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Arbitrary Source Models and Bayesian Codebooks
in Rate-Distortion Theory
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Abstract—We characterize the best achievable performance
of lossy compression algorithms operating on arbitrary random
sources, and with respect to general distortion measures. Direct
and converse coding theorems are given for variable-rate codes
operating at a fixed distortion level, emphasizing: a) nonasymp-
totic results, b) optimal or near-optimal redundancy bounds,
and c) results with probability one. This development is based
in part on the observation that there is a precise correspondence
between compression algorithms and probability measures on the
reproduction alphabet. This is analogous to the Kraft inequality
in lossless data compression. In the case of stationary ergodic
sources our results reduce to the classical coding theorems. As an
application of these general results, we examine the performance
of codes based on mixture codebooks for discrete memoryless
sources. A mixture codebook (or Bayesian codebook) is a random
codebook generated from a mixture over some class of repro-
duction distributions. We demonstrate the existence of universal
mixture codebooks, and show that it is possible touniversally
encode memoryless sources with redundancy of approximately
( 2) log bits, where is the dimension of the simplex of
probability distributions on the reproduction alphabet.

Index Terms—Data compression, mixture codebooks, rate-dis-
tortion theory, redundancy rate.

I. INTRODUCTION

SUPPOSE data are generated by a random process, or
source . Roughly speaking, the main objec-

tive of data compression is to find efficient representations of
data strings by variable-length binary
strings . If we let denote thesource alphabet, then
the map from to the set of finite-length
binary strings is a (variable-length) block code of length. The
compression performance of such a code is described by its
length function

length of bits, for

In losslessdata compression, the natural class of codes to con-
sider is the class of uniquely decodable codes. As is well
known, the Kraft inequality (see, e.g., [7, p. 90]) provides a cor-
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respondence between uniquely decodable codes, and prob-
ability distributions on :

KRAFT INEQUALITY : ( ) For any uniquely decodable code
there is a probability measure on such

that

bits, for all

( ) Given any probability measure on there is a
uniquely decodable code such that

bits, for all

[Above and throughout the paper, denotes the logarithm
taken to base.] In the first part of the inequality, for we
can take the measure

where is the normalizing constant

Then the usual statement of the Kraft inequality says that .
Turning to lossycompression, we consider the problem of

variable-rate coding at a fixed distortion level. More precisely,
for each data string produced by
the source , our goal is to find an “accurate” representation
of by a string taking values in there-
production alphabet . The accuracy or “distortion” between
two such strings is measured by a family of arbitrary distortion
measures , (more precise defini-
tions will be given later).

The class of codes we consider here is the collection ofvari-
able-length codes operating at a fixed distortion level, that is,
codes defined by triplets where

a) is a discrete (finite or countably infinite) subset of ,
called thecodebook;

b) is theencoderor quantizer;

c) is a uniquely decodable representation
of the elements of by finite-length binary strings.

We say the code operates at distortion
level (for some ), if it encodes each source string with
distortion or less

for all
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The compression performance of a codeis described by its
length function

length of bits

For a code with associated length function we will often
write or simply .

The main theoretical issue of interest here is to characterize
the best achievable compression performance of such codes.
For stationary ergodic sources, Shannon [25], [36] gave the
first such general characterization in terms of the rate-distortion
function. In this paper, we adopt a somewhat different point of
view. We take, as the starting point, a lossy version of the Kraft
inequality, and use that as the basis for the subsequent general
development. This approach leads to a natural formulation of
the rate-distortion question as a convex selection problem, and
allows us to consider, at least for part of the way, completely
arbitrary source distributions and distortion measures. This
approach has its roots in the earlier work of Bell and Cover [3]
and of Kieffer [18].

A. Outline

Our first main result (part of Theorem 1 in Section II) is the
following lossy version of the Kraft inequality. Given a source
string and a distortion level , let
denote the “distortion-ball” of radius centered at (see (7)
for a precise definition).

LOSSY KRAFT INEQUALITY: ( ) For any code

with associated length function , operating at distortion
level , there is a probability measure on such that

bits, for all

( ) Given any “admissible” sequence of probability mea-
sures on , there is a sequence of codes

with associated length functions , operating at distor-
tion level , such that

bits, eventually, w.p.

where “w.p. ” above and throughout the paper means
“with probability one.”

As will become apparent later, the assumption of “admissi-
bility” of the measures is simply the natural requirement
that random codebooks, generated according to these measures,
do not yield codes with infinite rate.

In Theorems 1 and 2 in the following section, it is also shown
that the same code performance as in the second part of the lossy
Kraft inequality can be achieved in expectation. Further, if for a
given sequence of measures more detailed information is
available on the asymptotic behavior of the “code lengths”

(1)

then more precise statements can be made about the redun-
dancy achieved by the corresponding codes. The converse part

of the lossy Kraft inequality is based on an extension of a
simple argument that was implicitly used in [21], and the cor-
responding direct coding theorems (in contrast to the lossless
case) are asymptotic, and they are based on random coding ar-
guments. In order to obtain the precise form of the second-order
terms in the description lengths (the terms of order ), extra
care is needed in constructing efficient codes.

In view of the codes–measures correspondence implied by
the lossy Kraft inequality, the problem of understanding the best
achievable compression performance is reduced, at least con-
ceptually, to identifying the “optimal” measures and under-
standing the exact behavior of the approximate code lengths (1).
As we will see, this correspondence leads to a characterization
of the achievable performance of compression algorithms not
in terms of the rate-distortion function, but in terms of a related
quantity , defined as

(2)

where the infimum is over all probability measures on .
Let us assume for a moment that the above infimum is

achieved for some . In Theorems 3 and 4, we give
both asymptotic and finite- results on the optimality of the
measures and the codes they generate. First, we show that
for any code with length function operating at distortion
level

bits (3)

where is the th-order rate distortion function of the
source. Then we show that the measuresare “competitively
optimal” in that, for any measure and any

(4)

(see also Remark 3 after Theorem 3). Moreover, we prove that
the codes generated according to the measures areasymp-
totically optimal, up to about bits

bits, eventually, w.p. . (5)

The statements in (3)–(5) are given in Theorems 3 and 4. Special
cases of these results under much more restrictive assumptions
(a finite reproduction alphabet and a bounded, single-letter
distortion measure) recently appeared in [21].

Note that, so far,no assumptionshave been made on the
source distribution or the distortion measures.1 As a sanity
check, we consider the case of stationary ergodic processes and
subadditive distortion measures, and we show in Theorem 5
that, in this case, our general results reduce to Kieffer’s point-
wise coding theorems in [18], where the quantity was
defined and used extensively.

1To be absolutely precise, we should mention that for the results discussed
above we do need to make the trivial assumption that finite-rate coding is indeed
possible at the distortion level we consider.
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As an application of this general framework we consider the
problem of universal coding for memoryless sources with re-
spect to single-letter distortion measures. Following the corre-
sponding development in universal lossless compression (see
[6] and the references therein), we examine the performance of
random codes based on mixture codebooks. Let be an in-
dependent and identically distributed (i.i.d.) source over a finite
alphabet , and let the reproduction alphabetalso be finite.
A mixture codebook(or Bayesian codebook) is a random code-
book generated according to sequence of distributions ,
where each is a mixture of i.i.d. distributions on

for (6)

In Theorem 6, sufficient conditions are given for the “prior”
distribution , guaranteeing that the codes generated according
to the mixture distributions areuniversalover the class
of all memoryless sources on.

Under further regularity conditions on the prior(assuming
it has a continuous and everywhere positive density with respect
to Lebesgue measure), it is shown in Theorem 7 that the redun-
dancy of the mixture codebooks asymptotically does not exceed

bits, where is the dimension of the
simplex of distributions on the reproduction alphabet. There-
fore, the price paid for universality is about bits per
degree of freedom, where, in contrast with the case of lossless
compression, “freedom” is measured with respect to the class of
possiblecodebook distributionswe are allowed to use, and not
with respect to the size of the class of sources considered.

In view of the recent results in [28], this rate appears to be
optimal and it agrees with the corresponding results in loss-
less compression [23], [6], as well as with those obtained in
[5] within the framework of vector quantization. Moreover, the
codes generated by mixture codebooks appear to be the first ex-
amples of codes whose redundancy is shown to be near-optimal
not only in expectation, but also with probability one.

B. Earlier Work

A number of relevant papers have already been pointed out
and briefly discussed. We also mention that, implicitly, the
codes–measures correspondence has been used in the literature
by various authors over the past five years or so; relevant works
include [22], [27], [29], [19], and [21], among others.

A different approach for dealing with arbitrary sources has
been introduced by Steinberg, Verdú, and Han [26], [13], [14],
based on the “information-spectrum” method. This leads to a
different (asymptotic) characterization of the best achievable
performance in lossy data compression. Unlike in those works,
more emphasis here has been placed on obtaining nonasymp-
totic converses, tight redundancy bounds, and coding theorems
with probability one rather than in expectation.

The problem of determining the best achievable (expected)
redundancy rate in lossy compression was extensively treated
in [35]; see also references therein. Suboptimal universal re-
dundancy rates in expectation were computed in [31], [15], and
asymptotically tight bounds were recently obtained in [30], [28]
where converses were also established. Taking a different point
of view, Chouet al. [5] employ high-rate quantization theory to

address the question of how close one can come to the optimum
performance theoretically achievable (OPTA) function, as op-
posed to the rate-distortion function. Another related problem,
that of characterizing the optimalpointwiseredundancy (in-
cluding the question of universality) has been treated in detail
in [21].

All of the works mentioned so far exhibit universal codes
based on “multiple codebooks” or “two-stage descriptions.”
That is, the source string is examined, and based on its
statistical properties one of several possible codes is chosen to
encode . First, the index of the chosen code is communicated
to the decoder, then the encoded version of is sent. In
contrast, the universal codes presented here are based on a
single mixture codebook that works well for all memoryless
sources. This construction, facilitated by the codes–measures
correspondence, is developed in close analogy to the corre-
sponding lossless compression results; see [8], [23], [6], [2] and
references therein. Mixture codebooks for lossy compression
are also briefly considered in [34], [33], but with the mixture
being over fixed-composition codebooks of a given type, rather
than over distributions.

Finally, we note that a different connection between rate-dis-
tortion theory and Bayesian inference has been drawn in [32],
[16].

II. STATEMENTS OFRESULTS

A. The Setting

We introduce some definitions and notation that will remain
in effect throughout the paper. Let be a random
process, or source, taking values in thesource alphabet ,
where is assumed to be a complete, separable metric space,
equipped with its Borel -field . For , we write
for the vector of random variables , and
similarly write for a real-
ization of . The distribution of is denoted by (more
precisely, is a Borel probability measure on ), and
the probability measure describing the distribution of the entire
process is denoted by.

Similarly, for thereproduction alphabetwe take to be a
complete, separable metric space together with its Borel-field

, where may or may not be the same as.2 For each ,
we assume that we are given a distortion measure, that is,
a nonnegative function .3 For each
source string and distortion level we de-
fine the distortion-ball as the collection of all strings

that have distortion or less with respect to

(7)

Finally, throughout the paper, denotes the logarithm taken
to base and denotes the natural logarithm. Unless explic-
itly stated otherwise, all familiar information-theoretic quanti-
ties (the relative entropy, rate-distortion function, and so on) are

2To avoid uninteresting technicalities, we assume throughout that all single-
tons are measurable, i.e.,fxg 2 A andfyg 2 ^A for all x 2 A, y 2 ^A.

3Assuming, of course, that each� is measurable with respect to the product
�-field A � ^A .
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defined in terms of logarithms taken to base, and are hence
expressed in bits.

B. Random Codebooks

Given an arbitrary (Borel) probability measure on ,
by a random codebook generated according to we mean a
collection of independent random vectors

taking values in , each generated according to the measure
. These random vectors will serve as the codebook in various

direct coding theorems presented later. Given a random source
string , a random codebook as above, and a distortion level

, we define thewaiting time as the index of the first
element of the codebook that matches with distortion or
less

with the usual convention that the infimum of the empty set
equals .

In the coding scenario, we assume that the random codebook
is available to both the encoder and the decoder. The gist of
the subsequent direct coding theorems is to find efficient ways
for the encoder to communicate to the decoder the value of the
waiting time ; once this is available, the decoder can read off
the codeword and obtain a -close version of .

It is perhaps worth mentioning that the relationship of theth
codebook to the st codebook will be irrelevant in all
our subsequent direct coding arguments. For the sake of being
specific it may be convenient to think of codebooks with dif-
ferent block lengths as being independent. On the other hand, if

and are consistent measures, i.e., if happens to be
the -dimensional measure induced by on , then the

st codebook can be generated from theth one by ex-
tending each of its codewords by an additional letter generated
according to the conditional distribution induced by .

C. Arbitrary Sources

Let be an arbitrary source and a given sequence
of distortion measures as above. At various points below we will
need to impose the following assumptions. They are variations
of [18, Condition 2′)].

(WQC): For a distortion level we say that theweak
quantization condition (WQC) holds at level if for each
there is a (measurable) quantizer such
that is a finite or countably infinite set, and

for all

(QC): For a distortion level we say that thequanti-
zation condition (QC) holds at level , if (WQC) holds with
respect to quantizers of finite rate

where denotes the entropy (in bits) of the discrete
random variable .

( SQC): For a distortion level we say that the-strong
quantization condition (SQC) holds at level for some

, if (WQC) holds with respect to quantizers also
satisfying

(8)

where denotes the (discrete) distribution of on
. [For the above expression is interpreted, as usual,

to be the corresponding norm, i.e.,
.]

Note that clearly (SQC) (QC) (1SQC) (WQC). Also
observe that, if is a stationary source and the are
single-letter (or subadditive) distortion measures, then each of
the above three conditions reduces to the existence of a suitable
scalar quantizer, that is, each quantization condition reduces to
the corresponding requirement for .

For the statement of the next theorem we also need the fol-
lowing definitions. For each , let be a probability
measure on . The sequence is calledadmissibleif the
random codebooks generated according to these measures yield
codes with finite rate, with probability one. Formally, is
admissible if there is a finite constantsuch that

w.p. . (9)

Similarly, the sequence is calledadmissible in expectation
if it yields random codes with finite average rate, that is,4

(10)

The following result demonstrates the correspondence be-
tween sequences of codes operating at distortion level
and sequences of measures on the reproduction spaces .
The theorem is proved in Section III-A.

Theorem 1. Codes–Measures Correspondence:Given a dis-
tortion level , assume that condition (WQC) holds at
level .

i) For any code

operating at distortion level there is a probability mea-
sure on such that

bits, for all

ii) For any admissible sequence of probability measures
there is a sequence of codes

operating at distortion level such that

Const. bits, eventually, w.p..

4Note that, for any probability measureQ on(Â ; Â ), the functionx 7!
� logQ (B(x ; D)) is measurable with respect toA . To see this, simply
observe that we can takeQ (B(x ; D)) to be the regular conditional proba-
bility of the eventf� (X ; Y ) � Dg with respect toP �Q , conditional
on the�-field A .
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iii) For any sequence of probability measures that are
admissible in expectation, there is a sequence of codes

operating at distortion level such that

Const. bits, eventually.

Remark 1: The constant terms in parts ii) and iii) of Theorem
1 depend only on the constantthat bounds the asymptotic rate
of the measures in (9) and (10), respectively.

Our next result shows that the redundancy rates of the codes
in parts ii) and iii) of Theorem 1 can be improved when we have
more information about the asymptotic behavior of the approx-
imate code lengths (1) corresponding to the measures. The-
orem 2 is proved in Section III-B.

Theorem 2. Improved Redundancy Rates:

i) Given a distortion level , assume that condition
(WQC) holds at level . Let be an admissible se-
quence of probability measures and assume that

eventually, w.p. (11)

for some finite constant . Then there are codes

operating at distortion level such that

Const. bits, eventually, w.p..

ii) Given a distortion level , assume that condition
( SQC) holds at level for some . Assume that the
sequence is admissible in expectation, and let be
defined as above. If for large enough and for some finite
nonzero constants and

where , then there are codes

operating at distortion level such that

Const. bits, eventually.

Remark 2: The constant term in the statement of part i) of
Theorem 2 depends only on the constantin (11). The constant
term in part ii) of Theorem 2 depends only on the constants,

, and the constant in the ( SQC) condition (8).

Note that in many important cases of interest, the assump-
tions of Theorems 1 and 2 on the asymptotic behavior of the ap-
proximate code lengths (1) can be verified via the “generalized
asymptotic equipartition property (AEP)” and its refinements;
see [10] for an extensive discussion.

Theorems 1 and 2 indicate that the best achievable perfor-
mance of codes operating at distortion levelcan be under-
stood almost entirely on the basis of understanding the precise
behavior of the approximate code lengths (1). To this end, for
each and distortion level we define (cf. (2)) the
quantity

where the infimum is over all probability measures on .
The next theorem gives finite-bounds on the achievable

compression performance of arbitrary codes operating at distor-
tion level . In particular, it identifies the measures
that are optimal in terms of compression performance, as those
that achieve the infimum in the definition of .

Theorem 3. Nonasymptotic Bounds:

i) For any code operating at distortion level

where is the usual th-order rate-distortion func-
tion of the source [4], defined by

where denotes the mutual information be-
tween and , and the infimum is taken over all
jointly distributed random vectors with
having the source distribution , and

ii) Assume that the infimum in the definition of
is achieved by some probability measure and that

. Then forany probability measure on
we have

and for any

Remark 3. Competitive Optimality:The second result in part
ii) of Theorem 3 is somewhat striking. It states that, for any
fixed , there is an optimal code operating at distortion level

(the code corresponding to ) with the following property.
The probability that any other code beats the optimal one by

or more bits is at most . For a detailed example see [20,
Sec. IV].

Remark 4. Achievability:Although in general there may not
exist measures achieving the infimum in the definition of

, when is finite and is a sequence of bounded,
single-letter distortion measures such were shown to exist
in [21]. When the infimum is not achieved (or the achievability
is not easy to check), it is still possible to recover the result of
part ii) of Theorem 3; see Remark 7 after Theorem 4.

Remark 5. Versus : The function
can be defined in more familiar information-theoretic terms,
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making it more easily comparable to the rate-distortion func-
tion —see Lemma 1 later. In that form, is
reminiscent of Kolmogorov’s definition of-entropy (which
explains the choice of the letter in the notation). It is obvious
from Lemma 1 that is generally larger than , but
for stationary-ergodic sources their limiting values

and

are equal (see Theorem 5). Lemma 1 is proved in Appendix I.

Lemma 1. Alternative Characterization of : For all
we have

where the infimum is taken over all jointly distributed random
vectors with having the source distribution ,
and with probability one.

Next we deduce the following asymptotic result from The-
orem 3: Up to approximately bits, the code lengths

are both achievable and impossible to beat, with probability one.
Since the proofs of Theorems 3 and 4 follow very closely along
the lines of the corresponding results in [21] we only include
brief outlines of their proofs in Section III-C.

Theorem 4. Asymptotic Bounds:Assume that for all large
enough, the infimum in the definition of is achieved by
some probability measure , and that .

i) For any sequence of codes operating at distor-
tion level

bits, eventually, w.p. .

ii) Moreover, if the sequence is admissible and condi-
tion (WQC) holds at level , then there is a sequence of
codes operating at distortion level such that

Const. bits, eventually, w.p.. (12)

Similarly, if the sequence is admissible in expecta-
tion then there exist codes so that (12) holds in expectation,
and with in place of .

Remark 6. Admissibility:The assumption that the optimal
measures are admissible is typically not restrictive. For
example, as we will see in the next section, they are always ad-
missible (as well as admissible in expectation) when the source
is stationary and ergodic.

Remark 7. More on Achievability:If but the
infimum in the definition of is not achieved, there al-
ways exists a function in the -closure of
the collection of functions on defined by

for a probability measure on (13)

such that ; see [17, Theorem 1]. More-
over, the conclusions of part ii) of Theorem 3 and the converse

in part i) of Theorem 4 all still hold if we replace the term
by .

D. Ergodic Sources

We briefly consider the case of stationary ergodic sources
and demonstrate how the classical coding theorems follow from
the general results above. Assume that the source is sta-
tionary and ergodic, and that the distortion measures are
subadditive, i.e.,

for all , , and all . We
will also assume the existence of areference letter such
that

The following theorem is essentially due to Kieffer [18]. To
connect it with our earlier results we include a brief outline of
its proof in Appendix II.

Theorem 5. Stationary-Ergodic Sources [18]:Let be
a stationary-ergodic source such that condition (QC) holds for
all . Assume that the distortion measures are sub-
additive, and that a reference letter exists. Then is finite
for all , and the limit

exists and is equal to the rate-distortion function of the source

If, moreover, for all large enough the infimum in the definition
of is achieved by some probability measure, then we
also have

i) As

w.p. and in (14)

ii) For any sequence of codes operating at distor-
tion level

bits/symbol, w.p.

(15)
and there exist codes achieving this bound with equality.

Remark 8. Even More on Achievability:As described in Re-
mark 7, even when the achieving measuredoes not exist we
can always find a function so that plays
the role of . In this context, [17, Theorem
2] implies that part i) of Theorem 5 always holds with
in place of , and, therefore, the pointwise
converse (15) is also always valid.

E. Mixture Codebooks and Memoryless Sources

As we saw in Theorems 3 and 4, the optimal measures
completely characterize the best compression performance of
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codes operating at a fixed distortion level. But the them-
selves are typically hard to describe explicitly.

In this subsection, we restrict our attention to memoryless
sources. Although it is not hard to see that even here the mea-
sures do not have a particularly simple structure, we do
know [35], [29], [21] that, when dealing with a single memo-
ryless source,asymptoticallyoptimal compression can still be
achieved by codes based on product measures, i.e., measures

of the form on . Taking to be the optimal
reproduction distribution at distortion level, the codes gener-
ated according to the product measures achieve near-op-
timal redundancy both in expectation and with probability one
(see Proposition 1 and the discussion following Theorem 7 for
details).

Turning to the problem of universal coding, the above dis-
cussion motivates us to consider codes based on random code-
books that are generated according tomixturesover the class of
all product distributions on . The existence of universal
mixture codebooks will be established, and sufficient conditions
will be given under which the redundancy rate they achieve is
optimal.

For the remainder of this section, is assumed to be a
stationary memoryless source, that is, the random variables
are i.i.d, with common distribution on . We take both and

to be finite sets and write for the cardinality of
. Given a distortion measure , we consider

the family of single-letter distortion measures

We also make the customary assumption that for each
there is an such that .

Following [27], [21], for each probability distribution on
and all , we define the rate function

where denotes the relative entropy, the infimum is taken
over all jointly distributed random variables such that

has the source distribution and , and
denotes the marginal distribution of. It is not hard to see that

is related to the rate-distortion function of
the source via

(16)

where the infimum is taken over all probability distributions
on ; cf. [27], [21]. We let denote the product measures

on , , and we call the measures theoptimal
reproduction distributions at distortion level (even though the
achieving in (16) may not be unique).

The following proposition shows that charac-
terizes the first-order compression performance of the random
codebooks generated according to the product measures. In
particular (recall Theorem 1), it implies that the codebooks gen-
erated according to the optimal reproduction distributions
achieve first-order optimal compression performance.

Proposition 1 [27]: For any probability measureon , and
for all

w.p. 1. (17)

Next define as usual

(18)

Since for , to avoid the trivial case when
is identically equal to zero we assume that .

Also, from now on, we restrict our attention to distortion levels
in the interesting range .
Let denote the -dimensional simplex of probability mea-

sures on , and let be a probability measure on; we refer
to as the “prior” distribution on . For each , we define
themixture distribution on as in (6)

for

The next theorem gives a simple sufficient condition on the
prior, under which the first-order performance of codes based on
the mixture distributions is universally optimal. Theorem 6
is proved in Section IV-A using an argument similar to that used
in the proof of the corresponding lossless result in [1].

Theorem 6. Universality of i.i.d. Mixtures:Let be an
i.i.d. source with distribution on . For , let

denote the optimal reproduction distribution of at dis-
tortion level . If the prior has a density with respect to
Lebesgue measure on the simplex, andis strictly positive in a
neighborhood of , then

w.p. as (19)

More generally, (19) remains valid as long as the priorassigns
positive mass to all neighborhoods

for (20)

The conditions of Theorem 6 are easily seen to be satisfied,
e.g., when the prior has an everywhere strictly positive density
, or when assigns positive mass to the optimal reproduction

distribution itself. In particular, this includes the special case of
discrete mixtures of the form

where is one of the mixing distributions . More generally,
the discrete mixtures are universal if the are a count-
able dense subset of the simplexand are strictly positive
weights summing to one.

Remark 9. Universal Codes:Suppose that the assumptions
of Theorem 6 hold for all on the simplex—e.g., taketo be
the normalized Lebesgue measure on the simplex or a discrete
probability measure supported on a countable dense set. Then,
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in view of Proposition 1 and (16), Theorem 6 implies that the
mixtures measures have

w.p. .

Therefore they are admissible, and Theorem 1 implies the exis-
tence of universal codes over the class of all memoryless sources
on .

Next it is shown that when the prior satisfies certain
smoothness conditions, the asymptotic redundancy rate of the
mixture codebooks is approximately bits, where

is the dimensionality of .
For Theorem 7, we only consider sourcesthat have
for all , and we assume that the optimal reproduction

distribution is unique and is achieved in the interior of the
simplex. Formally, for each we consider sources in
the collection

is unique

support and support (21)

Theorem 7. Pointwise Redundancy of i.i.d. Mixtures:Let
, and assume that the prior has a strictly positive,

continuous density with respect to Lebesgue measure. Then
for any source distribution in

w.p. , as (22)

where are the optimal reproduction distributions for the
source at distortion level .

The proof of Theorem 7 (given in Section IV-C) is based on
an argument using Laplace’s method of integration, and closely
parallels the proof of the corresponding result of Clarke and
Barron [6] in the lossless case. Using (22) and applying The-
orem 2, we get a sequence of universal codes with near-optimal
redundancy rate.

Corollary 1. Universal Pointwise Redundancy:Let .
There is a sequence of codes

operating at distortion level such that, for all memoryless
sources in

bits, w.p. , as (23)

where are the optimal reproduction distributions for the
source at distortion level .

Corollary 1 follows from combining Theorem 7 with part i)
of Theorem 2. To verify that assumptions of part i) of Theorem
2 are satisfied, recall [21, Proposition 3].

Remarks:

a) Interpretation: What Theorem 7 and Corollary 1 really tell
us is that the codes corresponding to the mixture distri-

butions have code lengths that do not exceed the
“optimum”

bits

by more than bits. Why call the code
lengths optimum? In view of Theorem 2,

correspond to random codes generated ac-
cording to the measures . In [29], [35], and in [21]
it was shown that these random codes are essentially
asymptotically optimal, both in expectation and with
probability one. Specifically, in [29] it is proved that

bits

but we also know [35] thatanycode operating at distor-
tion level has expected code lengths at least as large
as bits. Similarly, in [21] it was
shown that no code operating at distortion levelcan
outperform by more than bits, eventually
with probability one, and it was also shown that
is approximately competitively optimal (see [21, Corol-
lary 2 and Proposition 3]).

Therefore, we interpret (23) as saying that the point-
wise price paid for universality by a mixture codebook is
approximately “ bits per degree of freedom.”
The converse recently proved in [28] indicates that this
rate is asymptotically optimal.

b) Conditions for Universality: The results of Theorem 7 and
Corollary 1 only hold for sources in . The only
essential restriction implied by this assumption is that the
optimal reproduction distribution at distortion level is
unique and has full support. Although this is, of course,
not always the case, it is typically true for all low enough
distortion levels, and itis true in several important special
cases. For example, it is easily seen that this assumption
is satisfied in the case of binary sources with respect to
Hamming distortion; cf. [21, Example 2]. More generally,
Yang and Zhang in [30], [28] give the following sufficient
condition:

The matrix is of full column rank

for all ( )

In [30, Appendix A] it is shown that for any source
satisfying (*), the optimal reproduction distribution
is unique for all . [Note that the direct
coding theorems in [30], [28] are stated for sourcesthat
satisfy (*) with of full support; these conditions are
apparently stronger than requiring .]

c) Pointwise Redundancy and Minimal Coding Variance: As
discussed in remark a), the codes exhibited in Corollary 1
have code lengths that do not exceed the optimum
bits by more than bits; cf. [21, Corollary 1].
Therefore, the mixture codebooks not only achieve the
best rate, but their second-order performance is also op-
timal, in that their fluctuationsuniversallyachieve the
“minimal coding variance” [21, p. 139] of the source that
is being compressed.
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III. A RBITRARY SOURCES: THE CODES–MEASURES

CORRESPONDENCE

Before giving the proofs of Theorems 1–4, we state some pre-
liminary lemmas that will be needed in the proofs of the direct
coding theorems. The first lemma (given here without proof) de-
scribes a specific prefix-free code for the positive integers. It is
based on iterating a simple idea of Elias [11].

Lemma 2. A Code for the Positive Integers:There exists
a prefix-free code for the positive integers with associated
length function , such that, for all

where denotes the function , and is
some finite constant.

All our direct coding theorems will be proved using random
coding arguments based on random codebooks as described in
Section II-B. In the notation of that section, the next lemma
establishes a precise relationship between the waiting time
for a -close match in the codebook and the probability

of finding such a match.

Lemma 3. Waiting Times Bounds:In the notation of Sec-
tion II-B:

i) if for some , the probability
is nonzero, then for any

ii) there is a universal constant such that

for all

where for each the expectation is taken over the message
as well as over the random codebook.

Proof of Lemma 3:Fix such that

Then, conditional on , the distribution of is geo-
metric with parameter and

where the last step follows from the simple inequality

for

This proves part i) of the lemma. For part ii), let denote the
event

and

and write for the (random) probability .
Then we can bound

where follows by Fubini’s theorem, follows from part i)
of the lemma, and where for any event, by we denote its
indicator function.

A. Proof of Theorem 1

For part i), given a code , let
be the length function of the uniquely decodable

map so that . Define

if

otherwise.

Then for any

bits

where the inequality follows from the fact that operates at
distortion level . Since is uniquely decodable, Kraft’s in-
equality implies that is a subprobability measure. If it is a
probability measure we are done; otherwise, the above argument
can be repeated with the measure in place of ,
where is the normalizing constant

The direct coding theorems of parts ii) and iii) are based on a
random coding argument. Given a sequence of measures,
for each generate a random codebook
as described in Section II-B. These codebooks are assumed to
be available both to the encoder and decoder, and the following
coding scheme is adopted. If the waiting time is finite, then

is described (with distortion or less) by describing
to the decoder, using the code from Lemma 2. If ,
then we describe using the quantizer provided by the
condition (WQC). Writing for the distribution of
on , this description can be given using at most

bits (24)

Finally, a 1-bit flag is added to tell the decoder which of the
two cases ( or ) occurred. This code clearly
operates at distortion level , and its overall description length

has

if

if .

For part ii), since the sequence is admissible, for -al-
most every realization of the source the probability

eventually, and therefore the waiting times will be finite
eventually with probability (with respect to both the source
and the codebook distribution). Therefore,

eventually, w.p. . (25)
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Write, as before, for the (random) probability
. Then, for -almost every realization of the

source, for large enough we can apply part i) of Lemma 3
with to get

The Borel–Cantelli lemma implies that

eventually, w.p.

and hence

eventually, w.p. (26)

From the admissibility of and (26) we also have

eventually, w.p. (27)

and combining (25)–(27)

eventually, w.p.

This proves part ii) of the theorem with the constant term equal
to .

Turning to part iii), we note that the assumption that is
admissible in expectation implies that for all sufficiently
small there is a finite (nonrandom) such that, for all

w.p.

and

(28)

In particular, the bound (25) holds with probability one for all
, and, therefore,

for

Replacing all the terms above by
, using part ii) of Lemma 3, and applying Jensen’s

inequality, implies that for all

Finally, using the bound (28) yields, for all large enough

This proves part iii) with the constant term equal to
and concludes the proof.

Remark: The proof of the direct coding theorem in part ii) of
Theorem 1 establishes that the bound claimed in the statement of
the theorem holds with probability one with respect to both the
source and the random codebook distribution. In other words,
not only deterministic codes exist as claimed, but (almost) any

realization of the random codes constructed will provide such a
code.

B. Proof of Theorem 2

The coding scheme used here is different from the one in
Theorem 1. Let

so that , and define the events

and

If and both occur, then is described in two steps.
First, we describe using no more than

bits (29)

and then describe itself using no more than

bits (30)

If either or fails, then is described without coding,
using the quantizer provided by (WQC). After adding a
1-bit flag to indicate which of the two methods was used, from
(24), (29), and (30), the overall description lengthof this code
has

if and
both hold

otherwise.
(31)

For part i), assumption (11) and the admissibility of
imply that both and hold eventually with probability
(see the derivation of (26) above), thereby proving part i) with
the constant term being equal to .

For part ii) of the theorem, we first need to bound the proba-
bility that fails. With , since is
admissible in expectation, for all large enough with
probability one, and

fails

where follows by part i) of Lemma 3. Therefore, letting
denote the event that either or fails, for large enough
we have

(32)

Taking expectations of both sides of (31) we get
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Applying Hölder’s inequality to the last expectation above,
using bound (32), and recalling the bound from the condition
( SQC), yields

eventually

This completes the proof of part ii) pf Theorem 2 with the con-
stant term being .

C. Proofs of Theorems 3 and 4

Lemma 1 immediately implies that . Given
a code , define a probability measure as in the proof
of Theorem 1, and notice that

Part ii) of Theorem 3 and part i) of Theorem 4 follow from the
Kuhn–Tucker conditions given in [3] exactly as in [21, proof
of Theorem 6]. Finally, part ii) of Theorem 4 is an immediate
consequence of parts ii) and iii) of Theorem 1.

IV. M EMORYLESSSOURCES: MIXTURE CODEBOOKS AND

REDUNDANCY

In the notation of Section II-E, assume that is a sta-
tionary memoryless source with distributionon , and write

for the distribution of the entire process. Letbe a prior dis-
tribution on the simplex of probability measures on . For
each , the mixture distributions on are defined as
in (6).

A. Proof of Theorem 6

It suffices to show that for every

eventually w.p.

or equivalently

eventually w.p. (33)

For , define the neighborhoods as in (20), and
assume that for all (we deal with the
case of having a positive density at the end).

Observe that

(34)

From (17) we know that for every , as

with -prob.

therefore, by Fubini’s theorem, for-almost every realization
of the source and for-almost every

(35)

Fix any one of the (almost all) such that (35) holds. By
Fatou’s lemma and the fact that it follows
that

and combining this with (34) implies (33) as required.
Finally, we claim that, if has a density with respect

to Lebesgue measure on and is strictly positive in a
neighborhood of , then for all
small enough. Note that, since in a neighborhood of

, it suffices to show that the neighborhoods have
positive Lebesgue measure. Recall that by the representation of

in [21, Proposition 2], is convex as
a function of . Since , by the
definition of it follows that it is finite for all
with support at least as large as the support of. Let
denote the set of all such

support support

Since is locally simplicial, is upper-semi-
continuous on (cf. [24, Theorem 10.2]). Therefore,
the neighborhoods contain nonempty open sets and
hence have positive Lebesgue measure. This proves the claim
and completes the proof of the theorem.

B. Technical Properties

Following the notation of Section II-E, we let denote
the simplex of probability distributions on . Let

. For the sake of rigor, we need to introduce a
simple parametrization of . We identify with the -dimen-
sional subset of

via the – correspondence

We often write for the distribution in corresponding to
.
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Let be a prior distribution on (or, equivalently, on ).
From now on, we also assume thathas a strictly positive,
continuous density

with respect to Lebesgue measure on.
Throughout this section, we fix a and a source distri-

bution (recall (21)). Following [21], we define, for
any

and for all and

By [21, Lemma 1], for any and any
there exists a unique such that

From [21, Lemma 1 and Proposition 1] we have

(36)

where is the same as but in nats
rather than bits

Now let correspond to the optimal reproduction distribu-
tion for the source distribution at distortion level

. Recall [21, Proposition 2] that whenever , we
also have . Therefore, writing

(37)

where denotes the rate-distortion func-
tion in nats.

Lemma 4. Differentiability Properties:Let and
. Write for the optimal reproduction distribu-

tion for at distortion level .

i) For each , the function is twice differ-
entiable in on a neighborhood of .

ii) is twice differentiable in on a neighbor-
hood of .

Proof of Lemma 4:For and in the interior of
(corresponding to in the interior of the simplex ), define

By the definitions of and we have

It is easy to see that is twice differentiable in either of its
arguments, and, moreover, the derivative

exists and is strictly positive as long as is strictly smaller
than (see [21, Lemma 1]). But sinceand both have
full support, our assumption that implies that this is
always the case. Thus, by the implicit function theorem,is
differentiable in on a neighborhood of , and

From this expression and from the differentiability of it im-
mediately follows that is in fact twice differentiable in on
a neighborhood of , and since

it follows that, for any fixed , is also twice
differentiable in in a neighborhood of . This proves part i)
of the lemma.

Recall the expression for in (36) and define, for
and in the interior of

By the discussion preceding the statement of the lemma

Also, by the preceding arguments, is twice differentiable in
either of its arguments and

Therefore, by the implicit function theorem is
differentiable in on a neighborhood of and

This, together with the definition and the differentia-
bility of already proved, imply that is twice
differentiable, proving part ii) of the lemma.

C. Proof of Theorem 7

The outline of the proof is similar to that of the corresponding
lossless result in [6] and it heavily relies on the precise asymp-
totics for developed in [9] and [29], so our no-
tation follows closely the notation in [6], [9], [29].

Let be given, and choose and fix a source distribution
with a corresponding optimal reproduction distribu-

tion . According to Lemma 4 we can define

where is chosen so that (37) holds. Similarly,
Lemma 4 guarantees the existence of the matrix of partial
derivatives

Note that, since , is positive-definite and hence
invertible.

Since is a (normalized) partial sum of zero-mean, indepen-
dent random vectors, the law of the iterated logarithm implies
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that each of its components is of order with
probability one. Therefore, the quadratic form

w.p. (38)

Choosing a , we define a “perturbed” version of as

Let , , and define a sequence of neighborhoods

centered at

where, throughout the proof, denotes the -norm with
respect to the matrix

Similarly define the neighborhoods

and note that

(39)

Next we obtain an upper bound on the quantity .
Using the definition of , we expand as

(40)

Since on the event we have , the
Cauchy–Schwarz inequality implies that

for
(41)

Combining (40) and (41) we have that, for all

(42)
Now we are ready to examine the term .

Let , , denote the truncated normal density functions

where is the normalizing constant

Writing and , with probability one
we have

(43)

where is the -dimensional normal density with mean
and covariance matrix . In (43), follows by Jensen’s
inequality, follows from the continuity of , (42), and
(38), and follows from (39) and the fact that

for some constant

This inequality is easily derived from the bound in [6, eq. (5.7)
p. 467].

Next we consider the integrand in (43). Appealing to [29,
Corollary 1], for close enough to

w.p.

and

w.p. (44)

where denotes the empirical distribution induced by on
. Moreover, a close examination of [29, proof of Corollary 1]

reveals that, in our setting (where and are finite and is
bounded), the convergence in (44) is uniform forin a small
enough compact neighborhood of. Therefore, uniformly for

w.p.

(45)

To expand the right-hand side of (45) further, following [21] we
define

Writing the difference as
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we can apply [9, Theorem 3] to get that

is equal to

w.p. (46)

[Note that we have actually used the sharper remainder term of
order , as identified in [21, Appendix VI].] Further,
a careful look at [9, proof of Theorem 3] (see also the discussion
in [10, proof of Theorem 18]) shows the convergence in [9, The-
orem 3] is uniform for in a small compact neighborhood in
(provided that and are finite and is bounded). Therefore,
convergence in (46) holds uniformly for .

Notice that in the above notation can be rewritten as

From the Taylor expansion of around , and taking the max-
imum over all possible realizations for , we get

w.p.

Therefore, uniformly for

w.p.

(47)
Combining (46) and (47) uniformly for , we can bound

w.p. (48)

where in the last step we have used the Taylor expansion of
around

(recall Lemma 4 and the definition of the norm). Substituting
the bounds (45) and (48) in (43) we conclude that

w.p.

Finally (recall that is positive definite), repeating the exact
same argument that leads to [6, eq. (5.3)], by a comparison with
a multivariate normal integral we can estimate

thereby completing the proof.

APPENDIX I
PROOF OFLEMMA 1

The proof that is no smaller than the right-hand side
of the statement of the lemma follows exactly as in the proof of
[21, Lemma 4], with the only difference that, if the infimum in
the definition of is not achieved, we can assume without
loss of generality that and choose with

Repeating the argument in [21, Appendix 5] up to step (d),
yields that and letting
gives the desired inequality.

To prove the reverse inequality, let be an arbitrary
pair of random vectors as in the infimum in the statement of the
lemma, write for the joint distribution of , let
denote the -marginal, and assume that .
[Note that if no such exists then the infimum
equals and we are done.] This guarantees the existence of
all the Radon–Nikodym derivatives below (in particular recall
[12, eq. (5.2.8)]), so that for -almost every

where follows from Fubini’s theorem and the assumption
that with -probability one, and follows
from Jensen’s inequality. Integrating both sides above with re-
spect to yields

and completes the proof.

APPENDIX II
PROOFOUTLINE FOR THEOREM 5

We assume that (for all ) the infimum in the definition of
is achieved by some probability measure on ; as

explained in the remarks following Theorems 4 and 5 the gen-
eral case is similar. The existence of is well known [12].
For each , let be the family of functions defined by
(13). Condition (QC) implies that and, therefore,
each is nonempty. Moreover, in the terminology of [17], it is
straightforward to check that each is log-convex and that the
sequence is additive. Then Kieffer’s generalized ergodic
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theorem [17] implies (14) with on the right-hand side,
and also establishes the existence of

Before proving the equality we note that part
i) of Theorem 4 and (14) imply (15), and similarly part ii) of
Theorem 1 and (14) show the existence of codes achieving (15)
with equality. This proves part ii) of Theorem 5.

Finally, we argue that . From their definitions
and Lemma 1 it immediately follows that .
Fatou’s lemma applied to (15) implies that for any sequence of
codes operating at distortion level

(49)

But there are codes operating at distortion levelthat achieve
the rate-distortion function in expectation. A close examination
of the proofs in [12, Theorems 11.4.1 and 11.5.1] shows that for
any and there are fixed-rate codes with asymptotic
rate bounded above by and with vanishing prob-
ability of encoding a source string with distortion greater than

. Therefore, using the quantizers provided by (QC) we
can modify these codes to operate at distortion level, with
an additional cost in the rate. This and (49) imply that for all

and

Since is continuous when finite, we can let bothand
go to zero to get that indeed .
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