explicit time-varying nature of the dynamically modulated
system43. This is in sharp contrast with MZI-based architectures,
which are inherently reciprocal. As an example, we show in Fig. 3
that we can simultaneously realize with a fidelity exceeding 1−
10−5 a frequency shift, say, 0→ 2, in forward propagation
(Fig. 3a) and a different shift, say, 2→ 1, in reverse propagation
(Fig. 3b) with three modulated rings.

Achieving frequency shifts using modulated rings, as shown in
Figs. 2 and 3, requires designing only one and two columns of the
5 × 5 unitary matrix, respectively. On the other hand, if the
number of modulation tones Nf and/or the number of rings Nr

are increased, an arbitrary unitary transformation can be achieved
with a high fidelity. As an example, we depict in Fig. 4a a 5 × 5

Fig. 4 Implementing elementwise amplitudes of a matrix. a A 5 × 5 permutation matrix to be implemented by the ring-waveguide system. The amplitudes

of the matrix elements are indicated along with a green colormap. Element-wise amplitudes of the optimized result using four modulation tones (Nf= 4)

and b one ring (Nr= 1), achieving a fidelity of 1− 5.9 × 10−3, and c four rings (Nr= 4), achieving a fidelity of 1− 3.8 × 10−6. d One minus the maximum

fidelities achieved by the inverse-design algorithm as a function of Nr and Nf. A value closer to zero indicates a better performance. Modulation parameters

for c are provided in Supplementary Note 6.
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permutation matrix U, defined by U13=U24=U35=U42=

U51= 1, and zero otherwise. In Fig. 4b, we present the amplitudes
of the matrix achieved using one ring and four modulation tones,
resulting in a fidelity of 1− 5.9 × 10−3. With four rings and four
modulation tones, the fidelity is boosted to over 1− 3.8 × 10−6, as
shown by the amplitudes in Fig. 4c. In Fig. 4d, we tabulate as a
function of Nr and Nf one minus the maximum fidelities obtained
in approximating the 5 × 5 permutation matrix, showing that very
high fidelities can be achieved using a wide variety of Nr and Nf

combinations.
In Fig. 4, we considered only the accuracy of the amplitudes

achieved by our inverse-design approach. We now show that our
architecture can also capture the phase of an arbitrary unitary
transformation with a high fidelity. To demonstrate this, we
consider a normalized 5 × 5 Vandermonde matrix, which is used
to implement the discrete Fourier transform. This unitary

transformation, defined by Umn ¼ e�2πimn=5=
ffiffiffi

5
p

, has a constant
amplitude across its matrix elements but significantly varying
phase, as shown in Fig. 5a. With the use of one ring and four
modulation tones, the inverse-design algorithm is able to achieve
a fidelity of 0.8, with the corresponding phase profile shown in
Fig. 5b up to a global phase of 0.0099π. As depicted in Fig. 5c, a
significantly better performance is possible with the use of four

rings and four modulation tones per ring, achieving a fidelity of 1
− 7.25 × 10−7 with a global phase of 0.596π. A map of one minus
the maximum fidelities achieved by our inverse design approach
as a function of the number of rings and modulation tones is
shown in Fig. 5d.

While unitary transformations are usually required for
quantum information processing, matrices used in classical signal
processing and in neural networks are in general non-unitary.
The architecture presented thus far can also be used to implement
non-unitary matrices with singular values less than or equal to
one using one of two techniques. First, such non-unitary matrices
can provably be embedded in larger unitary matrices44 using their
singular value decomposition. Subsequently, the larger unitaries
can be implemented using refractive index modulation as
discussed thus far. As an example, we consider the following
3 × 3 non-unitary matrix that was randomly generated subject to
the constraint that its largest singular value is equal to one:

M ¼
0:4993ei0:2483π 0:3135ei0:3251π 0:3150ei0:1519π

0:2580ei0:4129π 0:2888ei0:1608π 0:4420ei0:0492π

0:5277ei0:2319π 0:2382ei0:1053π 0:1992ei0:4087π

0

B

@

1

C

A
: ð7Þ

The singular values of M are 1, 0.3755 and 0.1421, respectively.

Fig. 5 Implementing elementwise phases of a matrix. a Element-wise phase as a fraction of π of the 5 × 5 Vandermonde matrix implementing the discrete

Fourier transform. Element-wise phase achieved by the inverse-design algorithm for b Nr= 1 and Nf= 4, with a fidelity of 0.8 and global phase of 0.099π

and c Nr= 4 and Nf= 4, with a fidelity of 1− 7.25 × 10−7 and global phase 0.596π. d One minus the maximum fidelities achieved by the inverse-design

algorithm as a function of Nr and Nf. A value closer to zero indicates a better performance. Modulation parameters for c are provided in Supplementary

Note 6.
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Since there are two singular values less than 1, M can be extended
into a unitary matrix by adding two dimensions. The element-
wise amplitude and phase corresponding to the extended 5 × 5
unitary matrix are shown in Fig. 6a, c, respectively. Using four
rings (Nr= 4) and four modulation tones per ring (Nf= 4), our
inverse-design algorithm achieves the extended unitary matrix
with a fidelity exceeding 1− 10−5, as shown in Fig. 6b, d. Notice
that the phase of element (5, 4) is significantly different between
Fig. 6c, d, but this is because the target amplitude for this element
is zero. As an alternative approach, amplitude modulation, where
the imaginary part of the refractive index is also modulated, can
also be used to directly implement non-unitary matrices since the
transformation of Eq. (5) is non-unitary under modulation of the
imaginary part of the refractive index. Lastly, in order to
implement matrices with singular values greater than 1, a gain
element is necessary. For such matrices, a scaled version such that
the singular values are below 1 can first be implemented using the
methods outlined above, after which a uniform amplification for
all frequency channels can rescale the matrix to its intended form.

Discussion
We have shown that combining the concepts of synthetic
dimensions and inverse design enables the implementation of
versatile linear transformations in photonics. A major advantage

of using synthetic frequency dimensions for implementing an
N ×N linear transformation is that only O(N) photonic elements
(modulators in our case) need to be electrically controlled. This is
in contrast to real-space dimensions using path-encoding, such as
MZI meshes or crossbar arrays, where the full O(N2) degrees of
freedom need to be electrically controlled. Such control is non-
trivial both from a scalability perspective as well as from a
practical geometrical perspective of connecting N2 tunable ele-
ments (e.g. phase-shifters) to their driving electronics off-chip.
The reduction in the number of individually controlled elements
from O(N2) to O(N) in our scheme comes from the fact that the
driving signal on each of the Nr EOMs can simultaneously
address Nf frequency modes in the synthetic dimension.

Future work could leverage synthetic frequency dimensions for
complicated quantum information protocols beyond single-qudit
unitary transformations, such as realizing probabilistic entangling
gates for linear optical quantum computing (LOQC)17,36. In
particular, spectral LOQC using EOMs and pulse shapers has
been shown to be universal for quantum computation17. How-
ever, pulse shapers involve demultiplexing the frequency modes
into distinct spatial channels using gratings to apply mode-by-
mode phase shifts, and limit the number of modes that can be
accommodated within the modulator bandwidth due to a finite
spectral resolution, thus reducing the benefit of using synthetic

Fig. 6 Implementing non-unitary transformations with unitary embedding. The target non-unitary matrix, located in the upper-left 3 × 3 section of the

matrix, is first extended to a unitary 5 × 5 target matrix. The element-wise a target amplitude, b achieved amplitude, c target phase, and d achieved phase

as a fraction of π are shown. A near ideal implementation was achieved using Nr= 4 and Nf= 4 with a fidelity exceeding 1− 10−5. Modulation parameters

are provided in Supplementary Note 6.
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frequency dimensions. Such pulse shapers are also lossy and
challenging to integrate on chip. Our architecture obviates the
pulse shaper by exclusively using EOMs. The advent of ultralow-
loss nanophotonic EOMs in lithium niobate45,46, as well as
progress in silicon47,48 and aluminum nitride49 makes our
architecture fully compatible with on-chip integration, since
modulation at frequencies exceeding the ring’s FSR have been
demonstrated14,47,50.

For applications in neural networks, the performance of our
architecture in terms of the speed, compute density and energy
consumption for multiply-and-accumulate (MAC) operations is
important51. Assuming we need N modulation tones and N rings
with FSR Δf=ΩR/2π to implement a matrix, we can input
information encoded in the N frequencies and read out the
matrix-vector product, which amounts to N2 MAC operations.
Since we need a frequency-resolved measurement, the fastest
readout bandwidth is Δf. We assume that the input data can be
prepared at speed comparable to or faster than the readout speed.
Then, the computational speed in MACs per second is given by

C ¼ N2
Δf : ð8Þ

The maximum number of channels is limited by the FSR and the
modulation bandwidth. If we utilize the whole available band-
width, B=NΔf, then the speed is

C ¼ NB: ð9Þ
For a modulation bandwidth of 100 GHz and an FSR of 100MHz
(such that N= 1000), this yields a speed C= 1014 MACs
per second or 100 TMAC per second, which is comparable with
MZI meshes5,51,52. Although achieving such small FSRs on chip is
challenging, recent progress in integrating low-loss delay lines on
chip53,54 holds promise, since meter-scale delays were reported in
an 8 mm2 footprint using spiral resonators, corresponding to an
equivalent FSR of ~350MHz53. These design techniques can be
extended to lithium niobate rings with high modulation
bandwidths14,46.

To optimize for computation density, i.e. MACs per second per
unit area51, one can use a larger FSR Δf= 1 GHz, in a 1-mm2

footprint, and combine synthetic frequency dimensions within each
100-GHz modulation bandwidth with wavelength-division multi-
plexed channels separated by 100-GHz-wide stopbands, to parallelize
several uncoupled MAC operations across the 5 THz tele-
communications band, as has been done for crossbar arrays6,7,9,51.
This leads to a compute density of ~10 TMAC s−1mm−2, which is
much better than MZI meshes and comparable with standard silicon
microring crossbar arrays51, with the added advantage of only O(N)
electronically controlled elements. We anticipate that future progress
in modulation speed and power using high-confinement integrated
photonic platforms will push these current estimates further, leading
to experimental implementations of MAC operations using the
architecture proposed here with improvements in complexity, speed,
power and footprint.

Data availability
The data related to this study is available in the manuscript and the Supplementary
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