
Arbitrary Precision Arithmetic - SIMD Style *

S. Balakrishnan and S. K. Nandy
Supercomputer Education and Research Center

Indian Institute of Science
Bangalore 560 012

India.
e-mail: { sbalki,nandy}serc.iisc.ernet .in

Abstract
Current day general purpose processors have been

enhanced with what i s called “media instruction set” t o
achieve performance gains in applications that are me-
dia processing intensive. The instruction set that have
been added exploit the fact that media applications
have small native datatypes and have widths much less
than that supported by commercial processors and the
plethora of data-parallelism in such applications. Cur-
rent processors enhanced with the “media instruction
set” support arithmetic on sub-datatypes of only &bit,
16-bit7 32-bit and 64-bit precision. In this paper we
motivate the need f o r arbitrary precision packed arith-
met ic wherein the width of the sub-datatypes are pro-
grammable by the user and propose an implementation
f o r arithmetic o n such packed datatypes. The proposed
scheme has marginal hardware overhead over conven-
tional implementations of arithmetic o n processors in-
corporating a multimedia extended instruction set.

1 Introduction
The current trend of incorporating special instruc-

tions for multimedia applications in general purpose
processors has been motivated by the fact that most
media applications have several common characteris-
tics:

e Small native data types.

e Repeated compute intensive operations on these
data types.

0 High data-parallelism

These properties along with the fact that technol-
ogy is sufficiently mature to support 64-bit internal

*This research was supported in part by the Department
of Electronics, Government of India, under sponsored project
DE-NMC/SP-054, and the TUD-IISc. collaboration project be-
tween Technical University, Delft, The Netherlands and The
Indian Institute of Science.

bus widths and ALUs, indicate that a possible way
of enhancing the performance of general purpose pro-
cessors is by exploiting SIMD parallelism. Thus, for
example, the Intel MMX [l], the VIS instruction set of
SPARC [2] and the MAX-2 instruction set of PA-RISC
2.0 [3] have instructions that can operate on eight 8-
bit, four 16-bit, or two 32-bit partitioned components
of 64-bit operands in parallel. This has resulted in a
performance gain of 50% - 100% over processors that
do not support SIMD style arithmetic.

One interesting observation regarding the choice of
width of the partitioned operands is that they have
been chosen more from the point of view of conve-
nience of implementation than from the size of data
types used in actual implementation of applications.
For example, while most pixel oriented data is 8-bits
in length it is a fact that some applications like med-
ical imaging use 12-bit pixels. Similarly IDCT values
in MPEG are 12-bits [4]. Media processors also need
a special 9-bit data type for performing DCT for com-
pression and decompression. Several such instances
where there is a need of native data types that are
different from the conventional “power-of-two” bound-
aries supported by architectures implementing the In-
tel MMX or the Ultra Sparc’s VIS instructions have
been tabulated in [5] . The table has been repro-
duced below for convenience (Table 1). It is also in-
teresting to note that MICROUNITY’S media proces-
sor architecture [6] supports arithmetic operations on
2 x 64,4 x 32,s x 16,16 x 8,32 x 4,64 x 2 OT 128 x 1
partitions of 128-bit registers.

The speedups achieved with media applications
programmed with instructions that manipulate data
with sizes equal to that of the native data types of
media applications have been the emphasis of current
media processing technologies and the advantages of
it cannot be gainsaid. Thus, if the instruction set
has a provision for manipulating 12-bit packed data
types in a 64-bit register, five pixel values can be ma-

128
1063-9667/97 $10.00 0 1997 IEEE

I Audio I 16-bit/2O-bit fixed point I
Table 1: Native data Types of Media Applications

nipulated simultaneously compared to four that can
be manipulated in a conventional MMX type technol-
ogy enhanced processor. Another argument for using
operand widths equal to that of a native data type
of an applications is that there is power efficiency in
terms of the total work done. Thus for example an ap-
plication programmed using an architecture that uses
12-bit data types packed in a 64-bit register can be al-
gorithmically designed to be 25% more power efficient
than an architecture that defines only 16-bit packed
arithmetic operations.

Having motivated the need for architectures with
instruction sets that manipulate data types that cor-
respond closely to that of the native data types ma-
nipulated by the application, in this paper we propose
a fast algorithm based on the carry lookahead scheme
for SIMD fashion addition of user defined segments of
two registers.

The rest of the paper is organized as follows. In
section 2 we establish the theoretical basis of an arbi-
trary precision carry-lookahead scheme. Though most
of the section reproduces the results given in [lo] the
last part of the section applies these results to establish
the correctness of our scheme for addition. In section
3 we discuss the carry-lookahead scheme and propose
the idea of user defined precision for addition. We also
propose a scheme for arithmetic on user defined, ap-
plication specific packed data types. In section 3 we
compare our idea with those proposed in literature. In
section 4 we summarize the results.

2 Addition as a Digit-Set Conversion
Problem

We herein describe the basic notations that are es-
sential in understanding the digit set conversion prob-
lem for a fixed radix and its application to addition.
The notation used is the same as that introduced

A radix p polynomial is an expression of the form:
by [IO].

i=e

where the digits di E Z, belonging to a digit set D
such that D is finite and 0 E D. The integer radix /3
is such that I p I 2 2. The set of radix p polynomials
over a digit set D is represented by P[p, D] :

The set of integer radix polynomials are represented
by :

m

P E P [p , D D] , ~ ~ t

The set of polynomials representing a given integer
value i is given by:

where IlPll is the real value of the polynomial P given
by

m

i d

A digit set D is :

complete for radix p
redundant for radix /3

non-redundant for radix p

iff Vi E 2Z : I v q , ~ (i) 12 1,
iff 3i E Z : I vp,o(i) I> 1,
iff V i E 2Z : I v p , ~ (i) (5 1,

where the cardinality of a set S is given by I S I.
Let D be a complete digit set and E be a non-

redundant and complete digit set for radix p, D # E.
Given a P E P[p, D] , P = E," di[/3Ii, di E D , it has
been shown in [lo] that we can find a Q E P[p, E] such
that llPll = 11Q11. For this conversion, any digit d E D
is rewritten uniquely as d = cp + e, where e E E and
c E C , a carry set. An incoming carry has to be, in
general, added before conversion. Thus one can define
the conversion as a mapping

a : C x D - + C x E

where the set C is such that for all (c',d) E C x D
there exists a (c,e) E C x E such that

c' + d = cp + e .

In [lo] the addition of two binary numbers has been
posed as a digit set conversion problem for a fixed
radix. Here the conversion is from a redundant digit
set of base 2 with the digit set (0, 1, 2) to a non-
redundant digit set of the same base and the digit set
comprising of the digits (0, 1). Here the two addends
are interpreted using the "carry-save encoding":

129

0 - 00
1 - 01 or 10
2 - 11

The pairs of digits on the right denote the two addend
digits at any bit position.

The conversion mapping is then given by the fol-
lowing table:

I D

The following points are worth noting: yo kills an
incoming carry, y1 propagates an incoming carry and

c 0
1

c + 0 00 01 10

00 01 10 00 01 10
01 10 11 00 01 10

1 I 01 10 11

where each entry is of the form ce representing a pair
(c , e) E C x E. One can split the table shown above
into two parts describing two sets of functions. One,
the carry-transfer set of functions “/d that describe the
mapping of an incoming carry c‘ into an outgoing carry
c when a digit d is being converted and the other defin-
ing the digit-mapping set of functions &, that maps an
incoming carry to a digit e E E when a digit d E D
is being converted. The split tables giving {yd} and
{&}are show below.

1 1 0 1 1 1 1 1 0 1

defined here as { }. However, the time complexity
of the circuit used to implement the logic shown here
is identical to that given by the equations.

We now investigate on what segmentation means in
terms of the digit set conversion problem.

The problem can still be posed as a digit set con-
version problem with the conversion being from a re-
dundant digit set of radix 2 and digit set (0, 1, 2, 3 ,4 ,
5) to a non-redundant digit set of the same base and
the digit set comprising of the digits (0, l}. Here the
two addends are interpreted using an extension of the
“carry save encoding”:

0 - 00
1 - 01 or 10
2 - 11

4 - O l l l o r 1 1 0 /
3 - 0101

5 - 1/11

The ‘1’ sign is used to denote a “boundary” and the
pairs of digits, the addend digits at any bit position.

The conversion mapping table is given below:

D
a 1 0 1 2 3 4 5

the composition of these two functions after simplifi-
cation is given by:

since functional composition is associative, one can
use the parallel prefix computation techniques to com-
pute the composition and hence compute the cis at
any bit position as ci = ~ d ; d ~ - ~ . . . d ~ (O) . This can then
be used to compute the final sum digits (using the
Jds) as si = ci @xi @ y i . The composition function de-
scribes precisely the nature of computation at each cell
of a Conditional Sum Adder. The composition func-
tion described is different from that described by [ll]
where the composition is carried out according to the
rules given in equations 7 and 8 of section 3. This is
because it is common practice to associate the func-
tion { } with a carry generate, while it has been

I 70 71 “12 73 y4 7 5
C O 1 0 0 1 0 0 1

1 1 0 1 1 0 0 1

6 tl 52 53 54 b

We note that the y3 and the 7 4 functions act ex-
actly like yo and the 7 5 function is identical to the y2
function. This observation hints that no extra hard-
ware over that of a normal carry lookahead scheme,
might be needed to realize the composition functions
in the parallel prefix tree.

3 Arbitrary Boundary Packed Addi-

In this section we revisit the carry-lookahead (CLA)
scheme and provide a method to perform arbitrary
boundary packed CLA.

t ion

130

3.1 Carry-Lookahead Addition
Let An-l An-z . . . A0 and B,-1 B,-z . . . BO be two

n-bit binary numbers with a sum bits Sn-1S,-2.. .So
and carry bits C,,Cn-1 . . . Co. Here the index 0 refers
to the least significant bit of the numbers.

The sum bits S;s are computed as follows in the
carry-lookahead scheme:

--
ki 1 Ai.Bi (carry k i l l)

pi = Ai CB Bi (carry propagate)
gi = A;.Bi (carry generate)

ci = 9% +pi.c2-1, CO = 0.

(1)
(2)
(3)
(4)

Si = Ai @B, @Ci, i = l , * - * , n . (5)

While, ideally the whole carry-lookahead hardware
to compute the C,s can be constructed, it is imprac-
tical to do so because of limitations in fan-in, fan-
out, irregularity in structure and the inordinately long
wires that might be necessary. To ameliorate the prob-
lems mentioned above one can implement the carry-
lookahead scheme in a tree like structure. Such an im-
plementation gives a regular structure and is amenable
to efficient implementation [7]. The carry-lookahead
tree can be implemented by defining block-kill, block-
propagate and block-generate expressions for a block
of the addends as follows:

Kt,n = K1,m + fj,m.Km-l,n (block carry ki l l) (6)
fi , , = fj,m.Pm-l,n (block carry propagate) (7)

G1,n = Gi,m + fi,m.Gm-l,n (block carry generate) (8)
Cm = Gm-1,n + Pm-1,n-Cn (9)

where 1 2 m > n,G1,1 = 91 and A , 1 = pl. The block
kills, propagates and generates can be computed in
any order given the initial gis, pis and kis because
the operations defined by equations 6, 7 and 8 are
associative. It is to be noted that the symbol ki has
been included here just for the sake of completion of
the truth table values and are implicitly coded in the
logic when gi and pi are zero simultaneously.
3.2 Arbitrary Boundary Packed Carry-

In this subsection we present a scheme for perform-
ing arbitrary precision addition on user defined seg-
ments of two n-bit numbers. This scheme is based on
the parallel segmented prefix computation algorithm
described in [SI.

To cast the packed addition problem into a par-
allel segmented prefix computation problem one can
extend the input carry set of k i , pi and gi by adding
ki 1, p , I and gi I . The I to the right of a symbol iden-
tifies the boundaries of a packed sub-datatype. While

Lookahead Addition

an elaborate scheme can be worked out in which the
extended carry set is used and an associative operator
defined on them, it is however unnecessary owing to
the fact the carry-transfer functions that are defined
for a segmented addition scheme posed as a digit set
conversion problem indicates that ki I and pi I behave
exactly like ki and gi I behaves exactly like gi. Also,
once the carries are generated it is only a question of
interpreting the results using the digit-mapping func-
tions. The associativity of the carry-transfer functions
defined for a segmented addition scheme can now be
exploited to use the carry-lookahead tree to perform
the addition in parallel.

In the following we assume that a mask register
specifying the boundaries of a segment is loaded prior
to the addition. This means that a separate instruc-
tion loads the mask register corresponding to the seg-
ment boundaries. This is assumed to be a one time
operation whenever one wants to change the precision
of the operands. In view of the above mentioned facts
the equations for k i , gi, Kl,n, P1,n and Gl,, can be
used without any modification. The equation for pi
however has to be modified and is given by:

where Mn-l Mn-z . . . MO is the mask register. Mi
is '1' if the boundary of the sub-datatype to which
the bit belongs is to the immediate right. Here it
is assumed that the rightmost bit is the least signifi-
cant bit. The digit mapping function of a conventional
carry-lookahead adder given in equation 5 also has to
be modified for a arbitrary precision packed data type
adder and is given by:

Si = Ai @ Bi n/r,.Ci (11)

An arbitrary precision addition scheme can now be
built around existing carry lookahead adder circuit
since the scheme does not affect the logic of the circuit
that actually computes the Cis.

The scheme discussed so far ignores block carries
generated by a sub-datatype and is not considered
a critical problem in non-media applications. How-'
ever, the block carry generated may become neces-
sary to implement saturating arithmetic wherein the
packed sub-datatype is saturated to the maximum in-
teger value with the precision specified by the mask
register. An interesting observation is that the block
carries generated by each sub-datatype of the packed
operand appears as the carry at the least significant
bit of the block immediately to the left (The least sig-
nificant bit is assumed to be at the right of the packed

131

operand). Thus the set of block carries can be gener-
ated in a register (carry register) by performing Mf.Ci
and shifting the result right by one. The equation to
generate the block carry at the most significant sub-
datatype of a n-bit register has to be however com-
puted independently as:

cn = (&I+ Pn-1 .Cn-1) (12)

Segmented addition schemes can be easily extended
to multiply two arbitrary-boundary packed operands.
In particular, if we consider the carry save adder
(CSA) based multiplier of Santoro [9], segmented mul-
tiplication can be performed by casting the addition
of partial products as segmented additions. While we
we will not delve into the details of this scheme in this
paper, it is sufficient to mention that in the multiplier
reported in [9], partial products are added along the
columns using a tree of 4 + 2 compressors to derive
the SUM and CARRY words. These are later added
to form the result of the multiplication. In the context
of the discussion so far, the mask register can be used
to generate the partial products appropriately. The
SUM and CARRY results obtained using the normal
4 -+ 2 trees can then be added using the adder pro-
posed earlier.

4 Comparison with Similar Adders
Brent et al. [7] give a pipelined scheme for imple-

menting addition of large n-bit numbers as a sum of
n/w w-bit numbers with the results of a lesser signif-
icant w-bit addition combined with the results of the
next higher w-bit addition in a pipelined fashion. One
can inhibit carries generated by every w-bit partition
to implement a packed addition of 12/20 numbers in an
n-bit register. A problem with such an approach with
current technologies is that the latch delays can far
outweigh the gate delays of such a pipelined adder.
Even if such a scheme were feasible, the value of w
is defined at the time of implementation and hence
cannot be programmed by an application program-
mer. The segmented carry-lookahead scheme outlined
above aims at giving the programmer the choice of
programming his application with operand precision
equal to that demanded by the application.

5 Conclusion
In this paper we have motivated the need for sup-

porting arithmetic on the native datatypes of an
application and also the need to let the program-
mer/application decide the precision of operands in
arithmetic. We have also presented an addition
scheme with very little hardware overhead over con-
ventional carry-lookahead adders.

Acknowledgments
Thanks are due to Prof. V. Visvanathan, whose

suggestions helped focus the presentation of the paper.

References
Alex Peleg, Sam Wilkie and Uri Weiser, “Intel
M M X for Multimedia PCs”, Communications of
the ACM, Vol. 40, No. 1, January 1997, pp 25-38.

Marc Trembley, J. Michael O’Connor, V.
Narayanan, Liang He, “VIS Speeds New Media
Processing”, IEEE Micro, August 1996, pp 10-20.

Ruby B. Lee, “Subword Parallelism with MAX-d”,
IEEE Micro 16,4, August 1996, pp 51-59.

Ruby B. Lee, “Accelerating Multimedia with En-
hanced Microprocessors’’, IEEE Micro 1995.

Sunil Nanda, “Media Processors”, Proceedings of
the loth International Conference on VLSI De-
sign.

Craig Hansen, ‘LMicro Unity’s MediaProcessor Ar-
chitecture”, IEEE Micro, Auguest 1996, pp 34-41.

Richard P. Brent and H. T. Kung, “A Regular
Layout for Parallel Adders”, IEEE Transactions
on Computers, Vol. C-31, No. 3, March 1982.

F. Thomson Leighton, “Introduction to Paral-
lel Algorithms and Architectures ”, Morgan Kauf-
mann Publishers, San Mateo California, 1992.

Mark Ronald Santoro, “Design and Clocking
VLSI Multipliers”, Technical Report No. CSL-
TR-89-397, Stanford University, Computer Sys-
tems Laboratory, October 1989.

[lo] Peter Kornerup, “Digit-Set Conuersions: Gener-
alizations and Applications ”, IEEE Transactions
on Computers, Vol 43, No. 5, May 1994.

[ll] R. E. Ladner & M. J. Fischer, “ParalZel Prefix
Computation”, Journal of the ACM, Vol 27, No.
4, October 1980, pp 831-838.

132

