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Arbitrary Source Models and Bayesian Codebooks
In Rate-Distortion Theory

loannis KontoyiannisMember, IEEEand Junshan Zhanylember, IEEE

Abstract—\We characterize the best achievable performance respondence between uniquely decodable cggdesnd prob-
of lossy compression algorithms operating on arbitrary random  apjlity distributions,, on A™:
sources, and with respect to general distortion measures. Direct
and converse coding theorems are given for variable-rate codes KRAFT INEQUALITY : (<=) For any uniquely decodable code
operating at a fixed distortion level, emphasizing: a) nonasymp- (1n, Ly) there is a probability measur@,, on A™ such
totic results, b) optimal or near-optimal redundancy bounds, that
and c) results with probability one. This development is based
in part on the observation that there is a precise correspondence n ) n
between compression algorithms and probability measures on the Ln(aT) 2 —log Qn(z1)
reproduction alphabet. This is analogous to the Kraft inequality . . .
in lossless data compression. In the case of stationary ergodic (=) Given any probability measurg,, on A™ there is a
sources our results reduce to the classical coding theorems. As an  uniquely decodable code,,, L,,) such that
application of these general results, we examine the performance
of codes based on mixture codebooks for discrete memoryless L,(z7) < —log@Q,(«7)+1 bits, for allz7.
sources. A mixture codebook (or Bayesian codebook) is a random
codebook generated from a mixture over some class of repro- )
duction distributions. We demonstrate the existence of universal [Above and throughout the papdng denotes the logarithm
mixture codebooks, and show that it is possible tainiversally taken to base€.] In the first part of the inequality, fo€),, we
encode memoryless sources with redundancy of approximately cgn take the measure
(d/2)logn bits, where d is the dimension of the simplex of

bits, for all 7.

probability distributions on the reproduction alphabet. ny A 7—19=Ln(a})
Qn(xy) =
Index Terms—bata compression, mixture codebooks, rate-dis-
tortion theory, redundancy rate. whereZ is the normalizing constant
Z=3 ohned),
|. INTRODUCTION Z
@ AN

UPPOSE data are generated by a random process, or ) )
ource{X,; n > 1}. Roughly speaking, the main objec-Then the usual statement of the Kraft inequality saysthdt 1.

tive of data compression is to find efficient representations of 1Urning tolossycompression, we consider the problem of
data strings:? = (x1, 22 2,) by variable-length binary variable-rate coding at a fixed distortion level. More precisely,
? ? *?

strings ¢, (z7). If we let A denote thesource alphabetthen fOF €ach datastringy = (x1, 2, ..., x,) € A" produced by
the map,: A" — {0, 1}* from A" to the set of finite-length the sourcq X, }, our goal is to find an “accurate” representation
binary strings is a (variable-length) block code of lengtiThe  Of #1 by @ StrinQyr’ = (y1, ¥2, .- yn) taking values in ihee-
compression performance of such a code is described byRfgduction alphabeti. The accuracy or “distortion” between
length function two such strings is measured by a family of arbitrary distortion

measurep,,: A® x A" — [0, co), n > 1 (more precise defini-

L, (z?) = length of[s),,(«7)] bits, fora? € A™. tions will be given later).
The class of codes we consider here is the collectioradf

In losslesslata compression, the natural class of codes to cgiP/e-length codes operating at a fixed distortion leteat is,
sider is the class of uniquely decodable codgs As is well codesC,, defined by triplet{ B,,, ¢,,, ¥,,) where

known, the Kraft inequality (see, e.g., [7, p. 90]) provides a cor- g) B, is a discrete (finite or countably infinite) subsetd,
called thecodebook
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The compression performance of a c@deis described by its then more precise statements can be made about the redun-

length function dancy achieved by the corresponding codes. The converse part
N . ) (<) of the lossy Kraft inequality is based on an extension of a
£n(a)) = length of[i, (¢ (21))]  bits. simple argument that was implicitly used in [21], and the cor-

responding direct coding theorems (in contrast to the lossless
write Gy, = (Bo, ¢y s £2) OF SIMply(Chr, £r)- case) are asymptotic, and they are based on random coding ar-

The main theoretical issue of interest here is to characterglémer_]ts' In order_to _obtam the precise form of the second-order
the best achievable compression performance of such codgg.ns.‘ in the de;crlptlon Iengths (thg terms of ofldgr), extra
For stationary ergodic sources, Shannon [25], [36] gave thare 1S needed in constructing efficient codes. L
first such general characterization in terms of the rate-distorti nIn view of th_e code_s—measures correspondence_ implied by
function. In this paper, we adopt a somewhat different point € I_ossy Kraift mequal_lty, the problem Of. understanding the best
view. We take, as the starting point, a lossy version of the Krzﬂfh'evable compression performance is reduced, at least con-

inequality, and use that as the basis for the subsequent gen%?gltu?"y’ o identifying the "optimal” mea_suregsl and under-
development. This approach leads to a natural formulation nding the exact behavior of the approximate code lengths (1).

the rate-distortion question as a convex selection problem, t\rllve Wlu.see’bfhls cofrresponder}ce leads oa chla rac;ttﬁ r|zat|o?
allows us to consider, at least for part of the way, complete € achievable periormance of compression aigorithms no

arbitrary source distributions and distortion measures. ™ terms of the rate-distortion function, but in terms of a related

approach has its roots in the earlier work of Bell and Cover [g]uantityKn(D), defined as

and of Kieffer [18]. K,(D) 2 inf E-log Qu(B(X], D)) (@)

For a code”,, with associated length functiaf), we will often

A. Outline
. . . age /‘n
Our first main result (part of Theorem 1 in Section Il) is thé/vhere the infimum is over all probability measui@s 9”‘.4 o
Let us assume for a moment that the above infimum is

following lossy version of the Kraft inequality. Given a source . = .
stringz” € A" and a distortion leveD > 0, let B(z", D) achieved for somé),, = @,,. In Theorems 3 and 4, we give

denote the “distortion-ball” of radiu® centered at? (see (7) both asymptotic and finite- results on the optlmallty of the
) L measures),, and the codes they generate. First, we show that
for a precise definition).

for any codeC),, with length functior¥,, operating at distortion
LOSSY KRAFT INEQUALITY: (<) For any code level D

Cn = (Bna bn, wn) E[EN(X{L)] 2> Kn(D) 2> Rn(D) bits )

with associated length functiofy, operating at distortion ~ where i, (D) is the nth-order rate distortion function of the
level D, there is a probability measuég, on A™ suchthat  source. Then we show that the measupgsare “competitively
optimal” in that, for any measur@,, and anyk > 0

£ (27) 2 —log Q. (B(aT, D)) bits, forallz].
. o - Pr{—logQ,(B(XI', D)) < —log Q.(B(X}, D)) — k
(=) Given any “admissible” sequence of probability mea- r{ 0g Qn(B(XT', D)) 0g @n(B(XT, D)) }
sures{@,, } on A", there is a sequence of codes <27 (4

{C,, = (B, ¢n, )} (see also Remark 3 after Theorem 3). Moreover, we prove that
the codes generated according to the meadipgsg areasymp-

with associated length functiog, }, operating at distor-  tgtically optimal, up to aboutlogn) bits
tion level D, such that
£, (XT) < —logQn(B(XT, D))+ (14 ¢)logn
bits, eventually, w.pl

- IOg Qn(B(XILv D)) Z- IOg Qn(B(XILv D))_(1+6) IOgTL
bits, eventually, w.pl. (5)

The statements in (3)—(5) are given in Theorems 3 and 4. Special
where “w.p.1" above and throughout the paper means cases of these results under much more restrictive assumptions
with probability one. (a finite reproduction alphabet and a bounded, single-letter

As will become apparent later, the assumption of “admisgfistortion measure) recently appeared in [21].

bility” of the measuregQ,,} is simply the natural requirement NOte that, so farno assumptionfiave been made on the

that random codebooks, generated according to these meas@4/ce distribution or the distortion measupgs® As a sanity

do not yield codes with infinite rate. check, we consider the case of stationary ergodic processes and
In Theorems 1 and 2 in the following section, it is also showf0additive distortion measures, and we show in Theorem 5

that the same code performance as in the second part of the I65&)» in this case, our general results reduce to Kieffer's point-

Kraft inequality can be achieved in expectation. Further, if for §iSe coding theorems in [18], where the quantify (D) was

given sequence of measurgg,,} more detailed information is defined and used extensively.

available on the asymptotic behavior of the “code lengths” 114 pe apsolutely precise, we should mention that for the results discussed

above we do need to make the trivial assumption that finite-rate coding is indeed
£, (XT) = —log Q. (B(XT, D)) (1) possible at the distortion level we consider.
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As an application of this general framework we consider tteddress the question of how close one can come to the optimum
problem of universal coding for memoryless sources with reerformance theoretically achievable (OPTA) function, as op-
spect to single-letter distortion measures. Following the corngesed to the rate-distortion function. Another related problem,
sponding development in universal lossless compression (He& of characterizing the optimgointwiseredundancy (in-

[6] and the references therein), we examine the performancectfding the question of universality) has been treated in detalil
random codes based on mixture codebooks{l){} be anin- in [21].

dependent and identically distributed (i.i.d.) source over a finite All of the works mentioned so far exhibit universal codes
alphabet4, and let the reproduction alphabétalso be finite. based on “multiple codebooks” or “two-stage descriptions.”
A mixture codebookor Bayesian codebodls a random code- That is, the source string? is examined, and based on its
book generated according to sequence of distributfo¥fs }, ~ statistical properties one of several possible codes is chosen to

where each\/,, is a mixture of i.i.d. distributiong)™ on A™ encoder?. First, the index of the chosen code is communicated
. to the decoder, then the encoded versionzdfis sent. In
M, (y7) 2 Q" (yy) dr (@), foryl € A®. (6) contrast, the universal codes presented here are based on a
all@ single mixture codebook that works well for all memoryless

In Theorem 6, sufficient conditions are given for the “prior'sources. This construction, facilitated by the codes—measures

distributions, guaranteeing that the codes generated accordiggfrespondence, is developed in close analogy to the corre-

to the mixture distributiong AZ,,} areuniversalover the class sponding lossless compression results; see [8], [23], [6], [2] and

of all memoryless sources of. references therein. Mixture codebooks for lossy compression
Under further regularity conditions on the prioassuming are also briefly considered in [34], [33], but with the mixture

it has a continuous and everywhere positive density with respéeing over fixed-composition codebooks of a given type, rather

to Lebesgue measure), it is shown in Theorem 7 that the redtiman over distributions.

dancy of the mixture codebooks asymptotically does not exceed-inally, we note that a different connection between rate-dis-

~(d/2)logn bits, whered = |A| — 1 is the dimension of the tortion theory and Bayesian inference has been drawn in [32],

simplex of distributions on the reproduction alphaefrhere- [16].

fore, the price paid for universality is about/2) log » bits per

degree of freedom, where, in contrast with the case of lossless [I. STATEMENTS OF RESULTS

compression, “freedom” is measured with respect to the class,of

possiblecodebook distributionwe are allowed to use, and notA' The Setting

with respect to the size of the class of sources considered. ~ We introduce some definitions and notation that will remain
In view of the recent results in [28], this rate appears to B8 effect throughout the paper. L¢X,; n > 1} be a random

optimal and it agrees with the corresponding results in loggtocess, or source, taking values in theurce alphabetA,

less compression [23], [6], as well as with those obtained YhereA is assumed to be a complete, separable metric space,

[5] within the framework of vector quantization. Moreover, thé&quipped with its Boret-field A. Forl < ¢ < oo, we write X/

codes generated by mixture codebooks appear to be the firstt-the vector of random variablesy;, X1, ..., X;), and

amples of codes whose redundancy is shown to be near-optigignilarly write =} = (i, i1, ..., z;) € A7~ for a real-

not only in expectation, but also with probability one. ization of X/. The distribution ofX{" is denoted by?, (more

precisely,P, is a Borel probability measure dml™, .4™)), and
B. Earlier Work the probability measure describing the distribution of the entire

A number of relevant papers have already been pointed ®lipcess is denoted . X
and briefly discussed. We also mention that, implicitly, the Similarly, for thereproduction alphabete takeA to be a
codes—measures correspondence has been used in the liter&ifplete, separable metric space together with its Bofild
by various authors over the past five years or so; relevant works WhereA may or may not be the same 4¢ For each > 1,
include [22], [27], [29], [19], and [21], among others. we assume that we are given a distortion meagyrethat is,

A different approach for dealing with arbitrary sources had nonnegative functiop,,: A" x A™ — [0, c0).® For each
been introduced by Steinberg, Verdu, and Han [26], [13], [L4jource stringty € A™ and distortion levelD > 0 we de-
based on the “information-spectrum” method. This leads tofig€ the distortion-balB(z1, D) as the collection of all strings
different (asymptotic) characterization of the best achievatfie € A" that have distortiorD or less with respect to}'
performance in lossy data compression. Unlike in those works,

more emphasis here has been placed on obtaining nonasymp-  B(zf, D) £ {yf € A on(xl, y7) < D} . @)
totic converses, tight redundancy bounds, and coding theorems
with probability one rather than in expectation. Finally, throughout the papdng denotes the logarithm taken

The problem of determining the best achievable (expected)base2 andlog, denotes the natural logarithm. Unless explic-
redundancy rate in lossy compression was extensively treaigyl stated otherwise, all familiar information-theoretic quanti-
in [35]; see also references therein. Suboptimal universal tees (the relative entropy, rate-distortion function, and so on) are

dundancy rates in expectation were computed in [31], [15], andZT o _ . _

f . . . o0 avoid uninteresting technicalities, we assume throughout that all single-
asymptotically tight bounds were r_ecently obt_amed in [30], [2%nS are measurable, i.é3} € Aand{y} € Aforallz € A,y € A.
Where converses were also eSt_ab“Shed- Tak'_ng a different POIMssuming, of course, that eaph is measurable with respect to the product
of view, Chouet al.[5] employ high-rate quantization theory too-field A™ x A™.
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defined in terms of logarithms taken to ba&eand are hence (pSQC): For a distortion leveD > 0 we say that the-strong

expressed in bits. quantization conditiongSQC) holds at leveD for somel <
p < oo, if (WQC) holds with respect to quantizeg§™ also
B. Random Codebooks satisfying

Given an arbitrary (Borel) probability measuég, on Am, 1 pry1/p
by arandom codebook generated accordingdo we meana M, = sup — {E [(— log 1in (q(")(Xf))) }} < oo (8)
collection of independent random vectors nzl
where p,, denotes the (discrete) distribution gf)(X7) on
Am, [Forp = ~o the above expression is interpreted, as usual,
taking values inA™, each generated according to the measu be the correspondingo, norm, i.e., Moo = supy, (1/7)
s Log 11 (¢ (XT))] 0]

Q... These random vectors will serve as the codebook in variolls

direct coding theorems presented later. Given a random SOL\J}{E?? ote thﬁt cIea;ngéSQC)i (QC)=(1SQC)= (\(leQC) Also

string X{*, a random codebook as above, and a distortion le serve that, X} is a statlc_mary_ source and thp, } are

D > 0, we define thavaiting timel¥,, as the index of the first single-letter (or subaq_dmve) distortion measures, then eaqh of

element of the codebook that matchég with distortionD or the above thTee condmons reduces to the existence of a suitable

less scalar quantizer, that is, each quantization condition reduces to
the corresponding requirement for= 1

W, = inf {i > 1: pp (X7, YM(4)) < D} For the statement of the next theorem we also need the fol-

lowing definitions. For eacln > 1, let ,, be a probability

with the usual convention that the infimum of the empty seheasure oni™. The sequencé®,, } is calledadmissiblef the

equalscc. random codebooks generated according to these measures yield

In the coding scenario, we assume that the random codebeeldes with finite rate, with probability one. Formall,, } is
is available to both the encoder and the decoder. The gistg@fmissible if there is a finite constaRtsuch that

the subsequent direct coding theorems is to find efficient ways

for the encoder to communicate to the decoder the value of the lim sup —; log Qn(B(X{, D)) < R<oo wp.1l. (9)

waiting timeW,,; once this is available, the decoder canread off "~

the codeword’;”(W,,) and obtain aD-close version of( 7. Similarly, the sequenci?,, } is calledadmissible in expectation
Itis perhaps worth mentioning that the relationship ofittie _if it yields random codes with finite average rate, that is,

codebook to thén + 1)st codebook will be irrelevant in all o

our subsequent direct coding arguments. For the sake of bemg = hgf;ip E[ log Q,,(B(XT, D))] < o0. (10)

specific it may be convenient to think of codebooks with dif- he following result demonstrates the correspondence be-
ferent block lengths as being independent. On the other haanF
een sequences of codé€$, operating at distortion leveD

and are consistent measures, i.eRif happens to be
t%én dﬁr:rz;lonal measure induced By, Qon A’[’)pthen the and sequences of measufgs on the reproduction spacek%l
+1 The theorem is proved in Section IlI-A.

(n + 1)st codebook can be generated from #ik one by ex-

tending each of its codewords by an additional letter generatedrheorem 1. Codes—Measures Corresponder@ien a dis-

according to the conditional distribution induced @y ; . tortion level D > 0, assume that condition (WQC) holds at
level D.

i) For any code

Y@ =Y/, izl

C. Arbitrary Sources
Let {X,,} be an arbitrary source arf@, } a given sequence

of distortion measures as above. At various points below we will Crn = (Bn, ¢ns s £n)
need to impose the following assumptions. They are variations  gperating at distortion leveD there is a probability mea-
of [18, Condition 2)]. sure,, on A such that
(WQC): For a distortion leveD > 0 we say that theveak
quantization condition (WQC) holds at levBl if for eachn £o(2t) 2 —log Qn(B(zf, D)) bits, forallzy € A™

there is a (measurable) quantizé?): A* — B,, C A" such

that B3, is a finite or countably infinite set, and i) For any admissible sequence of probability measures

{Q,} there is a sequence of codes
pu (et aW)) s D, forallaf e A {Cn = (Bas b s L)}

(QC): For a distortion leveD > 0 we say that thejuanti- operating at distortion leveD such that
zation condition (QC) holds at levdD, if (WQC) holds with o ) o ) L
respect to quantizerg™ of finite rate (X)) < —log Qn(B(&Y, D)) +logn + 3loglogn
+ Const. bits, eventually, w.p.

M; 2 sup lH (q(")(Xf)) < o0

S n 4Note that, forany probability measug, on(A”, A"), the functioney —

—log Q. (B(27, D)) is measurable with respect ™. To see this, simply
Lo . observe that We can taK@n(B(z D)) to be the regular conditional proba-
whereH (¢ (X)) denotes the entropy (in bits) of the discretiy of the event{ p, (X7, Y;") < D} with respect t, x Q.,, conditional

random variable (™ (X7). on theo-field A”.
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iii) For any sequence of probability measude3,, } thatare  Theorems 1 and 2 indicate that the best achievable perfor-
admissible in expectation, there is a sequence of codesmance of codes operating at distortion le¥&lcan be under-
(Co = (By, én, s £)} stood almost entirely on the basis of understanding the precise
Ty e e behavior of the approximate code lengths (1). To this end, for
operating at distortion leveD such that

eachn > 1 and distortion levelD > 0 we define (cf. (2)) the
El£,(X])] < E[-log Qu(B(XT', D))] +logn

guantity
+2loglogn + Const. bits, eventually.

Remark 1: The constant terms in parts i) and iii) of Theoren{Vn€re the infimum is over all probability measur@s on A™.

1 depend only on the constakithat bounds the asymptotic rate  1h€ next theorem gives finite-bounds on the achievable
of the measure§),, in (9) and (10), respectively. compression performance of arbitrary codes operating at distor-

Our next result shows that the redundancy rates of the codi9& level D. In particular, it identifies the measures, = Qx
in parts ii) and iii) of Theorem 1 can be improved when we haJ8at are optimal in terms of compression performance, as those
more information about the asymptotic behavior of the approf{1at achieve the infimum in the definition &, (D).

imate code lengths (1) corresponding to the measyred he- Theorem 3. Nonasymptotic Bounds:
orem 2 is proved in Section III-B. i) Forany codgC,,, ¢, ) operating at distortion leveD

E[6.(XT)] =2 Kn(D) = Rn(D)

A

Kn(D) = i B[-log @u(B(XY, D))]

Theorem 2. Improved Redundancy Rates:

tions of Theorems 1 and 2 on the asymptotic behavior of the

i) Given a distortion levelD > 0, assume that condition
(WQC) holds at leveD. Let {Q),,} be an admissible se-
quence of probability measures and assume that

Zn = |- 1og Qu(B(X}, D)) - nR|
< By/nlogn eventually, w.pl (11)
for some finite constanB. Then there are codes
{C = (BTH ¢Tl7 r(/}’rh gn)}
operating at distortion leveD such that
1

+2loglogn + Const. bits, eventually, w.f.

Given a distortion levelD > 0, assume that condition
(pSQC) holds at leveD for somep > 2. Assume that the
sequencé(@,, } is admissible in expectation, and &t be
defined as above. If fas large enough and for some finite
nonzero constant8 andC'

C
Pr{Z, > Bynlogn} < —
n
wherel/p + 1/q = 1, then there are codes
{Cn = (Bns ¢ny ¥ny £n)}

operating at distortion leveD such that

BlL(X])] < E[-log Qu(B(X], D)] + 3 logn

+2loglogn + Const. hits, eventually. Sec. IV

whereR,,(D) is the usuakth-order rate-distortion func-
tion of the source X, } [4], defined by

R, (D) I(XT: YY)

= inf

(X7, ): X7~ Py and E[p, (X7,Y7)]<D
where I(X7; Y7*) denotes the mutual information be-
tween X7* and Y7*, and the infimum is taken over all
jointly distributed random vector§X 7, Y*) with X7
having the source distributiaR,,, and

Elpn (X7, Y] < D.

Assume that the infimum in the definition ok, (D)

is achieved by some probability measupg, and that

K, (D) < oo. Then forany probability measur&y,, on
Qn(B(XT, D))

A™ we have
B
and for anyk > 0

. PAB(X?,D»
Pr{~log Qu(B(X], D))<~ log Qu(B(XT, D))k}
<27k,

Remark 3. Competitive OptimalityThe second resultin part
i) of Theorem 3 is somewhat striking. It states that, for any
fixed n, there is an optimal code operating at distortion level
D (the code corresponding ,,) with the following property.

The probability that any other code beats the optimal one by

k or more bits is at mos2—*. For a detailed example see [20,

1.

Remark 2: The constant term in the statement of part i) of Remark 4. Achievability:Although in general there may not

Theorem 2 depends only on the const&rih (11). The constant exist measure§,, achieving the infimum in the definition of

term in part ii) of Theorem 2 depends only on the constéhts K,,(D), when A is finite and{p,} is a sequence of bounded,

C', and the constan¥,, in the pSQC) condition (8).

Note that in many important cases of interest, the assu

proximate code lengths (1) can be verified via the “generaliz

asymptotic equipartition property (AEP)” and its refinements; Remark 5.K,,(D) Versus R, (D):
see [10] for an extensive discussion.

single-letter distortion measures su@h were shown to exist

in [21]. When the infimum is not achieved (or the achievability

r:{g:not easy to check), it is still possible to recover the result of
é%lrt i) of Theorem 3; see Remark 7 after Theorem 4.

The function K,,(D)

can be defined in more familiar information-theoretic terms,
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making it more easily comparable to the rate-distortion fun@ part i) of Theorem 4 all still hold if we replace the term
tion R,(D)—see Lemma 1 later. In that formk, (D) is —log Q,(B(X?, D)) by g.(X7).

reminiscent of Kolmogorov's definition oé-entropy (which

explains the choice of the lettéf in the notation). It is obvious D. Ergodic Sources

from Lemma 1 thats,, (D) is generally larger thaf,, (D), but  \ve priefly consider the case of stationary ergodic sources

for stationary-ergodic sources their limiting values and demonstrate how the classical coding theorems follow from
lim(1/n)K,(D) and lim(1/n)R,(D) the general results above. Assume that the solufGg} is sta-

}ionary and ergodic, and that the distortion measyyes are

are equal (see Theorem 5). Lemma 1 is proved in Appendix L ubadditivei.e.,

Lemma 1. Alternative Characterization &f,,(D): For all (1 + 1) P (&7, 47 < mpp (2, 47
mTn — m )
D2 0we have | o G Ry
K"(D) = oy 11}7:,[‘ n I(Xl P ) m+tn mtn ,mtn frntn
(X7 Y o (X7 Y ) <D w.p.l for all 7" € A™F", 4" € AmT" and allm, n > 1. We

where the infimum is taken over all jointly distributed randonwill also assume the existence ofeference lettef; € A such
vectors(X}, Y*) with X7 having the source distributioR,, that

andp, (X7, Y™) < D with probability one. .
P ( 1 1) p y E[pl(X17 a)] < 0.

Next we deduce the following asymptotic result from The-

orem 3: Up to approximatelpg n bits, the code lengths The following theorem is essentially due to Kieffer [18]. To
4 (XM ~ —loz O (B(X™. D connect it with our earlier results we include a brief outline of
n(X1) & —log Qu(B(XT, D)) its proof in Appendix II.

are both achievable and impossible to beat, with probability one
Since the proofs of Theorems 3 and 4 follow very closely alogg
the lines of the corresponding results in [21] we only inclu

brief outlines of their proofs in Section IlI-C.

Theorem 5. Stationary-Ergodic Sources [18]et {X,,} be
stationary-ergodic source such that condition (QC) holds for
all D > 0. Assume that the distortion measusgs, } are sub-
additive, and that a reference letter exists. TRg{ D) is finite
Theorem 4. Asymptotic Bound#ssume that for alh large for all » > 1, and the limit
enough, the infimum in the definition df,(D) is achieved by A 1
some probability measux@,,, and thatk,, (D) < cc. K(D)= lim K. (D)
i) For any sequence of cod¢€’,, /,,} operating at distor- exists and is equal to the rate-distortion function of the source

tion level D {Xn}
bits, eventually, w.pl. n—oo N
i) Moreover, if the sequencg?,,} is admissible and condi- lf% In;oE?)Viir;cor:i:\Ilb;:jal;gesgnmoeugrog]aeblm?m#;na?éhetiilnxfn
tion (WQC) holds at leveD), then there is a sequence Oglsonhave y P y R
codes{C,,, ¢, } operating at distortion leveD such that
£, (XT) < —loan(B(X{L, D)) +logn + 3loglogn 1 )
+ Const. bits, eventually, w.g. (12) T log Qn(B(XY', D)) — K(D) = R(D)
Similarly, if the sequencéQ,, } is admissible in expecta- w.p.landinL!. (14)

tion then there exist codes so that (12) holds in expectation,
and with2loglogn in place of3loglogn.

i) Asn — oo

ii) For any sequence of cod€€’,,, ¢,,} operating at distor-
tion level D
Remark 6. Adm|55|b|l_|ty._The_assu_mptlon that th_e _optlmal L inf lzn(X{L)zK(D)zR(D) bits/symbol, w.p1
measureq ), } are admissible is typically not restrictive. For n—oo m
example, as we will see in the next section, they are always ad- _ o ) _ (15) )
missible (as well as admissible in expectation) when the source 2nd there exist codes achieving this bound with equality.
is stationary and ergodic. Remark 8. Even More on Achievabilityds described in Re-

Remark 7. More on Achievabilitytf &, (D) < oo but the mark 7, even when the achieving meas@n;ﬁdoes not exist we
1 ~ N
infimum in the definition ofK,,(D) is not achieved, there al- €@" always find a functlglg,, €L (P’Z’) so thatgn (XT') plays
ways exists a functiog,.: A" — [0, oc) in the L -closure of the role of— log Q,,(B(X}, D)). Inthis context, [17, Theorem

the collectiong,, of functions onA” defined by 2] implies that part i) of Theorem 5 always holds with( XT")
in place of— log Q,,(B(X7, D)), and, therefore, the pointwise

A n . .
Gn = {9 € LH(Py): g(at) 2 —log Qu(B(x7, D)) converse (15) is also always valid.
for a probability measur€),, on 121"} (13) E. Mixture Codebooks and Memoryless Sources

such thatk,, (D) = E[§,(X7})]; see [17, Theorem 1]. More- As we saw in Theorems 3 and 4, the optimal meas@gs
over, the conclusions of part ii) of Theorem 3 and the conversempletely characterize the best compression performance of
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codes operating at a fixed distortion level. But g them- Proposition 1 [27]: For any probability measurg onA4,and
selves are typically hard to describe explicitly. forall D > 0
In this subsection, we restrict our attention to memoryless
sources. Although it is not hard to see that even here the mealim. ——log Q"(B(XT, D)) = R(P, Q, D) w.p. 1. (17)
sures(),, do not have a particularly simple structure, we do
know [35], [29], [21] that, when dealing with a single memo- Next define as usual
ryless sourceasymptoticallyoptimal compression can still be
achieved by codes based on product measures, i.e., measures Dinax = Dimax(FP) = min Ep[p(X, y)]. (18)
Q.. of the form@,, = Q™ on A™. TakingQ* to be the optimal ved
reproduction distribution at distortion levél, the codes gener- SinceR(D) = 0 for D > D,,.«, to avoid the trivial case when
ated according to the product measui@%)" achieve near-op- R(D) is identically equal to zero we assume that.... > 0.
timal redundancy both in expectation and with probability on&lso, from now on, we restrict our attention to distortion levels
(see Proposition 1 and the discussion following Theorem 7 fét in the interesting rang® € (0, Dyax).
details). Let P denote thel-dimensional simplex of probability mea-
Turning to the problem of universal coding, the above disures() on A, and letr be a probability measure df; we refer
cussion motivates us to consider codes based on random cdde-as the “prior” distribution or. For eactn > 1, we define
books that are generated accordingniaturesover the class of the mixture distribution},, on A™ as in (6)
all product distributions)™ on Am. The existence of universal

mixture codebooks will be established, and sufficient conditions M, (y1') = Q™ (y7) dr(Q),  fory} € A"
will be given under which the redundancy rate they achieve is QCP
optimal. The next theorem gives a simple sufficient condition on the

For the remainder of this sectiofLX,,} is assumed to be a prior, under which the first-order performance of codes based on
stationary memoryless source, that is, the random varigbles the mixture distributiong/,, is universally optimal. Theorem 6
are i.i.d, with common distributioff on A. We take bottd and is proved in Section IV-A using an argument similar to that used
A to be finite sets and writed| = d + 1 for the cardinality of in the proof of the corresponding lossless result in [1].

A. Given a distortion measupe A x A — [0, o), we consider

the family of single-letter distortion measurgs, } Theorem 6. Universality of i.i.d. Mixturestet {X,,} be an

i.i.d. source with distributio” on A. For D € (0, Dy ), let

1 N o m Q* denote the optimal reproduction distribution Bfat dis-

" Z plai, i), af € A% yi € A", n 2 1. ortion level D. If the prior = has a density with respect to
=1 Lebesgue measure on the simplex, ansl strictly positive in a

We also make the customary assumption that for eaeh A neighborhood of*, then

there is arii € A such thap(a, @) = 0. .

Following [27], [21], for each probability distributiop on  ~ 108 M (B(XT, D)) < ~log @, (B(XY, D))

n

113

pn(TT, y7')

Aand allD > 0, we define the rate function +o(n) w.p.1, asn — co. (19)
R(P, Q, D) More generally, (19) remains valid as long as the priassigns
A . . positive mass to all neighborhoods
(XY le{ng[p(X,Y)}gD X Y) + H(Qv @)

A
N(Q*, €) 2{Q: R(P, Q, D) < R(P, Q*, D) + ¢},
whereH(+||-) denotes the relative entropy, the infimum is taken (@ 9 =@ RE Q. D) @ f)or :}> 0. (20)

over all jointly distributed random variablésy, Y) such that
X has the source distributiafl and E[p( X, Y)] < D, andQy N ) o
denotes the marginal distribution B, It is not hard to see that  Th€ conditions of Theorem 6 are easily seen to be satisfied,

R(P, Q, D) is related to the rate-distortion functid® D) of €9+ when the prior has an everywhere strictly positive density
the sourceP via p, or whens assigns positive mass to the optimal reproduction

distribution itself. In particular, this includes the special case of
R(D) = inf R(P, Q, D) = R(P, Q", D) (16) discrete mixtures of the form

where the infimum is taken over all probability distributiols M, = Z w; QP
on 4; cf. [27], [21]. We let@;, denote the product measures i1
(@*)* on A", n > 1, and we call the measuréy; theoptimal
reproduction distributions at distortion levé) (even though the
achieving@ n (16) may pot be unique). able dense subset of the simpf@and{w; } are strictly positive

The following proposition shows thak(P, ), D) charac- . .

. . . weights summing to one.
terizes the first-order compression performance of the random
codebooks generated according to the product meaglirels Remark 9. Universal CodesSuppose that the assumptions
particular (recall Theorem 1), it implies that the codebooks geof Theorem 6 hold for al)* on the simplex—e.g., taketo be
erated according to the optimal reproduction distributigf$}  the normalized Lebesgue measure on the simplex or a discrete
achieve first-order optimal compression performance. probability measure supported on a countable dense set. Then,

where@* is one of the mixing distribution®;. More generally,
the discrete mixtures/,, are universal if thg (); } are a count-
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in view of Proposition 1 and (16), Theorem 6 implies that the butions{M,,} have code lengths that do not exceed the

mixtures measure§M,, } have “optimum”
1 / 1 .
limsup ——log M,,(B(XT, D)) < R(D) w.p.1. (X7 = —logQh(B(XT, D)+ 3 logn bits
n—oo "

Therefore they are admissible, and Theorem 1 implies the exis- by more thanz(d/2)logn bits. Why call the code

tence of universal codes over the class of all memoryless sources  lengths £;,(X7*) optimum? In view of Theorem 2,
on A. £:(X7) correspond to random codes generated ac-

cording to the measurdgl* }. In [29], [35], and in [21]

it was shown that these random codes are essentially
asymptotically optimal, both in expectation and with
probability one. Specifically, in [29] it is proved that

Next it is shown that when the prior satisfies certain
smoothness conditions, the asymptotic redundancy rate of the
mixture codebooks is approximatelyl/2)logn bits, where
d = |A| — 1is the dimensionality of.

For Theorem 7, we only consider sourdethat haveP’(a) > B (XT)] = nR(D) +logn  bits
0 for all « € A, and we assume that the optimal reproduction
distribution@* is unique and is achieved in the interior of the
simplex. Formally, for eactb > 0 we consider sourceB in
the collection

but we also know [35] thatiny code operating at distor-
tion level D has expected code lengths at least as large
as~nR(D) + (1/2)logn bits. Similarly, in [21] it was
shown that no code operating at distortion le¥&lcan

S(D) 2 {P: D < Dyax(P), Q* is unique outperform¢;, (X1') by more thar log » bits, eventually
. with probability one, and it was also shown tHgt X})
suppor{ ) = A, and supportQ™) = A} . (21) is approximately competitively optimal (see [21, Corol-
lary 2 and Proposition 3]).

Theorem 7. Pointwise Redundancy of i.i.d. Mixturest Therefore, we interpret (23) as saying that the point-
D > 0, and assume that the priar has a strictly positive, wise price paid for universality by a mixture codebook is
continuous density with respect to Lebesgue measure. Then  approximately {1/2)logn bits per degree of freedom.”
for any source distributio® in S(D) The converse recently proved in [28] indicates that this

rate is asymptotically optimal.

n i * n d i
~log Mu(B(XY, D)) < ~log Qn(B(XY, D)) + 5 logn b) Conditions for UniversalityThe results of Theorem 7 and
+O(loglogn) w.p.1,asn — oo (22) Corollary 1 only hold for source® in S(D). The only

essential restriction implied by this assumption is that the
optimal reproduction distribution at distortion lev@lis
unigue and has full support. Although this is, of course,

The proof of Theorem 7 (given in Section IV-C) is based on  not always the case, it is typically true for all low enough
an argument using Laplace’s method of integration, and closely  distortion levels, and i true in several important special
parallels the proof of the corresponding result of Clarke and  cases. For example, it is easily seen that this assumption
Barron [6] in the lossless case. Using (22) and applying The- s satisfied in the case of binary sources with respect to
orem 2, we get a sequence of universal codes with near-optimal  Hamming distortion; cf. [21, Example 2]. More generally,

where @ are the optimal reproduction distributions for the
sourceP at distortion levelD.

redundancy rate. Yang and Zhang in [30], [28] give the following sufficient
Corollary 1. Universal Pointwise Redundancyet D > 0. condition:
There is a sequence of codes The matrix (6”’(“’ @) )ae \aca is of full column rank
{Cr = (Bn, ¢n, Pns £n)} o forall A < 0. (%)
operating at distortion leveD such that, for all memoryless In [30, Appendix A] it is shown that for any sourde
sources’ in S(D) satisfying (*), the optimal reproduction distributiap*

. d+1 is unique for allD € (0, D,,..). [Note that the direct

Lo (XT) < —log QL(B(XT, D)) + <T> logn coding theorems in [30], [28] are stated for sourBehat
L , satisfy (*) with @* of full support; these conditions are

+O(loglogn)  bits, w.p.1, asn — oo (23) apparently stronger than requiridyc S(D).]

where 7 are the optimal reproduction distributions for the

sourceP at distortion levelD. c¢) Pointwise Redundancy and Minimal Coding Variange

discussed in remark a), the codes exhibited in Corollary 1

Corollary 1 follows from combining Theorem 7 with part i) have code lengths that do not exceed the optirfijX 1)
of Theorem 2. To verify that assumptions of part i) of Theorem bits by more tharO(logn) bits; cf. [21, Corollary 1].
2 are satisfied, recall [21, Proposition 3]. Therefore, the mixture codebooks not only achieve the

best rate, but their second-order performance is also op-

timal, in that their fluctuationsiniversally achieve the

a) Interpretation What Theorem 7 and Corollary 1 really tell “minimal coding variance” [21, p. 139] of the source that
us is that the codes corresponding to the mixture distri-  is being compressed.

Remarks:
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Ill. ARBITRARY SOURCES THE CODES-MEASURES where(a) follows by Fubini's theorem(b) follows from part i)
CORRESPONDENCE of the lemma, and where for any everit by I we denote its
Before giving the proofs of Theorems 1-4, we state some p'lgglcator function. =

I|m|nary lemmas that W|II be needeq in the proqfs of the dll’e%’[. Proof of Theorem 1

coding theorems. The first lemma (given here without proof) de- o

scribes a specific prefix-free code for the positive integers. It is For part i), given a code’, = (Bn, ¢n, ¥n, £n), let
based on iterating a simple idea of Elias [11]. L,: B, — N be the length function of the uniquely decodable

map),, so that?,,(z?) = L, (¢, (z?)). Define
Lemma 2. A Code for the Positive IntegefBhere exists Py (1) (@na1))

a prefix-free code for the positive integers with associated A 2 ) if gt e B,
length functionLZ, such that, for alk > 1 Qnly) = { 0 otherwise
L(k) <logk +logT log k + 2log™ log™t log k + ’ .
wherelog™ = denotes the functiohog max{xz, 1}, and ~ is Then for anyzy € A"
some finite constant. 0(z7) = Lu($n(a?)) = —log Qn(én(a?))
All our direct coding theorems will be proved using random > —log Q. (B(z7, D)) bits

coding arguments based on random codebooks as described in . .
Section 1I-B. In the notation of that section, the next lemmyhere the inequality follows from the fact tha}, operates at
establishes a precise relationship between the waitingifpe distortion levelD. Since),, is uniquely decodable, Kraft's in-

for a D-close match in the codebook and the probabifity= equality implies thaty,, is a subprobability measure. If it is a
Qn(B(X7, D)) of finding such a match. probability measure we are done; otherwise, the above argument

can be repeated with the meas@e = Z~1Q,, in place of@,,,
Lemma 3. Waiting Times Bound#n the notation of Sec- whereZ is the normalizing constant

tion 1I-B:

/ _ — L, (y?
i) ifforsomez} € A", the probabilityg,, éQn(B(a:’f, Dy) Z = Z 27 () <,
is nonzero, then for any > 0 YPEB,
Pr{log[(W, — 1)g.] 2 ¢ | X = a7} < ™% The direct coding theorems of parts ii) and iii) are based on a

ii) there is a universal constaff < ~o such that random coding argument. Given a sequence of measttgs,
n for eachn > 1 generate a random codebod¥"(¢); ¢ > 1}
E{log[W,.Qn(B(XT, D)I} < K, foralln > 1 as described in Section II-B. These codebooks are assumed to
where for each the expectation is taken over the messaggs ayailable both to the encoder and decoder, and the following

X7 as well as over the random codebook. coding scheme is adopted. If the waiting tifitg, is finite, then
Proof of Lemma 3:Fix =} such that X7 is described (with distortiod> or less) by describingV,,
0n = Qu(B(z}, D)) > 0. to the decoder, using the code from Lemma 2Wf = oo,

then we describé} using the quantizeg provided by the
condition (WQC). Writingy,, for the distribution ofg™ (X7)
on B,, this description can be given using at most

Then, conditional onX]* = =7, the distribution ofW,, is geo-
metric with parameteg,, and
Pr{log[(W,, — 1)gu] > €| X' = a7}

= Pr{W, > 2/g, + 1| X = o7} < (1-g.)* /" < % [—1og i (¢"(X1)) | bits. (24)
where the last step follows from the simple inequality Einall L-bit flag is added to tell the decod hich of th
(1= o) <ot for € (0, 1]. inally, a 1-bit flag is added to tell the decoder which of the

two casesl,, < oo or W,, = o0) occurred. This code clearly

This proves part i) of the lemma. For partii), 8t denote the erates at distortion levé), and its overall description length
event ¢ has
G, ={W, #1andQ,(B(X7, D)) > 0}
. . n log W,, + log™ log W,,
and write g, for the (random) probabilityQ, (B(X}, D)). . 2 S i
Then we can bound £(XT) < +2logTlog™ log Wi +y+1, 1 Wi < oo
E{log(Wngn)} [—logju, (¢™(XT))] +1, if W, = <.

< E{[log(Wnan)llg,, } For part ii), since the sequen¢®),, } is admissible, folP-al-

< E{flog(W,, — 1)gn)|lg, } +1 most every realization of the source the probability

<Y Pr{flog((Wn — Daa)lle, = 4} +1 Qn(B(XT, D)) > 27"B+9) 5 ¢

7>0
eventually, and therefore the waiting tim@s, will be finite
@ B |16, S Pr{log((Wn — 1)ga) 2 j| X3°} | +1  eventually with probabilityl (with respect to both the source
>0 and the codebook distribution). Therefore,

(;) Z c? 112K L,(XT) < log W, +1log™ log W, + 2log™ log™ log W,
§i>0 +~v+1 eventually, w.pl. (25)
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Write, as before, ¢, for the (random) probability realization of the random codes constructed will provide such a
Qn(B(X7, D)). Then, forP-almost every realization of the code.

source, forn large enough we can apply part i) of Lemma 3

with € = log[2logn] to get B. Proof of Theorem 2

Pr{log[(W,, — 1)gn] > log[2logn] | XI' = 27} The coding scheme used here is different from the one in
Theorem 1. Let
A, 2 ~log Qu(B(X], D)) —nR

so thatZ,, = |A,|, and define the events

H, 2 {Z, < By/nlogn}

< e—2logn < n-2.
The Borel-Cantelli lemma implies that
log[(W,, — 1)¢,] < loglogn +1 eventually, w.p1
and hence and

A
log[Wnan] < loglogn+2 eventually, w.pl.  (26) Jn = {logW,, <nR+ A, +loglogn + 2}
If H, and.J, both occur, theri¥,, is described in two steps.

From the admissibility of@,.} and (26) we also have First, we describ§A,] using no more than

logW,, < 2nR eventually, w.pl (27) ﬂog (2B\/ﬁlogn + 1)]
and combining (25)-(27) < % logn +loglogn +log B+3 bits (29)
£,(XT) £ —log ¢, + loglogn +log(2nR) and then describ#,, itself using no more than
+ 2loglog(2nR) + v+ 3

nR+ A, +loglogn +3
< —loggn +logn + 3loglogn + [y + 3log K + 6] = —log Qu(B(XT, D)) +loglogn+3 bits. (30)

eventually, w.p1. If either H,, or J,, fails, thenX7" is described without coding,

This proves part ii) of the theorem with the constant term equasing the quantizeg™ provided by (WQC). After adding a
to (v + 3log R + 6). 1-bit flag to indicate which of the two methods was used, from
Turning to part iii), we note that the assumption th&, } is  (24), (29), and (30), the overall description lengttof this code

admissible in expectation implies that for ali> 0 sufficiently has

small there is a finite (nonrandom such that, for alh > N —log Qn(B(X{", D))
. . —1—% logn + 2loglogn if H, andJ,
G = Qu(B(XT, D)) >0 w.p.1 L(XT) Sy +{logB+7), both hold
and [—log i, (¢™(XT))] + 1, otherwise.
E[-log Qn(B(X, D))] < 2n(R —¢). (28) (31)

i ) . For part i), assumption (11) and the admissibility{@p,, }
In particular, the bound (25) holds with probability one for alfmply that bothH,, and.J,, hold eventually with probabilityl
n z N, and, therefore, (see the derivation of (26) above), thereby proving part i) with
E[£,(X™M)] < E[logW,] + E[log™ log W,,] the constap_t term being equal (ﬂ@g_;B +7).
+2E]lo Float log W 4+ +1 form> N For part i) of the theorem, we first need to bound the proba-
& 08 o8l Ty S =% bility that J,, fails. With g, = Q. (B(X?, D)), since{Q,} is

Replacing all the(log W,,) terms above bylog(W,.¢,.) — admissjple in expectation, for all large enoughy,, > 0 with
log ¢,], using part i) of Lemma 3, and applying Jensen’grobability one, and
inequality, implies that for alh. > N Pr{J, fails} = Pr{log[W,g,] > log(4logn)}
E[L, (X)) £ El-loggs] + log[K + E(—log 4,,)] < Pr{(W, — 1)g, > 2logn} (%) i?
n

+2loglog[K + E(—logg,)]| +7v+ K + 1. _ _
where(a) follows by part i) of Lemma 3. Therefore, lettirfg,
Finally, using the bound (28) yields, for all> V large enough denote the event that eith&f,, or J,, fails, for » large enough
E[¢, (X)) £ E[-loggs] + logn + 2loglogn we have o
_l’_

+[v+ K +3logR+4]. Pr{F,} < . (32)

nd

This proves part iii) with the constant term equalto+ K + Taking expectations of both sides of (31) we get
3log R + 4) and concludes the proof. N
B, (XT)]

Remark: The proof of the direct coding theorem in part i) of ) n
Theorem 1 establishes that the bound claimed in the statement of < B[~ log Qu(B(XY, D))
the theorem holds with probability one with respect to both the + —logn + 2loglogn + (log B+ 7)
source and the random codebook distribution. In other words, 2
not only deterministic codes exist as claimed, but (almost) any +E {"Fn [— log pun, (q(")(X?))} } + 2Pr{F, }.



2286

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

Applying Holder's inequality to the last expectation aboveirom (17) we know that for ever§g, asn — oo

using bound (32), and recalling the bound from the condition

(pSQC), yields

E {"Fn [— log fin (q(")(X?))} } +2Pr{F,}

< M,(C+1)Y74+1, eventually

Cym Al QBT D))
DS B D))

— R(P, Q, D) — R(D) with P-probl

therefore, by Fubini’s theorem, fd?-almost every realization
2$° of the source and for-almost everyl € N(Q*, ¢)

This completes the proof of part ii) pf Theorem 2 with the con-

stant term being/,(C + 1)/7 + log B + 8. O

C. Proofs of Theorems 3 and 4

Lemma 1 immediately implies thaf,, (D) > R, (D). Given
acodgC,, £,), define a probability measutg, as in the proof
of Theorem 1, and notice that

E[6,(X])] 2 E[-1og Q,(B(XT, D))] = Kn(D).

Part ii) of Theorem 3 and part i) of Theorem 4 follow from the

7n(xrll) - R(P7 Q7 D) - R(D) <e (35)
Fix any one of the (almost all}$° such that (35) holds. By
Fatou's lemma and the fact tha{ N (Q*, ¢)} > 0 it follows

that
\/J\r(Qt ? E)

(=) gre(Q)

lim inf

n—0o00

> / liminf 27~ dr(Q) = 0o
N(@Qr,e) T

Kuhn—Tucker conditions given in [3] exactly as in [21, proohnd combining this with (34) implies (33) as required.
of Theorem 6]. Finally, part ii) of Theorem 4 is an immediate Finally, we claim that, ifr has a density(Q) with respect

consequence of parts ii) and iii) of Theorem 1. O
IV. MEMORYLESS SOURCES MIXTURE CODEBOOKS AND
REDUNDANCY

In the notation of Section II-E, assume tHaX,, } is a sta-
tionary memoryless source with distributidhon A, and write
P for the distribution of the entire process. lzebe a prior dis-
tribution on the simpleXP of probability measures oA. For

to Lebesgue measure dn and p(Q)) is strictly positive in a
neighborhood of)*, thenw{N(Q*, ¢)} > Oforalle > 0
small enough. Note that, singé?) > 0 in a neighborhood of

Q*, it suffices to show that the neighborhoai§Q)*, <) have
positive Lebesgue measure. Recall that by the representation of
R(P, Q, D) in [21, Proposition 2],R(P, ), D) is convex as

a function of@). SinceR(P, Q*, D) = R(D) < oo, by the
definition of R(P, @), D) it follows that it is finite for all ¢

eachn, > 1, the mixture distributiongZ,, on A” are defined as With support at least as large as the suppoof Let M(Q")

in (6).

A. Proof of Theorem 6
It suffices to show that for every > 0

L QuB(XY, D))

—log =2~ —~ =7 L ¢
n ° M (B(X7, D)) = °

eventually w.pl

or equivalently

2" M, (BX], D)) _
QnBX, D) 7

For ¢ > 0, define the neighborhood¥(Q)*, ¢) as in (20), and
assume that {N(Q*, ¢)} > 0for all ¢ > 0 (we deal with the
case ofr having a positive density at the end).

Observe that

eventually w.p1l. (33)

27 M, (B(XY, D))
Qn(BXT, D))
e [ QUBXY, D))
oer QuBXL, D))
.y Q"(B(XT, D))
= /N@ﬁ,e) Qu(B(X7, D))

nle—2 lo.
:/ 2[ + log
N(@*, )

dr(Q)

dr(Q)

@ (B D))
QT (B(X], DY)

dr(Q). (34)

denote the set of all suah

M(Q*) £ {Q € P: support(Q) 2 suppor{Q*)}.

SinceM(Q*) is locally simplicial, R(P, @), D) is upper-semi-
continuous onM(Q*) (cf. [24, Theorem 10.2]). Therefore,
the neighborhood®’(Q*, ¢) contain nonempty open sets and
hence have positive Lebesgue measure. This proves the claim
and completes the proof of the theorem. O

B. Technical Properties

Following the notation of Section II-E, we l6P denote
the simplex of probability distributions omi. Let A
{40, a1, ..., aq}. For the sake of rigor, we need to introduce a
simple parametrization dP. We identify 7 with the d-dimen-
sional subset oR¢

d
6= {9:(91, b, ..., 04) € [0, 1]“ Z 6; < 1}
=1

via thel-1 correspondenc&® € P «— 6 € ©

Q(a;) =46;,

Q(ao) =1 - 291‘-

=1

We often write(}, for the distribution in? corresponding to
0 €0,
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Let = be a prior distribution or® (or, equivalently, oriP).
From now on, we also assume thathas a strictly positive,
continuous density

dn(60)

6) =
pO)=—=
with respect to Lebesgue measuret®n
Throughout this section, we fix ® > 0 and a source distri-

bution P € S(D) (recall (21)). Following [21], we define, for
any@ € P

0coO

DRQ

min min

y € support(Q)

éEp[

A
DL S Epyqlp(X, V)]

and for allA < 0 andx € A
Ap.o(V) A Ep {10g€, Eo [C)\P(X, Y)}}

p(X, y)}

Aa}(Q, )\) é 10g€ EQ |:6)\/7($,Y):| )
By [21, Lemma 1], for any@ = Qs € P and anyD ¢

(D% DI Qe) there exists a unique = Ay < 0 such that
A O
hae) 2 2]l =D
ax A=A

From [21, Lemma 1 and Proposition 1] we have
Re(P7 Q97 D) = )‘QD - AP,Q()‘Q) (36)

where R.(P, @, D) is the same a(P, @, D) but in nats
rather than bits

R.(P, Q, D) = (log, 2)R(P, Q, D).

Now let 8* correspond to the optimal reproduction distribu-

tion @* = Q4 for the source distributio® at distortion level
D.Recall[21, Propo§ition 2] thatwheneu@re (0, Dy,.x), we
also haveD e (D9 DI Q") Therefore, writing\* = \g-

R.(D)=R.(P,Q",D)=XD—Ap g-(X\") (37)
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exists and is strictly positive as long E{l’iﬁ? ¢ is strictly smaller
thanD.,9¢ (see [21, Lemma 1]). But sind@ and@, both have
full support, our assumption tha,,,,. > 0 implies that this is
always the case. Thus, by the implicit function theoremjs

differentiable ind on a neighborhood df*, and
g ” —1 9%(6, \)
0; (A7, 0, ()] L N

From this expression and from the differentiability®f it im-

mediately follows thaty, is in fact twice differentiable i on
a neighborhood of*, and since

Au(Qa, Ae) =log, > [Qe(y)ek“’(w’y)}
yEA
it follows that, for any fixedr € A, A,(Qg, Ag) is also twice
differentiable ing in a neighborhood of*. This proves part i)
of the lemma.
Recall the expression fdt. (P, @), D) in (36) and define, for
R > 0 and#f in the interior of©

\112(9, R) =R-—- D+ Ap7 Qe ()\9)
By the discussion preceding the statement of the lemma
Vo (6%, R.(D)) = Ua(8, R.(P, Q¢, D)) =0.
Also, by the preceding arguments; is twice differentiable in
either of its arguments and
avs(0, R)
——==1+#0.
OR 7
Therefore, by the implicit function theore®.( P, Q¢, D) is
differentiable ind on a neighborhood af* and
OR.(P, Qo, D) _ 0U»(0, R)
a0, 99, R=R(P,Q0, D)
This, together with the definitio»(#, R) and the differentia-
bility of Ay already proved, imply thak. (P, Qe, D) is twice
differentiable, proving part ii) of the lemma. O

C. Proof of Theorem 7

whereR.(D) = (log, 2) R(D) denotes the rate-distortion func-

tion in nats. The outline of the proof is similar to that of the corresponding

lossless result in [6] and it heavily relies on the precise asymp-
Lemma 4. Differentiability PropertiesLet D > 0 andP € totics forQ;,(B(X?', D)) developed in [9] and [29], so our no-
S(D). Write Q* = Q- for the optimal reproduction distribu- tation follows closely the notation in [6], [9], [29].
tion for P at distortion levelD. Let D > 0 be given, and choose and fix a source distribution
i) For each: € A, the functionA,.(Qq, Ae) is twice differ- P € S(D) with a corresponding optimal reproduction distribu-
entiable ind on a neighborhood af*. tion Q* = Q- . According to Lemma 4 we can define

i) Re(P, Qq, D) is twice differentiable ird on a neighbor- 5, 2 5, (6*, \*; X7)

hood of6*. N T
77 2 Vol (@, do) = Aro, ()]

Proof of Lemma 4:For A < 0 and# in the interior of©
(corresponding t@), in the interior of the simple®), define

g=0*

where A* = Ay is chosen so that (37) holds. Similarly,

a
W0, \) = N [Ap g,(M)]— D. Lemma 4 guarantees the existence of the matrix of partial
By the definitions ofAy and \* we have derivatives 92
A
\111(9, )\0) — \111(9*, )\*) =0. J = W Re(P7 Q97 D) e

It is easy to see thak, is twice differentiable in either of its Note that, since” € S(D), J is positive-definite and hence
arguments, and, moreover, the derivative invertible.
oW1 (6, \) B Sinces,, is a (normalized) partial sum of zero-mean, indepen-
“an Bn PACY dent random vectors, the law of the iterated logarithm implies
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that each of its components is of ord@(/log, log, n) with

probability one. Therefore, the quadratic form
StJ71S, = O(log log, n) w.p.1. (38)

Choosing alp > d, we define a “perturbed” version éf as

o * 1 -1
=140 +\/HJ Sh

st a-1s,<dey-

Leté, 2 1/‘2—0, n > 1, and define a sequence of neighborhoods

centered ab

A

Ny 2 {9 co: -4 < 6n}

where, throughout the proof, - || denotes the.?-norm with

respect to the matrix
léll = Ve,

Similarly define the neighborhoods
Ns, ={0€0O:|0—6%] <é,}

and note that

¢ e RY.

Ns, C Nos, . (39)

Next we obtain an upper bound on the quantity||6 — 0))2.
Using the definition o#, we expand|¢ — || as

2
Lg, — (6 —0%)S
\/ﬁ( )

1., . 2 .
_{E StJ 15n—%(9—9 )tsn} lst s 15,50} (40)

Since on the evenfS:.J 1S, > do} we haved = 6*, the
Cauchy-Schwarz inequality implies that

\/ﬁ(9*_9)t5n"{5}1.]*15n>d0} < Sz.]_lsn,

1
16— 6%+ = StJ~
n

for € Ns, .
R (41)
Combining (40) and (41) we have that, for &l N,

S 0017 < =216 = 07>+ Vi (067", 45177,
42

.
Now we are ready to examine the tet@e[%]
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ey [ @BOTD) 6
“Ji., QuB(X], D)) p(67) "
(n/2)ll6 6)IIZ(/)n(g) do
- QBT D))

) / [_10‘ (B(X}, D))
= S L QuB(T,

D)) - 5 ||9 - 9*”2
V(- 9*)&} bu(6) dB

—log, ¢, + O(log, log, n)

© n(B(XT
S/ _10‘ Q ( (‘X;;’D))_EHQ_Q*HQ
]\‘r25n Q*( (‘Xl ? D)) 2
/(0 — 6°)S,.| eq ¢ (6) dO
—log, ¢, + O(log, log, n) (43)

whereg¢? (8) is thed-dimensional normal density with meéh
and covariance matrig:.J) 1. In (43), (a) follows by Jensen’s
inequality, (b) follows from the continuity ofp(6), (42), and
(38), and(c) follows from (39) and the fact that

Pn(0) < et (6), for some constanty > 0, 6 € N, .
This inequality is easily derived from the bound in [6, eq. (5.7)
p. 467].

Next we consider the integrand in (43). Appealing to [29,
Corollary 1], foré close enough té*

—log. QL(B(XT{, D))

1
=nR.(P,, Q*, D)+ 3 log.n+0(1) w.p.1

and
—log, Q3 (B(XT', D))
= nRe(Pna Q07 D) +

where?, denotes the empirical distribution induced Ky on
A. Moreover, a close examination of [29, proof of Corollary 1]

% log.n+0O(1) wp.1l (44)

Letg,(6),n > 1, denote the truncated normal density functionveals that, in our setting (whereand A are finite andp is

1 12
L —2le-dp
Cn

hn(6) = ven,y  0€O

wherec, is the normalizing constant

e :/ o~ /2881 gg
Nr671

Writing @} = (Q*)" andQy = (Qg)™, with probability one

we have
g, BT, D)p(6)
© M (B(X}, D))
o Q"( (X7, D))p(®)
=—los. || oethie Do)

QRBXL, D)p(®)
(B(XT, D)p(6")

_—1086/ -

bounded), the convergence in (44) is uniform #oin a small
enough compact neighborhood@f. Therefore, uniformly for
S Ng(sn

QL(B(XT, D))
Qy(B(XY, D))

=n [Re(an Q97 D)

log,

_Re(ﬁ)nv Q*v D):| +O(1) Wp]—
(45)

To expand the right-hand side of (45) further, following [21] we
define

Jo(@) = =As(Qs, Xo) + Apg,(Ne),  w €A,
Writing the differencen[R. (P, Qo, D) — R.(F,,, Q*,
n[R(Pn, Qo, D) — Re(P, Qu, D)]
= n[Re(Py, Q", D) = Re(P, Q", D)]
n[Re(P; Qo, D) — Re(P, Q" D)]

D)l as
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we can apply [9, Theorem 3] to get that Finally (recall that/ is positive definite), repeating the exact
. . same argument that leads to [6, eqg. (5.3)], by a comparison with
n[Re(Pr, Qo, D) — Re(Pr, Q, D)] a multivariate normal integral we can estimate
is equal to —log,c, < g log, n + O(1)
[fo(X:) — fo- (X3)] + n[Re(P, Qo, D) — Ro(P, Q*, D)] thereby completing the proof. |
=1
+0(log, log,n) w.p.1. (46) APPENDIX |

PROOF OFLEMMA 1

[Note that we have ac.tuallly.usgd the sharper.remainder term ofrpe proof thatk,, (D) is no smaller than the right-hand side
order(log, log, n), asidentified in [21, Appendix VIL.] Further, of the statement of the lemma follows exactly as in the proof of
gcareful look at [9, proof of Theorem 3] (see also the (Ijlscuss?ﬂ, Lemma 4], with the only difference that, if the infimum in
in [10, proof of Theorem 18]) shows the convergence in [9, These gefinition of K, (D) is not achieved, we can assume without

orem 3] is uniform for in a small compact neighborhoodff |55 of generality thak,,(D) < oo and choose),, with
(provided that4d and A are finite andp is bounded). Therefore,

convergence in (46) holds uniformly fére Nos . E[-log Q.(B(X], D))] < K.(D) +e.

Notice that in the above notatidf), can be rewritten as ) . )
Repeating the argument in [21, Appendix 5] up to step (d),

1 & yields thatK,, (D) > inf I(X}; ¥Y7*) — e and lettinge | 0
Sn = % Z Vio[—fo(Xi)] : gives the desired inequality.
=1 0=0~ To prove the reverse inequality, IeX{*, Y*) be an arbitrary

pair of random vectors as in the infimum in the statement of the
lemma, writey,, for the joint distribution of X7, Y7*), letQ,,
denote the¥*-marginal, and assume thafx7; ¥Y7*) < oo.

From the Taylor expansion ¢g§ around?*, and taking the max-
imum over all possible realizations fof;" = «7 € A", we get

n . [Note that if no suc X}, Y{*) ~ u, exists then the infimum
> (fo(Xi) = for (X)) + V(0 — 67)' S, equals+oo and we are done.] This guarantees the existence of
i=1 ) all the Radon—Nikodym derivatives below (in particular recall

=nO(||0 —6"|") w.p.1. [12, eq. (5.2.8)]), so that faP,-almost every:}
Therefore, uniformly foil € Nos, /dun(yf’lx’l”)log duna((yl’|$1’)
Qn
;) — - ; — %)t = .P. 1. (a) n|..n dQn n|..n
2 oK) = for (X)) + V(0 = 67} = O(1) wp.1 O [ e los 52 )
i=1 B(s7, D) Hn
(47) '
Combining (46) and (47) unif ly fdt € Nos, bound ®)
ombining (46) and (47) uniformly f&t € Nss_, we can boun Y log On(B(zt, D))
> > * n *
‘H[Re(an Qs, D) = Re(P,, @7, D)) = 5 |16 — 67| where(a) follows from Fubini’s theorem and the assumption

thatp( X7, Y7*) < D with p,,-probability one, andb) follows

*\t
+Vn (6675, from Jensen’s inequality. Integrating both sides above with re-

i spect toP, yields
<D (ol Xi) = for (X)) + V/n (6 — 67)'S,,
=t I(XT5 ) = H (| [P X Q)
+n|Re(P, Qo, D) — R(P, Q", D) — % |6 — 6% || > E[-log Qn(B(X7, D))] > K.(D)
+ O(log, log, n) and completes the proof. O
= O(log,log.n) w.p.1 (48)

APPENDIX Il

where in the last step we have used the Taylor expansion of PROOF QUTLINE FOR THEOREMS

R.(P, Qg, D) aroundd* We assume that (for alt) the infimum in the definition of
. K,.(D) is achieved by some probability measud}g on A™; as
R.(P, Qq, D)~R.(P, Q*, D) = = ||6—6"|*+0 (||6 — 6"|]*) explained_in t_he_ remarks fqllowing Theqrems 4 and 5 the gen-
2 eral case is similar. The existence®fD) is well known [12].

(recall Lemma 4 and the definition of the noffnf}). Substituting FOr €achn > 1, let G, be the family of functions defined by
the bounds (45) and (48) in (43) we conclude that (13). Condition (QC) implies thak’,, (D) < oo and, therefore,
eachg,, is nonempty. Moreover, in the terminology of [17], itis
Q(B(XT, D)) straightforward to check that ea¢h is log-convex and that the
M, (B(XY, D))

< —log, cn + O(log, log.n) - w.p. 1. sequencd G, } is additive. Then Kieffer's generalized ergodic

log,
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theorem [17] implies (14) wittK(D) on the right-hand side,
and also establishes the existence of

K(D)= lim K,(D)

n—0o00

= rllgfl K, (D).

Before proving the equalitf (D) = R(D) we note that part
i) of Theorem 4 and (14) imply (15), and similarly part ii) of
Theorem 1 and (14) show the existence of codes achieving (15)
with equality. This proves part ii) of Theorem 5.

Finally, we argue thak’ (D) = R(D). From their definitions
and Lemma 1 itimmediately follows th&{ D) < K (D) < cc.

Fatou’s lemma applied to (15) implies that for any sequence 0[1‘16]

codes{(C,,, £,)} operating at distortion leveD

liminf Ell,(X1)] = K(D).

n—oo 1,

(49)

But there are codes operating at distortion |ebethat achieve
the rate-distortion function in expectation. A close examinatiori18]
of the proofsin[12, Theorems 11.4.1 and 11.5.1] shows that f 9
anye > 0 andé > 0 there are fixed-rate codes with asymptotic
rate bounded above by(D — §) + ¢ and with vanishing prob-
ability of encoding a source string with distortion greater tharf?%l
D. Therefore, using the quantizeg™ } provided by (QC) we
can modify these codes to operate at distortion lévelvith
an additional cost in the rate. This and (49) imply that for all
e>0andé > 0

R(D — 6)+ 2¢ > K(D).

Since R(D) is continuous when finite, we can let bottandé

go to zero to get that inded@( D) > K (D).

O
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