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Abstract: Numerical simulation and inversion imaging are essential in geophysics exploration.
Fourier transform plays a vital role in geophysical numerical simulation and inversion imaging,
especially in solving partial differential equations. This paper proposes an arbitrary sampling Fourier
transform algorithm (AS-FT) based on quadratic interpolation of shape function. Its core idea is
to discretize the Fourier transform integral into the sum of finite element integrals. The quadratic
shape function represents the function change in each element, and then all element integrals are
calculated and accumulated. In this way, the semi-analytical solution of the Fourier oscillation
operator in each integral interval can be obtained, and the Fourier transform coefficient can be
calculated in advance, so the algorithm has high calculation accuracy and efficiency. Based on the
one-dimensional (1D) transform, the two-dimensional (2D) transform is realized by integrating the
1D Fourier transform twice, and the three-dimensional (3D) transform is realized by integrating the
1D Fourier transform three times. The algorithm can sample flexibly according to the distribution of
integrated values. The correctness and efficiency of the algorithm are verified by Fourier transform
pairs. The AS-FT algorithm is applied to the numerical simulation of magnetic anomalies. The
accuracy and efficiency are compared with the standard Fast Fourier transform (standard-FFT) and
Gauss Fast Fourier transform (Gauss-FFT). It shows that the AS-FT algorithm has no edge effects
and has a higher computational speed. The AS-FT algorithm has good adaptability to continuous
medium, weak magnetic catastrophe medium, and strong magnetic catastrophe medium. It can
achieve the same as or even higher accuracy than Gauss-FFT through fewer sampling points. The
AS-FT algorithm provides a new means for partial differential equation solution in geophysics. It
successfully solves the boundary problems, which makes it an efficient and high-precision Fourier
transform approach with promising applications. Therefore, the AS-FT algorithm has excellent
advantages in solving partial differential equations, providing a new means for solving geophysical
forward and inverse problems.

Keywords: arbitrary sample; Fourier transform; numerical simulation of magnetic anomalies; shape-
function interpolation

1. Introduction

Fourier transform is an essential tool in the geophysical field, and is of great significance
for high-precision numerical simulation and near-surface high-resolution imaging [1–3]. It
converts time signals to the frequency domain or spatial signals to the wavenumber domain.
It can make fast convolution, target recognition, and other algorithms easy to implement. It
is also widely used in waveform analysis, sequence, linear-equation-solving disciplines,
and engineering fields [4–6].

In 1965, the release of the Cooley–Tukey fast Fourier transform (FFT) algorithm re-
duced the complexity of the Fourier transform from O(N2) to O(N log2(N)) (where N
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represents the scale of the problem), opening up a new field for digital signal processing [7].
Rader proposed that when N is a prime number, DFT calculation can be transformed into
cyclic convolution by rearranging the data, which significantly improves the efficiency
of the discrete Fourier transform algorithm [8]. Winograd used convolution to calculate
DFT, showed a deep correlation between convolution and Fourier transform, and clari-
fied the minimum number of multiple convolutions required for cyclic convolution. The
above Fourier transform requires uniform sampling [9]. To realize the Fourier transform
algorithm with non-uniform sampling, Dutt and Rokhlin developed a fast Fourier trans-
form algorithm on non-uniform nodes based on the interpolation of the quick multipole
method [10]. Beylkin improved the NUFFT algorithm proposed by Dutt and Rokhlin [11].
Subsequently, some scholars conducted further relevant research to improve the accuracy
and efficiency of the non-uniform fast Fourier transform (NUFFT) algorithm [12,13]. With
the significant improvement of NUFFT algorithm’s accuracy and efficiency, a series of
NUFFT open-source libraries were proposed accordingly [14–20]. Barnett et al. further op-
timized NUFFT based on the “semicircular kernel index” and developed a parallel version
(FINUFFT), which is significantly more efficient than NUFFT and has the advantage of
small memory occupation [21]. The optimized NUFFT algorithm provides a suitable means
for numerical problems requiring non-uniform sampling. Fourier transform with uniform
or non-uniform sampling provides a good tool for solving many practical problems.

Fourier transform is widely used in geophysical numerical simulation. FFT provides
an efficient way to solve geophysical problems, but its edge effects are apparent, affecting
data processing [22]. To overcome the edge effects of FFT, Wu and Tian proposed Gauss-
FFT technology based on shift sampling [23], which significantly improved the calculation
accuracy of FFT and weakened the edge effects, realizing efficient and high-precision
calculation of three-dimensional gravity and magnetic field forward modeling [24,25].
Ouyang and Chen applied the Gauss-FFT method to the numerical simulation of a 3D
strong magnetic field integral equation. They obtained a high-precision solution using
the iterative method, avoiding the influence of zero wavenumbers and improving the
forward modeling efficiency [26]. Fan et al. applied non-uniform Fourier transform to
electromagnetic scattering problems, which has advantages in solving the issues of non-
uniform scatterers and sharp discontinuities [27]. Wu et al. used Gauss-FFT and NUFFT
to solve the gravity potential based on the prism model and found that NUFFT solved
the singularity problem at zero wavenumbers and had high accuracy [28]. Zhou et al.
proposed an FFT algorithm based on cubic spline interpolation that can sample flexibly
and apply its results to the forward modeling of gravitational and magnetic potential fields.
However, this method’s discrete Fourier transform coefficients are related to the values at
discrete points. The efficiency is not dominant for the algorithm that needs iteration [29].
Wang et al. applied the NUFFT algorithm based on Gaussian interpolation to 2D gravity
numerical simulation and achieved good results [30]. Ouyang et al. applied non-uniform
Fourier transform to seismic wave field forward modeling and it performed well [31]. Wang
et al. used a 1D NUFFT algorithm for 2D magnetic numerical simulation and the effect
was relatively good [32]. However, the efficiency and accuracy of the Fourier transform
algorithm can still be improved.

To sum up, standard-FFT is greatly affected by edge effects and spectrum aliasing [33].
Although Gauss-FFT is less affected by edge effects, the total number of wavenumbers
increases due to offset sampling, which reduces the computational efficiency, and both
algorithms need uniform sampling [26,34]. NUFFT algorithm realizes the non-uniform
sampling of the Fourier transform, which is an excellent innovation of Fourier transforms
but is still greatly affected by edge effects [32].

To solve these problems, we propose an arbitrary sampling Fourier transform (AS-FT)
method based on shape-function interpolation. First, the Fourier transform integral is
discretized into the sum of multiple elements, and the original function in each element
adopts shape-function interpolation to represent the change. Combined with the kernel in
the Fourier transform (natural base exponential function), the semi-analytical solution of
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the element integral is obtained. Then all the element integrals are accumulated to obtain
the Fourier transform integral. According to the properties of repeated integrals, the 2D
Fourier transform integral is realized integrating the 1D Fourier transform twice, and the
3D Fourier transform integral is realized by integrating the 1D Fourier transform three
times. In this method, the element can be divided arbitrarily, and it can be divided flexibly
according to the trend of the original function. The semi-analytical solution can be obtained
using integral element calculation. Because the integral calculation is accurate, there are
no edge effects. Flexible sampling is performed according to the integrated function trend,
so fewer wavenumbers are selected and the calculation efficiency is higher. Then, the
2D AS-FT algorithm is applied to the 3D weak magnetic and strong magnetic numerical
simulation algorithm, and the algorithm’s effectiveness is verified.

2. Methods

The AS-FT method based on shape-function interpolation discretizes the Fourier
transform integral into the sum of multiple elements. The function in each element uses
shape-function interpolation, obtains the semi-analytical solution of the element integral,
and finally adds all the element integrals to the Fourier transform solution. The multi-
dimensional Fourier transform is realized by multiply integrating the 1D Fourier transforms.

2.1. 1D AS-FT

One-dimensional Fourier forward transform and inverse transform can be expressed
as [35]: {

F(kx) =
∫ ∞
−∞ f (x)e−ikx xdx

f (x) = 1
2π

∫ ∞
−∞ F(kx)eikx xdkx

. (1)

where kx represents the wavenumbers in the direction of x. f (x) is a spatial domain
function and F(kx) is a wavenumber domain function. f (x) and F(kx) are each other’s
Fourier transform functions.

Discretize the forward transform integral in the Equation (1)

F(kx) =
M

∑
j=1

∫
ej

f (x)e−ikx xdx. (2)

where M represents the number of elements and ej represents the jth element.
The interpolation function of the AS-FT algorithm in this paper can be linear, quadratic,

cubic, or higher-order. The higher the degree of the interpolation function, the stronger
the ability of a polynomial function to approximate complex function, and the higher
the calculation accuracy of the integral is. This section takes quadratic shape-function
interpolation as an example to introduce the arbitrary Fourier transform algorithm. A
quadratic interpolation shape function is used in the element. Suppose that the coordinates
of three nodes in any element are x1, x2, and x3, and x2 is the midpoint, which meets
x1 + x3 = 2x2. The nodes in the element are shown in Figure 1:
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Figure 1. Schematic diagram of elements and nodes in the element.

The values on each node are f (x1), f (x2), f (x3), respectively. f (x) can be expressed
by a quadratic shape function [36]

f (x) = N1 f (x1) + N2 f (x2) + N3 f (x3), (3)
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where,
N1 = (x−x2)(x−x3)

(x1−x2)(x1−x3)

N2 = (x−x1)(x−x3)
(x2−x1)(x2−x3)

N3 = (x−x1)(x−x2)
(x3−x1)(x3−x2)

(4)

Therefore, Equation (2) can be rewritten as

F(kx) =
M

∑
j=1

[
∫ x3

x1

N1 f (x1)e−ikx xdx +
∫ x3

x1

N2 f (x2)e−ikx xdx +
∫ x3

x1

N3 f (x3)e−ikx xdx]. (5)

Let W1 =
∫ x3

x1
N1e−ikx xdx, W0

2 =
∫ x3

x1
N2dx and W3 =

∫ x3
x1

N3e−ikx xdx be the node
coefficients of the Fourier transform in the element; then the Equation (5) is abbreviated as

F(kx) =
M

∑
j=1

[ f (x1)W1 + f (x2)W2 + f (x3)W3]. (6)

When the wavenumber kx is not equal to 0, the Fourier transform node coefficients
in the element can be obtained by substituting Equation (4); see Appendix A Equations
(A1)–(A3) for details.

When the wavenumber kx is equal to 0, W0
1 =

∫ x3
x1

N1dx, W0
2 =

∫ x3
x1

N2dx,
W0

3 =
∫ x3

x1
N3dx can be integrated to obtain the node coefficient of the Fourier transform at

zero wavenumbers as 
W0

1 = 1
6 (x3 − x1)

W0
2 = 2

3 (x3 − x1)

W0
3 = 1

6 (x3 − x1)

. (7)

The final result of the 1D Fourier transform can be obtained by adding up the semi-
analytical expressions of different elements. Notably, when the spatial domain and fre-
quency domain partitions are unchanged, the Fourier transform node coefficients W1, W2,
W3, W0

1 , W0
2 , and W0

3 are unchanged. Calculating and storing the Fourier transform coeffi-
cients in advance can reduce repeated calculations and improve the algorithm’s efficiency,
which is also one of the advantages of this algorithm.

In addition, because the forward and inverse transform have the same form, the
final expression result of the inverse Fourier transform is similar to the forward transform
expression, so it will not be introduced.

2.2. 2D AS-FT

Two-dimensional Fourier forward transform and inverse transform are performed on
function f (x, y), respectively [29]:{

F(kx, ky) =
∫ ∞
−∞

∫ ∞
−∞ f (x, y)e−i(kx x+kyy)dxdy

f (x, y) = 1
4π2

∫ ∞
−∞

∫ ∞
−∞ F(kx, ky)ei(kx x+kyy)dkxdky

. (8)

where kx and ky represent the wavenumbers in the direction of x and y. f (x, y) is a spatial
domain function and F(kx, ky) is a wavenumber domain function. f (x, y) and F(kx, ky) are
each other’s Fourier transform functions.

For the Fourier transform integral of Equation (8), because the kernel function is
continuous in the integral interval, the double integral can be converted into two one-
dimensional integrals: first, a one-dimensional integral in the x direction is performed, then
a one-dimensional integral in the y direction, and then the 2D Fourier transform is realized.

Taking the forward Fourier transform in Equation (8) as an example, a one-dimensional
Fourier transform for the x direction is first made:

Fx(kx, y) =
∫ ∞

−∞
f (x, y)e−ikx xdx. (9)
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Then a 1D Fourier transform of the y direction is performed:

F(kx, ky) =
∫ ∞

−∞
Fx(kx, y)e−ikyydy. (10)

The integrals of Equations (9) and (10) above are solved by a 1D Fourier transform.
The process of 2D inverse transform is the same as th forward transform, and will not be
repeated.

2.3. 3D AS-FT

A three-dimensional Fourier forward transform and inverse transform are performed
on function f (x, y, z), respectively:{

F(kx, ky, kz) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ f (x, y, z)e−i(kx x+kyy+kzz)dxdydz

f (x, y, z) = 1
8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ F(kx, ky, kz)ei(kx x+kyy+kzz)dkxdkydkz

. (11)

where kx, ky, and kz represent the wavenumbers in the directions x, y, and z. f (x, y, z) is a
spatial domain function and F(kx, ky, kz) is a wavenumber domain function. f (x, y, z) and
F(kx, ky, kz) are each other’s Fourier transform functions.

For the Fourier transform integral of Equation (11), similarly, since the kernel function
is continuous in the integral interval, the triple integral can be converted into three one-
dimensional integrals. First, the x-directional one-dimensional integral is performed, then
the y-directional one-dimensional integral on this basis, and finally the z-directional one-
dimensional integral, to realize the 3D Fourier transform.

Taking the forward Fourier transform in Equation (11) as an example, first a 1D Fourier
transform is performed for the x direction:

Fx(kx, y, z) =
∫ ∞

−∞
f (x, y, z)e−ikx xdx. (12)

Then a 1D Fourier transform of the y direction is performed:

Fxy(kx, ky, z) =
∫ ∞

−∞
Fx(kx, y, z)e−ikyydy. (13)

Finally, one-dimensional integration in the z direction is performed on (13) to complete
the Fourier transform in the z direction:

F(kx, ky, kz) =
∫ ∞

−∞
Fxy(kx, ky, z)e−ikzzdz. (14)

The integrals of Equations (12)–(14) above are solved by a 1D Fourier transform. The
process of the three-dimensional inverse transform is the same as the forward transform,
and will not be repeated.

The AS-FT algorithm calculates the Fourier transform coefficients in advance. It can
flexibly set the sampling interval according to the distributions of field and spectrum,
sparsely, and encrypt the sampling points according to demand. At the same time, the
semi-analytical solution of the Fourier oscillation operator can be obtained in the integral
interval, which improves the accuracy and efficiency of the Fourier transform.

3. Sampling Rules

The AS-FT method regards Fourier transform as an integral, discretizes the integral,
fits the original function with a shape function in each element, obtains the semi-analytical
expression of the element, and then obtains the Fourier transform solution. Therefore, the
essence of the sampling rule is the fitting degree of the element subdivision to the integrand
function. This section uses the quadratic interpolation shape function as an example to
introduce arbitrary Fourier transform sampling rules.
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3.1. Forward Transform Sampling Rules

The forward transform sampling rules are related to the distribution of the integrand
function in the spatial domain. If the function in the spatial domain changes rapidly, the
subdivision needs to be encrypted. If the change in the spatial function is relatively gentle,
it can be appropriately sparse. Set the space domain sampling interval as ∆xj, the sampling
element number as N, and the number of sampling points as 2N + 1. Set the first sampling
point coordinate and the space domain sampling coordinate as xj

x2j−1 = x0 + j∆xj
x2j = x0 + (j + 1)∆xj
x2j+1 = x0 + 2j∆xj

j = 1, 2, · · · , N. (15)

If the sampling interval is uniform, ∆xj is the fixed value; if the sampling interval
is non-uniform, ∆xj will have different values in different intervals. Set the minimum
sampling interval as ∆xmin and the maximum sampling interval as ∆xmax.

3.2. Inverse Transform Sampling Rules

The inverse transform sampling is related to the distribution of the spectrum. The sub-
division is flexible, and it is associated with the sampling in the spatial domain. According
to the sampling theorem, the maximum value in the wavenumber domain is

kmax =
π

∆xmin
. (16)

kmax is also the cut-off frequency, and sampling within this cut-off frequency can ensure
that all spectrum information can be sampled. When the spectrum changes violently, the
maximum wavenumber needs to reach kmax. When the spectrum changes slowly and the
energy is relatively concentrated, the maximum wavenumber range does not need to reach
kmax to reduce the number of sampling points to improve the calculation efficiency.

Sampling in the wavenumber domain is divided into uniform sampling and non-
uniform sampling. According to the discrete Fourier transform sampling theorem, when
sampling uniformly, the wavenumber arrangement is expressed as

k j = p∆k, j = 1, 2, · · · , M. (17)

where, kj is the wavenumber arrangement, j is the sequence number of sampling points, ∆k
is the sampling interval, and M is the sampling points in the wavenumber domain. When
the number of sampling points M is even, p is

p = −M
2

,−M
2

+ 1, · · · ,−1, 0, 1, · · · ,
M
2
− 1. (18)

When the number of sampling points M is odd, p is

p = −M− 1
2

,−M− 1
2

+ 1, · · · ,−1, 0, 1, · · · ,
M− 1

2
. (19)

In the case of non-uniform sampling, there are two commonly used methods: piece-
wise uniform sampling and logarithmic interval uniform sampling. Piecewise uniform
sampling is based on uniform subdivisions, encrypted in several intervals where the spec-
trum changes violently and the energy is strong, and sparse in the intervals where the
spectrum changes slowly. Logarithmic interval uniform sampling applies to the spectrum
concentration in the region with a small wavenumber and the rapid attenuation of en-
ergy as the wavenumber increases, or the energy concentration in the region with a large
wavenumber and the rapid attenuation of energy as the wavenumber decreases.
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For logarithmic interval sampling, set the wavenumber selection range as [−kmax, kmax],
the number of sampling points in the wavenumber domain as 2M + 1, and sample uniformly
in the logarithmic domain with a sampling interval of

∆k =
lg(kmax)− lg(kmin)

M
. (20)

where kmin is a small value, generally 10−6 ∼ 10−3.
The arrangement of wavenumbers on [−kmax, 0] is

−kmax, ∼ −10lg(kmin)+(M−1)∆k ∼ −10lg(kmin)+(M−2)∆k ∼ · · · ∼ −10lg(kmin)+∆k ∼ 0. (21)

The arrangement of wavenumbers on [0, kmax] is

0 ∼ 10lg(kmin)+∆k ∼ 10lg(kmin)+2∆k ∼ · · · ∼ 10lg(kmin)+(M−1)∆k ∼ kmax. (22)

If some parts of the spectrum change slowly and some parts change violently, uniform
and non-uniform sampling can be combined to improve the calculation accuracy and
efficiency effectively.

To sum up, forward and inverse Fourier transform sampling rules are mainly based
on the change law of the transform function. The sampling with fast energy change is
encrypted, and the sampling with slow energy change is sparse. Flexible sampling can
consider both calculation accuracy and calculation efficiency.

4. Algorithm Analysis

The algorithm in this paper is written in Fortran95; the development platform is
VS2019 under the Windows system, the compiler is IVF2020, and it is carried out on a
personal computer with Intel i7 Core 2.3 Ghz and 32 GB RAM.

4.1. Verification of the AS-FT

The simplified Gaussian function verifies the 1D, 2D, and 3D methods of the AS-FT.
The spatial domain and wavenumber domain expressions of the Gaussian function are
shown in Table 1, where a = 0.001. The sampling range of spatial domain x, y, z, and
wavenumber domain kx, ky, kz are shown in Table 1. The forward and inverse transform
are uniformly sampled, and the number of sampling points is 101.

Table 1. Gaussian function expression and sampling range in spatial domain and wavenumber domain.

Spatial Domain Wavenumber Domain Spatial Domain
Sampling

Wavenumber
Domain Sampling

1D f (x) = e−ax2
F(kx) =

√
π/ae−kx

2/4a (−100 m, 100 m) (−0.2, 0.2)

2D f (x, y) = e−a(x2+y2) F(kx, ky) = (π/a)e−(kx
2+ky

2)/4a (−100 m, 100 m) (−0.2, 0.2)

3D f (x, y, z) = e−a(x2+y2+z2) F(kx, ky, kz) =
√

π3/a3e−(kx
2+ky

2+kz
2)/4a (−100 m, 100 m) (−0.2, 0.2)

The forward transform result is shown in Figure 2. Compared with the analytical
solution, the Relative root mean square (Rrms) error [25] of the 1D forward transform result
is 0.012‰, the Rrms error of the 2D forward transform result is 0.016‰, and the Rrms error
of the 3D forward transform result is 0.020‰.

The inverse transform result is shown in Figure 3. Compared with the analytical
solution, the Rrms error of the 1D inverse transform result is 0.005‰, the Rrms error of
the 2D inverse transform result is 0.008‰, and the Rrms error of the 3D inverse transform
result is 0.011‰. To sum up, the forward and inverse transform of the AS-FT method has
high accuracy.
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Figure 2. The numerical solution, analytical solution, and relative error of the forward transform.
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4.2. Efficiency Analysis

Based on the Fourier transform pair of the Gaussian distribution function, the time
of 1D, 2D, and 3D arbitrary Fourier transform was counted by changing the number of
sampling points. Because the forward and inverse Fourier transform algorithms are similar,
only the positive transform is taken as an example, and the results are shown in Figure 4.
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The number of sampling points in the wavenumber domain is the same as that in the
spatial domain. As the number of sampling points in the spatial domain increases, the time
required for 1D, 2D, and 3D AS-FT increases linearly, and the algorithm performs well.

5. Results

In this section, the proposed 2D AS-FT algorithm is applied to the 3D space-wavenumber
domain numerical simulation of weak and strong magnetic fields in exploration geophysics
to test the adaptability and efficiency of the AS-FT algorithm [33,34,37].

5.1. Theory of Magnetic Field Modeling in Space-Wavenumber Domain

The modeling theory of magnetic fields in the space-wavenumber domain reduces
the 3D partial differential equation satisfied by the magnetic potential to a 1D ordinary
differential equation independent of different wavenumbers by performing a 2D Fourier
transform in the horizontal direction that reduces the amount of calculation and storage
requirements. The vertical direction is reserved as the spatial domain, and the density
of the elements can be adjusted according to the actual situation, which can consider the
calculation accuracy and efficiency [37].

The magnetic potential Ua and magnetization M of the magnetic anomaly field meet
the 3D partial differential equation in the spatial domain [38]:

∇2Ua(x, y, z) = ∇ ·M. (23)

where (x, y, z) are the coordinates of observation points; ∇2 is the Laplace operator
and ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ; ∇ ·M refers to the divergence of magnetization M and
∇· = ∂/∂x + ∂/∂y + ∂/∂z.
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The magnetization M is expressed as

M = χ(H0 + Ha) + Jr. (24)

where H0(A/m) is the background magnetic field, and Ha(A/m) is the magnetic field of
the induction magnetization of the magnetic body, that is, the intensity of the abnormal
field. The total field is H, obtained by H = H0 +Ha. Jr(A/m) is the residual magnetization.

The horizontal 2D Fourier transform was performed on Equation (23), and a 1D
ordinary differential equation was obtained, satisfied by the abnormal magnetic potential
in the space-wavenumber domain

∂2Ũa

∂z2 − k2Ũa = ikx M̃x + iky M̃y +
∂M̃z

∂z
. (25)

The 1-D FEM was used to solve the above ordinary differential equations. The mag-
netic field solution can be obtained using the derivative relationship between the magnetic
potential and the magnetic field.

It should be pointed out that when the magnetic susceptibility of the abnormal body is
less than 0.01 SI, it is a weak magnetic situation, and the abnormal field Ha can be ignored.
The literature [37] analyzes the numerical simulation algorithm of the weak magnetic field
in the space-wavenumber domain based on Gauss-FFT and the standard expanded FFT
method, which will not be repeated here. The weak magnetic field can be obtained by
directly solving Equation (25).

When the magnetic susceptibility of the abnormal body is larger than 0.01 SI, it is a
strong magnetic situation, Ha cannot be ignored, and Equation (25) can be solved by the
iterative method [26].

5.2. Efficiency Comparison of Different Fourier Transform Methods

Based on the 3D numerical simulation algorithm of a magnetic anomaly in the space-
wavenumber domain [37], the model was designed and simulated by the standard-FFT,
Gauss-FFT [24], and AS-FT method proposed in this paper.

The background magnetic field H0 is 50,000 nT, the magnetic inclination is 58.3◦, and
the magnetic declination is 45◦. The model is shown in Figure 5.
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Figure 5. Prism model. The calculation area is 1000 m× 1000 m× 1000 m, with ranges 6f−500–500 m
in the x direction, −500–500 m in the y direction, and 0–1000 m in the z direction. The prism anomaly
is a cube with a side length of 400 m, and the prism’s center coincides with the model’s center. The
magnetic susceptibility of the prism is 0.01 SI.



Appl. Sci. 2022, 12, 12706 11 of 22

Conditions for comparison of three Fourier transform methods:

a. Ke is the expansion coefficient of standard-FFT, and the expression is as follows:

Ke =
S
d

, (26)

where S refers to the outward expansion distance from the boundary of the simulation
area, and d refers to the burial depth of the abnormal body. Ke is taken as 2, 5, and
8, respectively.

b. The Gauss points of Gauss-FFT are 2, 3, and 4, respectively.
c. The sampling points in the spatial and wavenumber domains of AS-FT are the same

and uniformly sampled.

Gauss-FFT, standard-FFT, and AS-FT algorithms had 101 sampling nodes in the z
direction, and the sampling was uniform.

The number of nodes was changed in the horizontal direction, and the efficiency of
the three methods and the Rrms error of the ground field value (z = 0 m) were compared,
as shown in Table 2.

Table 2. Efficiency and accuracy statistics of three Fourier transform algorithms (Nz = 101).

Methods
Nx × Ny or
Nkx × Nky N or Ke

Rrms (%)
Time (s)

Bax Bay Baz

Gauss-FFT 201 × 201
N = 2 5.89 5.89 3.95 6.42
N = 3 0.58 0.58 1.32 15.05
N = 4 0.08 0.08 0.24 30.35

Standard-FFT
301 × 301 Ke = 2 1.76 1.76 4.97 2.86
601 × 601 Ke = 5 0.23 0.23 0.67 11.12
901 × 901 Ke = 8 0.07 0.07 0.23 39.51

AS-FT
51 × 51 / 1.21 1.21 1.08 0.14

101 × 101 / 0.09 0.09 0.23 0.60
201 × 201 / 0.02 0.02 0.11 2.53

According to Table 2, the number of sampling points of Gauss-FFT in the horizontal
direction of the spatial domain is 201 × 201; when the Gaussian point in the wavenumber
domain is 4, the Rrms of the Bax, Bay, Baz reach 0.08%, 0.08%, 0.24%, but it takes 30.35 s.
When Ke = 8, the accuracy of standard-FFT is the same as that of Gauss-FFT with 4 points,
but it takes 39.51 s. When the sample points of spatial and wavenumber domain are
201 × 201, the AS-FT algorithm takes only 2.53 s, and the Rrms of Bax, Bay, Baz are 0.02%,
0.02%, and 0.11%, respectively.

Therefore, the efficiency and accuracy of the AS-FT algorithm proposed in this paper
are better than those of Gauss-FFT and standard-FFT.

5.3. Experiments

The weak magnetic continuum model, weak magnetic catastrophe medium model,
and strong catastrophe medium model were designed. Continuous medium and abrupt
medium are distinguished by whether the magnetic susceptibility of the abnormal body
changes suddenly with the coordinate. The numerical simulation of magnetic anomalies in
the space-wavenumber domain based on a 2D AS-FT algorithm was adopted. We tested the
applicability of AS-FT to numerical simulation under weak magnetic and strong magnetic
conditions, and analyzed the numerical simulation effect of the AS-FT algorithm.

5.3.1. Weak Magnetic Continuous Medium

The continuous medium model was designed a with background magnetic field of
50,000 nT, a magnetic inclination of 45◦, and a magnetic declination of 5.9◦. The calculation
area was 20 km× 20 km× 10 km, with a range of−10–10 km in the x direction, −10–10 km
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in the y direction, and 0–10 km in the z direction. The horizontal magnetic susceptibility
changed continuously, and the relationship between magnetic susceptibility and space is
shown in Figure 6. The relationship between magnetic susceptibility of the abnormal body
and space coordinates is:

χ = 0.02× e−5×10−8×(x2+y2)SI. (27)
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Figure 6. Magnetic susceptibility varying with horizontal coordinates. It represents the magnetic
susceptibility change in each layer of the continuous model, and the magnetic susceptibility of
different layers is the same.

The x, y, and z directions are sampled uniformly. There were 101 nodes in each direction.
The spectrum distribution of the anomaly field at different depths of the model is

shown in Figure 7. By analyzing the spectral distribution of the anomaly field to varying
depths of the model and selecting the wav enumber, the efficiency and accuracy of the
numerical simulation can be guaranteed. In Figure 7, the horizontal ordinate adopts non-
logarithmic and logarithmic coordinates, and the maximum value is the cut-off frequency,
which is obtained according to the sampling theorem. It can be seen that the spectral energy
decays to 0 at the cut-off frequency. The spectral energy is different at different depths, but
the basic trend is the same.

To analyze the 3D distribution of the spectrum, the distribution of the magnetic
anomaly spectrum at the position of z = 3 km was taken, as shown in Figure 8. It can be
seen through the spectrum distribution that the continuous model spectrum is concentrated,
the changing trend is gentle, and there is almost no vibration. To reduce the number of
wavenumbers, it is not necessary to sample to the cut-off frequency, which can also ensure
the algorithm’s accuracy. Combined with Figures 7 and 8, the wavenumber selection range
can be set as −1.55 × 10−3–1.55 × 10−3, with uniform sampling.

The numerical simulation results based on Gauss-FFT (4 Gaussian points) with
201 × 201 × 101 sampling points were used as a reference to measure the calculation accu-
racy of the AS-FT algorithm when different mesh divisions and wavenumbers were selected.

The sampling points in the spatial domain and wavenumber domain were 51 × 51 × 101
and 101 × 101 × 101, respectively, and the samples are uniformly sampled. The accuracy
is shown in Table 3. It can be seen that 51 × 51 × 101 nodes achieved high accuracy, and
101 × 101 × 101 nodes achieved higher accuracy.
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Table 3. Accuracy statistics of different sampling points between −1.55 × 10−3–1.55 × 10−3 in the
wavenumber domain (z = 0 m, Nz = 101, uniform sampling in both spatial and wavenumber domain).

Number of Sample Rrms Error (%)

Spatial Domain
Nx × Ny

Wavenumber Domain
Nkx × Nky Bax Bay Baz

51 × 51 51 × 51 0.23 0.73 0.99
101 × 101 101 × 101 0.03 0.06 0.08

When the number of samples was 101 × 101 × 101, the contour map of the numerical
solution results of AS-FT and Gauss-FFT are shown in Figure 9. The contour lines are in
good agreement, indicating that AS-FT has good adaptability to weak magnetic continuous
media. The AS-FT algorithm can achieve higher accuracy with fewer sampling points.
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Figure 9. Comparison of continuum model between AS-FT and Gauss-FFT results (z = 0 m).

5.3.2. Weak Magnetic Catastrophe Medium

A weak magnetic catastrophe medium model was designed, with a background
magnetic field of 50,000 nT, a magnetic inclination of 45◦, and a magnetic declination of
5.9◦. The model is shown in Figure 10. The x, y, and z directions are sampled uniformly in
the spatial domain, and the number of nodes in each of the three directions is 101.
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Figure 10. Sphere catastrophe model. The calculation area is 500 m × 500 m × 500 m, with a range of
−250 m–250 m in the x direction, −250 m–250 m in the y direction, and 0–500 m in the z direction.
The center of the abnormal sphere model is located at (0 m, 0 m, 250 m). The radius of the sphere is
100 m. The magnetic susceptibility of the sphere is 0.01 SI.



Appl. Sci. 2022, 12, 12706 15 of 22

The spectrum distribution of the anomaly field at different depths of the model is
shown in Figure 11. Since the abnormal body is in the center, the spectral distribution
of the abnormal field obtained by numerical simulation is symmetrical about z = 250 m,
so the spectral distribution of z = 0 m, 100 m, 200 m, and 250 m planes was taken for
analysis. Compared with the spectral distribution in Figure 7 of the continuous model,
the concentration of the spectrum becomes weaker, and the spectrum oscillates at large
wavenumbers but attenuates to 0 at the cut-off frequency.
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To understand the 3D spectrum, the distribution of the magnetic anomaly spectrum
at the position of z = 250 m is shown in Figure 12. According to the distribution of the
spectrum, the distribution of the weak magnetic catastrophe model spectrum is relatively
concentrated. Still, with the increase in the wavenumber, the distribution of the spectrum
fluctuates slightly. Considering the efficiency and accuracy, the wavenumber selection
range is set as −0.1–0.1.

The following tests analyzed the influence of uniform and log-domain uniform sam-
pling on the accuracy. It can be seen from Table 4 that the samples are uniformly sampled
in the range of −0.1–0.1, and the Rrms errors of the ground z = 0 m plane Bax, Bay, Baz
are 0.11%, 0.17%, and 0.22%, respectively. The samples are uniformly sampled in the log
domain of−0.1–0.1, and the Rrms errors of the ground z = 0 m plane Bax, Bay, Baz are 0.05%,
0.05%, and 0.06%, respectively.
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Table 4. Accuracy statistics of different sampling points between −0.1 and 0.1 in the wavenumber
domain (z = 0 m, Nx = Ny = Nz =101, Nkx = Nky = 101).

Wavenumber Domain Sampling Methods
Rrms Error (%)

Bax Bay Baz

Uniform 0.11 0.17 0.22
Log-domain uniform 0.05 0.05 0.06

The comparison between the numerical simulation results of log-domain sampling
and the analytical solution of the sphere is shown in Figure 13. The results show that the
AS-FT algorithm has high calculation accuracy for the catastrophe model.
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5.3.3. Strong Magnetic Catastrophe Medium

We continued to use the sphere model in Figure 10 and set the magnetic susceptibility
of the sphere to 1 SI. The other model parameters were consistent with those in Section 5.3.2.
It can be seen that the model is under strong magnetic conditions.

The spectrum distribution of the anomaly field at different depths of the model is
shown in Figure 14. Similarly, we analyzed the spectrum distribution of z = 0 m, 100 m,
200 m, and 250 m planes. Compared with the weak magnetic spectrum distribution
in Figure 11, the energy of the strong magnetic spectrum is enhanced by two orders of
magnitude, but the spectrum’s shape is the same; it is also oscillatory, and it is attenuated
to ero at the cut-off frequency.
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To understand the 3D distribution of the spectrum, the distribution of the magnetic
anomaly spectrum at the position of z = 250 m is shown in Figure 15. The strong magnetic
catastrophe model spectrum is concentrated according to the spectrum’s distribution. Still,
the oscillation is intense, the energy is strong, and the attenuation is slow. There is still
strong energy at large wavenumbers, which cannot be ignored. Therefore, to ensure
accuracy, it is necessary to expand the wavenumber selection range to −0.25–0.25.

After determining the wavenumber selection interval, we changed the spatial do-
main and wavenumber domain sample methods. The accuracy of numerical simulation
under different division methods is shown in Table 5. The number of sample nodes was
Nx = Ny = Nz = 101, and Nkx = Nky = 101, respectively.
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Table 5. Accuracy statistics of different sampling points between −0.25 and 0.25 in the wavenumber
domain (z = 0 m, Nx = Ny = Nz = 101, Nkx = Nky = 101).

Sampling Methods Rrms Error (%)
Spatial Domain Wavenumber Domain Bax Bay Baz

Uniform Uniform 1.91 1.82 1.83
Uniform Log-domain uniform 0.95 1.08 0.95

Non-uniform Piecewise uniform 0.19 0.24 0.25
Non-uniform Log-domain uniform 0.17 0.17 0.21

It can be seen from Table 5 that in the case of uniform sampling in both the space
and the wavenumber domain, the Rrms errors of Bax, Bay, Baz are 1.91%, 1.82%, and 1.83%,
respectively. In the case of uniform sampling in the spatial domain and logarithmic
sampling in the wavenumber domain the Rrms errors of Bax, Bay, Baz are 0.95%, 1.08%, and
0.95%, respectively.

Next, to better fit the abnormal body, non-uniform sampling was selected in the spatial
domain. The spatial domain was divided non-uniformly in the horizontal direction, and
the sample was densified at the abnormal sphere. The sample interval away from the
abnormal sphere was gradually increased, with the minimum grid spacing of 1 m and
the maximum grid spacing of 32 m. Its grid is shown in Figure 16a. Piecewise uniform
and log-domain sampling were adopted for the wavenumber range of −0.25–0.25. The
strategy of piecewise uniform sampling is to divide into three segments according to the
spectral energy distribution, with uniform sampling in each part. Taking the positive
wavenumber as an example, 31 nodes were taken from 0 to 0.04, 11 nodes were taken
from 0.04 to 0.1, and 11 nodes were taken from 0.1 to 0.25. The negative wavenumber
was symmetrical with the positive wavenumber, with a total of 101 nodes, as shown
in Figure 16b. When piecewise uniform sampling was adopted, after six iterations, the
Rrms errors of the numerical solution of the ground field value Bax, Bay, Baz were 0.19%,
0.24%, and 0.25% compared with the analytical solution of the strong magnetic sphere,
respectively. When piecewise uniform sampling was adopted, after six iterations, the
Rrms errors of the numerical solution of the ground field value Bax, Bay, Baz were 0.17%,
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0.17%, and 0.21%, respectively. Therefore, high accuracy can be achieved in the cases of
non-uniform sampling in the spatial domain, piecewise uniform sampling, and log-domain
sampling in the wavenumber domain. This shows that the AS-FT algorithm can realize
arbitrary samples and has high computational efficiency and accuracy.
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The comparison between the numerical simulation results and analytical solutions of
the non-uniform sample in the spatial domain and log-domain sample in the wavenumber
domain is shown in Figure 17. The isolines of the two solutions in the figure are consistent,
indicating that AS-FT is still very suitable for strong magnetic models.
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Based on the AS-FT algorithm, the 3D numerical simulation of the weak and strong
magnetic field in the space-wavenumber domain has excellent performance. The AS-FT can
obtain high-precision solutions and higher computational efficiency in fewer wavenumbers
than Gauss-FFT and standard-FFT. Compared with the continuous model, the catastrophe
model oscillates in the spectrum, and the spectrum distribution range is broader. Still, the
simple selection of wavenumbers can also calculate the model accurately. The spectrum’s
energy is enhanced from a weak magnetic to a strong magnetic field, and the calculation
accuracy can still be guaranteed by expanding the wavenumber selection interval. The
energy distribution of the strong magnetic catastrophe model is the most complex, the
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spectrum amplitude is the largest, the oscillation is violent, and the selection of wavenumber
is more complex, but a high-precision solution is obtained by non-uniform sampling. In
conclusion, AS-FT has good adaptability to the 3D numerical simulation of weak and strong
magnetic fields.

6. Discussion

In the field of exploration geophysics, the solution of partial differential equations is
one of the most important topics. However, most current algorithms for solving partial
differential equations cannot consider accuracy and efficiency, so it is necessary to propose
an efficient and high-precision solution. In this paper, we propose an arbitrary sampling
Fourier transform algorithm based on quadratic interpolation of the shape function. After
combining the AS-FT algorithm and the spatial wavenumber domain algorithm, we applied
them to the magnetic method numerical simulation to achieve high-efficiency and high-
accuracy imaging of the magnetic field [33].

We compared AS-FT, standard-FFT, and Gauss-FFT with the space-wavenumber
domain algorithm to realize magnetic field numerical simulation.

Numerical simulation based on standard-FFT and Gauss-FFT does not require wavenumber
selection, and the simulation process is relatively simple [24,26,33]. The AS-FT algorithm
in this paper can achieve high-precision simulation only when the wavenumber is selected
accurately. However, the process is relatively simple and greatly improves the algorithm’s
efficiency, which is very valuable for research.

Numerical simulation based on standard-FFT has a strong edge effect, and it often
requires edge expanding to reduce the edge effect and improve the calculation accuracy.
Still, the edge expanding constantly sacrifices calculation efficiency [33]. Numerical simula-
tion based on Gauss-FFT weakens the influence of the edge effect, but it demands more
memory with lower efficiency [33]. However, the numerical simulation based on AS-FT
has almost no edge effect. The computational efficiency is superior to the standard-FFT
and Gauss-FFT, and it can therefore achieve high-efficiency and high-precision numerical
simulation research.

Numerical simulation based on standard-FFT and Gauss-FFT can only achieve uniform
sampling. In contrast, numerical simulation based on the AS-FT algorithm can achieve
non-uniform sampling, so it can flexibly sample according to the sampling requirements,
and achieve the highest accuracy with the fewest sampling points.

Therefore, the AS-FT algorithm based on shape function interpolation proposed in
this paper provides an efficient and high-precision method of solving partial differential
equations. This algorithm does not need to expand the edge, can effectively avoid the
influence of edge effects, and can achieve non-uniform sampling. It is significant to the
development and perfection of exploration geophysics theory.

7. Conclusions

This paper proposes an arbitrary sampling Fourier transform method (AS-FT) based
on quadratic interpolation of shape function. This method calculates the Fourier transform
coefficients in advance, flexibly sets the sampling interval according to the distribution of
field and spectrum, and can obtain a semi-analytical solution in the integral interval, taking
into account both accuracy and efficiency, and there are no edge effects. The correctness and
efficiency of the algorithm were verified by Fourier transform pairs. The AS-FT algorithm
was applied to the numerical simulation of magnetic anomalies. Compared with standard-
FFT and Gauss-FFT under weak magnetic conditions, we showed that the AS-FT algorithm
has higher accuracy and efficiency. Under the condition of weak magnetic field and strong
magnetic field, it achieved higher accuracy with fewer sampling points, which shows
the high accuracy and efficiency of the AS-FT algorithm. This paper only mentions the
application of the AS-FT algorithm to magnetic anomaly simulation. It could also be
applied to gravity, electromagnetic, and seismic numerical simulation to further prove the
AS-FT algorithm’s universality.
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Combined with the spatial wavenumber domain theory, the AS-FT algorithm has
advantages in solving partial differential equations. The combination can perfectly solve
the boundary effect, realize arbitrary sampling in spatial and wavenumber domains, and
achieve efficient and high-precision solution of partial differential equations. Therefore,
the AS-FT algorithm proposed in this paper provides a new means for solving partial
differential equations with high efficiency and accuracy. It has contributed to geophysical
forward and inversion research and the improvement of exploration geophysics theory.
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Appendix A

When the wavenumber kx is not equal to 0, W1, W2, W3 in the equation are, respectively,

W1 = 1
(x1−x3)

2 [2
∫ x3

x1
x2e−ikx xdx− (x1 + 3x3)

∫ x3
x1

xe−ikx xdx + (x1 + x3)x3
∫ x3

x1
e−ikx xdx]

W2 = − 4
(x1−x3)

2 [
∫ x3

x1
x2e−ikx xdx− (x1 + x3)

∫ x3
x1

xe−ikx xdx + x1x3
∫ x3

x1
e−ikx xdx]

W3 = 1
(x1−x3)

2 [2
∫ x3

x1
x2e−ikx xdx− (3x1 + x3)

∫ x3
x1

xe−ikx xdx + (x1 + x3)x1
∫ x3

x1
e−ikx xdx]

(A1)

The integral kernel functions of W1, W2, and W3 both include x2e−ikx x, xe−ikx x, and
e−ikx x and the analytical solution of their element integral on [x1, x3] is∫ x3

x1
x2e−ikx xdx = − 1

ikx
(x3

2e−ikx x3 − x1
2e−ikx x1) + 2

kx2 (x3e−ikx x3 − x1e−ikx x1) + 2
ikx3 (e−ikx x3 − e−ikx x1)∫ x3

x1
xe−ikx xdx = − 1

ikx
(x3e−ikx x3 − x1e−ikx x1) + 1

kx2 (e−ikx x3 − e−ikx x1)∫ x3
x1

e−ikx xdx = − 1
ikx

(e−ikx x3 − e−ikx x1)

(A2)

The semi-analytical solutions of W1, W2, W3 can be obtained when kx is not equal to 0:

W1 = 1
(x1−x3)

2 [
1

ikx
(e−ikx x1(x1 − x3)

2) + 1
kx2 (e−ikx x3(x3 − x1) + 3e−ikx x1(x3 − x1)) +

4
ikx3 (e−ikx x3 − e−ikx x1)]

W2 = − 4
(x1−x3)

2 [
1

kx2 (x3 − x1)(e−ikx x3 + e−ikx x1) + 2
ikx3 (e−ikx x3 − e−ikx x1)]

W3 = 1
(x1−x3)

2 [− 1
ikx

(e−ikx x3(x1 − x3)
2) + 1

kx2 (e−ikx x3(3(x3 − x1)) + e−ikx x1(x3 − x1)) +
4

ikx3 (e−ikx x3 − e−ikx x1)]

(A3)
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