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Abstract 
Current day general purpose processors have been 

enhanced with what i s  called “media instruction set” t o  
achieve performance gains in applications that are me- 
dia processing intensive. The  instruction set that have 
been added exploit the fact  that media applications 
have small native datatypes and have widths much less 
than that supported by commercial processors and the 
plethora of data-parallelism in such applications. Cur- 
rent processors enhanced with the “media instruction 
set” support arithmetic on sub-datatypes of only &bit, 
16-bit7 32-bit and 64-bit precision. In this paper we 
motivate the need f o r  arbitrary precision packed arith- 
met ic  wherein the width of the  sub-datatypes are pro- 
grammable by the user and propose an implementation 
f o r  arithmetic o n  such packed datatypes. The  proposed 
scheme has marginal hardware overhead over conven- 
tional implementations of arithmetic o n  processors in-  
corporating a multimedia extended instruction set. 

1 Introduction 
The current trend of incorporating special instruc- 

tions for multimedia applications in general purpose 
processors has been motivated by the fact that most 
media applications have several common characteris- 
tics: 

e Small native data types. 

e Repeated compute intensive operations on these 
data types. 

0 High data-parallelism 

These properties along with the fact that technol- 
ogy is sufficiently mature to support 64-bit internal 
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bus widths and ALUs, indicate that a possible way 
of enhancing the performance of general purpose pro- 
cessors is by exploiting SIMD parallelism. Thus, for 
example, the Intel MMX [l], the VIS instruction set of 
SPARC [2] and the MAX-2 instruction set of PA-RISC 
2.0 [3] have instructions that can operate on eight 8- 
bit, four 16-bit, or two 32-bit partitioned components 
of 64-bit operands in parallel. This has resulted in a 
performance gain of 50% - 100% over processors that 
do not support SIMD style arithmetic. 

One interesting observation regarding the choice of 
width of the partitioned operands is that they have 
been chosen more from the point of view of conve- 
nience of implementation than from the size of data 
types used in actual implementation of applications. 
For example, while most pixel oriented data is 8-bits 
in length it is a fact that some applications like med- 
ical imaging use 12-bit pixels. Similarly IDCT values 
in MPEG are 12-bits [4]. Media processors also need 
a special 9-bit data type for performing DCT for com- 
pression and decompression. Several such instances 
where there is a need of native data types that are 
different from the conventional “power-of-two” bound- 
aries supported by architectures implementing the In- 
tel MMX or the Ultra Sparc’s VIS instructions have 
been tabulated in [ 5 ] .  The table has been repro- 
duced below for convenience (Table 1). It is also in- 
teresting to note that MICROUNITY’S media proces- 
sor architecture [6] supports arithmetic operations on 
2 x 64,4 x 32,s x 16,16 x 8,32 x 4,64 x 2 OT 128 x 1 
partitions of 128-bit registers. 

The speedups achieved with media applications 
programmed with instructions that manipulate data 
with sizes equal to that of the native data types of 
media applications have been the emphasis of current 
media processing technologies and the advantages of 
it cannot be gainsaid. Thus, if the instruction set 
has a provision for manipulating 12-bit packed data 
types in a 64-bit register, five pixel values can be ma- 
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I Audio I 16-bit/2O-bit fixed point I 
Table 1: Native data Types of Media Applications 

nipulated simultaneously compared to four that can 
be manipulated in a conventional MMX type technol- 
ogy enhanced processor. Another argument for using 
operand widths equal to that of a native data type 
of an applications is that there is power efficiency in 
terms of the total work done. Thus for example an ap- 
plication programmed using an architecture that uses 
12-bit data types packed in a 64-bit register can be al- 
gorithmically designed to be 25% more power efficient 
than an architecture that defines only 16-bit packed 
arithmetic operations. 

Having motivated the need for architectures with 
instruction sets that manipulate data types that cor- 
respond closely to that of the native data types ma- 
nipulated by the application, in this paper we propose 
a fast algorithm based on the carry lookahead scheme 
for SIMD fashion addition of user defined segments of 
two registers. 

The rest of the paper is organized as follows. In 
section 2 we establish the theoretical basis of an arbi- 
trary precision carry-lookahead scheme. Though most 
of the section reproduces the results given in [lo] the 
last part of the section applies these results to establish 
the correctness of our scheme for addition. In section 
3 we discuss the carry-lookahead scheme and propose 
the idea of user defined precision for addition. We also 
propose a scheme for arithmetic on user defined, ap- 
plication specific packed data types. In section 3 we 
compare our idea with those proposed in literature. In 
section 4 we summarize the results. 

2 Addition as a Digit-Set Conversion 
Problem 

We herein describe the basic notations that are es- 
sential in understanding the digit set conversion prob- 
lem for a fixed radix and its application to addition. 
The notation used is the same as that introduced 

A radix p polynomial is an expression of the form: 
by [IO]. 

i=e 

where the digits di E Z, belonging to a digit set D 
such that D is finite and 0 E D. The integer radix /3 
is such that I p I 2 2. The set of radix p polynomials 
over a digit set D is represented by P[p,  D] :  

The set of integer radix polynomials are represented 
by : 

m 

P E P [ p , D D ] , ~ ~ t  

The set of polynomials representing a given integer 
value i is given by: 

where IlPll is the real value of the polynomial P given 
by 

m 

i d  

A digit set D is : 

complete for radix p 
redundant for radix /3 

non-redundant for radix p 

iff Vi  E 2Z : I v q , ~ ( i )  12 1, 
iff 3i E Z : I vp,o(i) I> 1, 
iff V i  E 2Z : I v p , ~ ( i )  (5  1, 

where the cardinality of a set S is given by I S I. 
Let D be a complete digit set and E be a non- 

redundant and complete digit set for radix p, D # E. 
Given a P E P[p, D ] ,  P = E," di[/3Ii, di E D ,  it has 
been shown in [lo] that we can find a Q E P[p,  E] such 
that llPll = 11Q11. For this conversion, any digit d E D 
is rewritten uniquely as d = cp  + e, where e E E and 
c E C ,  a carry set. An incoming carry has to be, in 
general, added before conversion. Thus one can define 
the conversion as a mapping 

a : C x D - + C x E  

where the set C is such that for all (c',d) E C x D 
there exists a (c,e) E C x E such that 

c' + d = cp + e .  

In [lo] the addition of two binary numbers has been 
posed as a digit set conversion problem for a fixed 
radix. Here the conversion is from a redundant digit 
set of base 2 with the digit set (0, 1, 2) to a non- 
redundant digit set of the same base and the digit set 
comprising of the digits (0, 1). Here the two addends 
are interpreted using the "carry-save encoding": 
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0 - 00 
1 - 01 or 10 
2 - 11 

The pairs of digits on the right denote the two addend 
digits at any bit position. 

The conversion mapping is then given by the fol- 
lowing table: 

I D  

The following points are worth noting: yo kills an 
incoming carry, y1 propagates an incoming carry and 

c 0 
1 

c + 0 00 01 10 

00 01 10 00 01 10 
01 10 11 00 01 10 

1 I 01 10 11 

where each entry is of the form ce representing a pair 
( c , e )  E C x E. One can split the table shown above 
into two parts describing two sets of functions. One, 
the carry-transfer set of functions “/d that describe the 
mapping of an incoming carry c‘ into an outgoing carry 
c when a digit d is being converted and the other defin- 
ing the digit-mapping set of functions &, that maps an 
incoming carry to a digit e E E when a digit d E D 
is being converted. The split tables giving {yd} and 
{&}are show below. 

1 1 0  1 1 1 1 1  0 1 

defined here as { }. However, the time complexity 
of the circuit used to  implement the logic shown here 
is identical to  that given by the equations. 

We now investigate on what segmentation means in 
terms of the digit set conversion problem. 

The problem can still be posed as a digit set con- 
version problem with the conversion being from a re- 
dundant digit set of radix 2 and digit set (0, 1, 2, 3 ,4 ,  
5) to a non-redundant digit set of the same base and 
the digit set comprising of the digits (0, l}. Here the 
two addends are interpreted using an extension of the 
“carry save encoding”: 

0 - 00 
1 - 01 or 10 
2 - 11 

4 - O l l l o r 1 1 0 /  
3 - 0101 

5 - 1/11 

The ‘1’ sign is used to denote a “boundary” and the 
pairs of digits, the addend digits at any bit position. 

The conversion mapping table is given below: 

D 
a 1 0  1 2 3 4 5 

the composition of these two functions after simplifi- 
cation is given by: 

since functional composition is associative, one can 
use the parallel prefix computation techniques to com- 
pute the composition and hence compute the cis at 
any bit position as ci = ~ d ; d ~ - ~ . . . d ~ ( O ) .  This can then 
be used to compute the final sum digits (using the 
Jds) as si = ci @xi @ y i .  The composition function de- 
scribes precisely the nature of computation at each cell 
of a Conditional Sum Adder. The composition func- 
tion described is different from that described by [ll] 
where the composition is carried out according to the 
rules given in equations 7 and 8 of section 3. This is 
because it is common practice to  associate the func- 
tion { } with a carry generate, while it has been 

I 70 71 “12 73 y4 7 5  
C O 1 0  0 1 0  0 1 

1 1 0  1 1 0 0 1 

6 tl 52 53 54 b 

We note that the y3 and the 7 4  functions act ex- 
actly like yo and the 7 5  function is identical to the y2 
function. This observation hints that no extra hard- 
ware over that of a normal carry lookahead scheme, 
might be needed to realize the composition functions 
in the parallel prefix tree. 

3 Arbitrary Boundary Packed Addi- 

In this section we revisit the carry-lookahead (CLA) 
scheme and provide a method to perform arbitrary 
boundary packed CLA. 

t ion 
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3.1 Carry-Lookahead Addition 
Let An-l An-z . . . A0 and B,-1 B,-z . . . BO be two 

n-bit binary numbers with a sum bits Sn-1S,-2.. .So  
and carry bits C,,Cn-1 . . . Co. Here the index 0 refers 
to the least significant bit of the numbers. 

The sum bits S;s are computed as follows in the 
carry-lookahead scheme: 

-- 
ki 1 Ai.Bi (carry  k i l l )  

pi = Ai CB Bi (carry  propagate) 
gi = A;.Bi (carry  generate)  

ci = 9% +pi.c2-1, CO = 0. 

(1) 
(2) 
(3) 
(4) 

Si = Ai @B,  @Ci,  i = l , * - * , n .  ( 5 )  

While, ideally the whole carry-lookahead hardware 
to compute the C,s can be constructed, it is imprac- 
tical to do so because of limitations in fan-in, fan- 
out, irregularity in structure and the inordinately long 
wires that might be necessary. To ameliorate the prob- 
lems mentioned above one can implement the carry- 
lookahead scheme in a tree like structure. Such an im- 
plementation gives a regular structure and is amenable 
to efficient implementation [7]. The carry-lookahead 
tree can be implemented by defining block-kill, block- 
propagate and block-generate expressions for a block 
of the addends as follows: 

Kt,n = K1,m + fj,m.Km-l,n (block carry ki l l )  (6) 
fi , ,  = fj,m.Pm-l,n (block carry propagate) (7) 

G1,n = Gi,m + fi,m.Gm-l,n (block carry generate)  ( 8 )  
Cm = Gm-1,n + Pm-1,n-Cn (9) 

where 1 2 m > n,G1,1 = 91 and A , 1  = pl. The block 
kills, propagates and generates can be computed in 
any order given the initial gis, pis and kis because 
the operations defined by equations 6, 7 and 8 are 
associative. It is to be noted that the symbol ki has 
been included here just for the sake of completion of 
the truth table values and are implicitly coded in the 
logic when gi and pi are zero simultaneously. 
3.2 Arbitrary Boundary Packed Carry- 

In this subsection we present a scheme for perform- 
ing arbitrary precision addition on user defined seg- 
ments of two n-bit numbers. This scheme is based on 
the parallel segmented prefix computation algorithm 
described in [SI. 

To cast the packed addition problem into a par- 
allel segmented prefix computation problem one can 
extend the input carry set of k i ,  pi and gi by adding 
ki 1, p ,  I and gi I .  The I to the right of a symbol iden- 
tifies the boundaries of a packed sub-datatype. While 

Lookahead Addition 

an elaborate scheme can be worked out in which the 
extended carry set is used and an associative operator 
defined on them, it is however unnecessary owing to 
the fact the carry-transfer functions that are defined 
for a segmented addition scheme posed as a digit set 
conversion problem indicates that ki I and pi I behave 
exactly like ki and gi I behaves exactly like gi. Also, 
once the carries are generated it is only a question of 
interpreting the results using the digit-mapping func- 
tions. The associativity of the carry-transfer functions 
defined for a segmented addition scheme can now be 
exploited to use the carry-lookahead tree to perform 
the addition in parallel. 

In the following we assume that a mask register 
specifying the boundaries of a segment is loaded prior 
to the addition. This means that a separate instruc- 
tion loads the mask register corresponding to the seg- 
ment boundaries. This is assumed to be a one time 
operation whenever one wants to change the precision 
of the operands. In view of the above mentioned facts 
the equations for k i ,  gi, Kl,n, P1,n and Gl,, can be 
used without any modification. The equation for pi 
however has to be modified and is given by: 

where Mn-l Mn-z . . . MO is the mask register. Mi 
is '1' if the boundary of the sub-datatype to which 
the bit belongs is to the immediate right. Here it 
is assumed that the rightmost bit is the least signifi- 
cant bit. The digit mapping function of a conventional 
carry-lookahead adder given in equation 5 also has to 
be modified for a arbitrary precision packed data type 
adder and is given by: 

Si = Ai @ Bi n/r,.Ci (11)  

An arbitrary precision addition scheme can now be 
built around existing carry lookahead adder circuit 
since the scheme does not affect the logic of the circuit 
that actually computes the Cis. 

The scheme discussed so far ignores block carries 
generated by a sub-datatype and is not considered 
a critical problem in non-media applications. How-' 
ever, the block carry generated may become neces- 
sary to implement saturating arithmetic wherein the 
packed sub-datatype is saturated to the maximum in- 
teger value with the precision specified by the mask 
register. An interesting observation is that the block 
carries generated by each sub-datatype of the packed 
operand appears as the carry at the least significant 
bit of the block immediately to the left (The least sig- 
nificant bit is assumed to be at the right of the packed 
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operand). Thus the set of block carries can be gener- 
ated in a register (carry register) by performing Mf.Ci 
and shifting the result right by one. The equation to 
generate the block carry at the most significant sub- 
datatype of a n-bit register has to be however com- 
puted independently as: 

cn = (&I+ Pn-1 .Cn-1) (12) 

Segmented addition schemes can be easily extended 
to multiply two arbitrary-boundary packed operands. 
In particular, if we consider the carry save adder 
(CSA) based multiplier of Santoro [9], segmented mul- 
tiplication can be performed by casting the addition 
of partial products as segmented additions. While we 
we will not delve into the details of this scheme in this 
paper, it is sufficient to mention that in the multiplier 
reported in [9], partial products are added along the 
columns using a tree of 4 + 2 compressors to derive 
the SUM and CARRY words. These are later added 
to form the result of the multiplication. In the context 
of the discussion so far, the mask register can be used 
to generate the partial products appropriately. The 
SUM and CARRY results obtained using the normal 
4 -+ 2 trees can then be added using the adder pro- 
posed earlier. 

4 Comparison with Similar Adders 
Brent et  al. [7] give a pipelined scheme for imple- 

menting addition of large n-bit numbers as a sum of 
n/w w-bit numbers with the results of a lesser signif- 
icant w-bit addition combined with the results of the 
next higher w-bit addition in a pipelined fashion. One 
can inhibit carries generated by every w-bit partition 
to implement a packed addition of 12/20 numbers in an 
n-bit register. A problem with such an approach with 
current technologies is that the latch delays can far 
outweigh the gate delays of such a pipelined adder. 
Even if such a scheme were feasible, the value of w 
is defined at the time of implementation and hence 
cannot be programmed by an application program- 
mer. The segmented carry-lookahead scheme outlined 
above aims at giving the programmer the choice of 
programming his application with operand precision 
equal to that demanded by the application. 

5 Conclusion 
In this paper we have motivated the need for sup- 

porting arithmetic on the native datatypes of an 
application and also the need to let the program- 
mer/application decide the precision of operands in 
arithmetic. We have also presented an addition 
scheme with very little hardware overhead over con- 
ventional carry-lookahead adders. 
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